2019-2020年高考数学专题二次函数根的分布复习教学案(无答案)
高中高考数学:二次函数根的分布

2
分析:①由 f (−3) ⋅ f (0) < 0 ,即 (14m + 15)( m + 3) < 0 ,得出 −3 < m < − 15 ;
14
②由 ∆ = 0 即16m
2
− 4 ( 2m + 6 ) = 0 得出 m = −1 或 m =
3 , 2
当 m = −1 时,根 x = −2 ∈ ( −3, 0 ) ,即 m = −1 满足题意; 当 m = 3 时,根 x = 3 ∉ ( −3, 0 ) ,故 m = 3 不满足题意;
2
所以 mx − ( m + 2 ) x + 2 = ( x − 1)( mx − 2 ) ,另一根为 2 ,由1 < 2 < 3 得 2 < m < 2 即为所求; m m 3
2
方程有且只有一根,且这个根在区间 (m, n ) 内,即 ∆ = 0 ,此时由 ∆ = 0 可以求出参数的值,然后再将参数的 值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 如:已知方程 x − 4mx + 2m + 6 = 0 有且一根在区间 ( −3, 0 ) 内,求 m 的取值范围.
两根都在 (m, n ) 内
两根有且仅有一根在 (m, n ) 一根在 (m, n ) 内,另一根在 内,另一根在 [m, n] 之外
m n x
( p, q ) 内, m < n < p < q
n
p q
m
x
m
n
x
得出的结论
∆>0 f (m) > 0 f (n) > 0 b m < − <n 2a
二次函数根的分布专题(上课用)

一元二次方程根的分布专题一.一元二次方程根的基本分布——零分布设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x①方程有两个不等正根 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+>-=∆>>00040,02121221a c x x a b x x ac b x x②方程两根一正一负 :0021<<<acx x ,则③方程有两个不等负根:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+>-=∆<<00040,02121221a c x x a b x x ac b x x 即时应用:(1)若一元二次方程0)1(2)1(2=-++-m x m x m 有两个不等正根,求m 的取值范围。
(2)k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?二、一元二次方程的非零分布——k 分布设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。
则一元二次方程根的k 分1x 2x kk kk即时应用:(1) 若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.(2) 方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.二、典型例题例1 若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根还是负根?例2若方程2(2)40x k x -++=有两负根,求k 的取值范围.例3..若关于x 的方程2(2)210x k x k +-+-=的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.例5.方程mx 2+2(m+1)x+m+3=0仅有一个负根,求m 的取值范围2k 1k 2k 1k 3k 2k 1k。
2019-2020学年高三数学一轮复习 二次函数学案2.doc

2019-2020学年高三数学一轮复习 二次函数学案2
一、学习目标:重点掌握一元二次函数、一元二次方程、一元二次不等式的综合应用
二、基础自测
1、设1)(2++=bx x x f ,且)3()1(f f =-,则0)(>x f 的解集是 ( )
A 、}31|{>-<x x x 或
B 、R
C 、}1|{≠x x
D 、}1|{=x x
2、已知54)(2+-=mx x x f 在),2[+∞-上单调,则实数m 的取值范围是
3、设函数1)(2--=mx mx x f ,若0)(<x f 的解集为R ,则实数m 的取值范围是
4、已知]1,1[-∈x 时,02)(2>+
-=a ax x x f 恒成立,则实数a 的取值范围是 三、典例分析
例1、已知函数R x R b a bx ax x f ∈∈++=),,(1)(2
(1)若函数)(x f 的最小值为0)1(=-f ,求)(x f 的解析式,并写出单调区间;
(2)在(1)的条件下,k x x f +>)(在区间]1,3[--上恒成立,试求k 的取值范围;
(3)(选做)在(1)的条件下,存在],1,3[--∈x 使得k x x f +>)(成立,试求k 的取值范围。
例 2、已知)(12||)(2为常数a a x ax x f -+-=
(1)若1=a ,作函数)(x f 的图像;
(2)设)(x f 在区间]2,1[上的最小值为)(a g ,求)(a g 的表达式;
(3)(选做)求)(a g 的最值及单调区间
四、作业巩固。
2019-2020学年高三数学一轮复习 第09课 二次函数学案2.doc

2019-2020学年高三数学一轮复习 第09课 二次函数学案2一、基础自测1.函数()f x =的定义域为R ,则m 的取值范围是2.函数22()(31)f x ax a x a =--+在区间[1,)+∞上是增函数,则a 的取值范围是3.设,x y 是关于m 的方程2260m am a -++=的两个实根,则22(1)(1)x y -+-的最小值为4.若方程2210ax x --=在(0,1)内恰有一解,则a 的取值范围是5.二次函数222()2y x a b x c ab =-+++的图像的顶点在x 轴上,且,,a b c ABC ABC 为的三边长,则的形状为6.若集合2A {|054}x x ax =≤++≤为单元集,则实数a =7.方程2210mx mx ++=,有一根大于1,另一根小于1,则实数m 的取值范围是8.设二次函数2()(0),f x x x a a =-+>若()0f m <,则比较(1)f m -与0的大小关系为二、例题讲解 例1.已知关于x 的二次方程22210x mx m +++=(1) 若方程有两根,其中一根在(1,0)-内,另一根在(1,2)内,求m 的范围;(2) 若方程两根均在区间(0,1)内,求m 的范围;例2.知函数bax x x f +=2)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4. (1)求函数f(x)的解析式;(2)设k>1,解关于x 的不等式;xk x k x f --+<2)1()(例3.设函数f(x)=|x 2-4x-5|(1)在区间 [-2,6]上画出f(x)的图像;(2)设集合{|()5},(,2)[0,4][6,)A x f x B =≥=-∞-+∞,试判断集合A 和B 之间的关系,并给出证明;(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k 的图像位于函数f(x)图像的上方.例4.已知函数22()|1|f x x x kx =-++(1)若k=2,求方程f(x)=0的解;(2)若关于x 的方程f(x)=0在(0,2)上有两个解12,x x ,求k 的范围,并证明12114x x +<三、课后作业班级 姓名 学号 等第1. 已知函数2()()()(0)f x ah x bh x c a =++≠与以下四个函数解析式: (1)()x h x e = 2(2)()(3)()ln (4)()sin .h x x h x x h x x ===则与函数2()(0)()g t at bt c a t R =++≠∈值域相同的()h x 的解析式是2.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是 3.已知函数2(),f x x ax b =++若(1)(2)f f <,则实数a 的取值范围是4.若关于x 的不等式24x x m -≥对任意(0,1]x ∈恒成立,则m 的取值范围是5.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是6.函数()(0)f x ax bx c a =++≠的图象关于直线2b x a =-对称。
微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】 题型一:正负根问题 题型二:根在区间的分布问题 题型三:整数根问题 题型四:范围问题【典型例题】 题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m 为实数,命题甲:关于x 的不等式240mx mx +-<的解集为R ;命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m 的取值范围为_______. 【答案】(20,0]-【解析】由命题甲:关于x 的不等式240mx mx +-<的解集为R , 当0m =时,不等式40-<恒成立;OnmyxOn m yxOn myx当0m ≠时,则满足2160m m m <⎧⎨∆=+<⎩,解得160m -<<, 综上可得160m -<≤.由命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根, 则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-, 可得200m -<≤,即实数m 的取值范围为(20,0]-. 故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________. 【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意. 当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤, 当1a =时,方程有且仅有一个负实数根1x =-, 当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <. 所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”. 故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________. 【答案】125k ≤-或3k > 【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则1212120,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k k kk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >. 例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____. 【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根, 得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113xx ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值; (2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围. 【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,3111,3b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣. 例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-. (2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k ++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________. 【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1, 则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩ , 解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤. 例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内. 【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内, 所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩ , 解得1125<<a , 故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围. 【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根. 【答案】(1)1m <- (2)7554m -<<- (3)1m ≤- 【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-. (2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-. ③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________. 【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--. 故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤, 所以实数a 的取值范围是16(5,]3. 故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____. 【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____. 【答案】3,0【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++ 当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是3,0.故答案为:3,0.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______. 【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,)2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足: ①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =, 此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =, 此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1), ()2(2)4210m m ∆=---=,解得67m =±当67m =+2(2)210x m x m +-+-=的根为27-- 若627m =-2(2)210x m x m +-+-=72,符合题意综上:实数m 的取值范围为{}12,6723⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值. 【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求), 由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩, 解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .5 B .6 C .7 D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______. 【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <, 所以k 最大整数值是1. 故答案为:1. 题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根, ∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥ ,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =- ,又12t ≤≤, 2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x . (1)当1m =时,求1211+x x 的值; (2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==. (2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以21211212121212441111194(4)()(5)524444x x x x x x x x x x x x x x ⎛+=++=++≥+⨯= ⎝, 当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意, 124x x ∴+的最小值为94. 例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是( ) A .4 B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-, 解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥, 当c =2时,等号成立,所以其最小值是2, 故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+, 解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >, 综上知,6k . 故两个根的倒数和为12121211x x x x x x ++= 1331k k k==++,6k ,∴1106k <,3102k <, 故33112k <+, ∴12331k+,故两个根的倒数和的最小值是23. 故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<. 故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈. (1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<; (ⅰ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <. 综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点. 所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>, 由求根公式得()23114a a x ++-+=因为函数()()2114a a g a ++-+在()3,+∞上单调递增,所以()3322x g >=31201x <<123111x x x ++.所以a 的取值范围是21,2⎛ ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1 B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-. 故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞ B .(5,)-+∞ C .(5,4)-- D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈-- 故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=( ) A .3 B .6C .22D .42【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,()()2212121212||43642x x x x x x x x --=+--=故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是( ). A .(,0)(1,)-∞⋃+∞ B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩, 解得103-<<a , 故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是( ) A .0a < B .0a > C .1a <- D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <, 故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件. 故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若A B ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+- 由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{}12a a -<< B .{}21a a -<< C .{}2a a <- D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为( )A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-. 故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是( ). A .24a b =B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c 的解集为12(,)x x ,且12||4x x -=,则4c = 【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠, 所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231? 314? a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误; 对于D :若不等式2x ax bc 的解集为12(,)x x ,即20x ax b c 的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=-, 则222121212||()44()244a x x x x x x a c c -+---=,解得4c =, 所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是( ) A .4m =B .5m =C .1m =D .12=-m【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =. 当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得23=x但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3- B .18 C .14 D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( )A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误; 对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++, 由12013x x <<<<,可得()()()()10200110110230193102f fm f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩, 解得:25562m -<<-, 又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程 210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <- ,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞) 【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >, 故答案为:5(,)2+∞. 16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-, 所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1- 【解析】由()()2320x x x -+-≤,得 23020x x x ⎧-≥⎪⎨+-≤⎪⎩或 23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得 13x ≤≤,所以集合{|31A x x =-≤≤- 或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则 ()()3030f f ⎧-≤⎪⎨≤⎪⎩,即 9312093120a a +-≤⎧⎨--≤⎩,解得 11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题; 239mx x ∴≤+,即93m x x ≤+; 9926x x x x +≥⋅=(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q 为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--, 则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩, ∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a =-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,13a ∈-(2)[]1,2x ∃∈,()22130x a x +-+>成立, 即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在3x ⎡∈⎣上单调递增,在)3,2x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =- 故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围; (2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数 当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k<-则k 的取值范围为(),2∞--.。
【高考推荐】2019-2020高考数学二轮复习专题二函数与导数第二讲基本初等函数学案理

第二讲 基本初等函数、函数与方程及函数的应用考点一 指数函数、对数函数及幂函数1.指数与对数式的运算公式 (1)a m·a n=am +n,(2)(a m )n =a mn,(3)(ab )m =a m b m.其中,a >0,b >0. (4)log a (MN )=log a M +log a N , (5)log a M N=log a M -log a N , (6)log a M n=n log a M , (7)alog aN=N ,(8)log a N =log b Nlog b a .其中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.2.指数函数、对数函数的图象和性质指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况:当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[对点训练]1.(2018·河南洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数[解析] ∵点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,∴a -1=1,解得a =2,则2b=12,∴b =-1,∴f (x )=x -1,∴函数f (x )是定义域(-∞,0)∪(0,+∞)上的奇函数,且在每一个区间内是减函数.故选A.[答案] A2.(2018·天津卷)已知a =log 2e ,b =ln2,c =log 12 13,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 由已知得c =log 23,∵log 23>log 2e>1,b =ln2<1,∴c >a >b ,故选D. [答案] D3.(2018·山东潍坊一模)若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )[解析] 因函数f (x )=a x -a -x(a >0且a ≠1)在R 上为减函数,故0<a <1.易知函数y =log a (|x |-1)是偶函数,定义域为{x |x >1或x <-1},x >1时函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,故选D.[答案] D4.(2018·江西九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.[解析] 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).[答案] [-4,4)[快速审题] 看到指数式、对数式,想到指数、对数的运算性质;看到指数函数、对数函数、幂函数,想到它们的图象和性质.基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的不同.考点二函数的零点1.函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.角度1:确定函数的零点个数或其存在范围[解析]当x≤0时,由f(x)=0,即x2+2017x-2018=0,得(x-1)(x+2018)=0,解得x=1(舍去)或x=-2018;当x>0时,设g(x)=x-2,h(x)=ln x,如图,分别作出两个函数的图象,由图可知,两函数图象有两个交点,所以函数f(x)在x>0时有两个零点.综上,函数f(x)有3个零点,故选C.[答案] C[快速审题] 看到函数的零点,想到求方程的根或转化为函数图象的交点.角度2:应用零点求参数的值(范围)[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝ ⎛⎭⎪⎫0,-12,设过点⎝⎛⎭⎪⎫0,-12与函数y =ln x 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值范围是⎝ ⎛⎭⎪⎫12,e e .[答案] ⎝ ⎛⎭⎪⎫12,e e[探究追问] 将例2中“方程f (x )=mx -12恰有四个不相等的实数根”改为“方程f (x )=m ⎝⎛⎭⎪⎫x -54恰有三个不相等的实数根”,结果如何?[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图.函数y =m ⎝ ⎛⎭⎪⎫x -54恒过定点⎝ ⎛⎭⎪⎫54,0,设过点⎝ ⎛⎭⎪⎫54,0与函数y =1-x 2的图象相切的直线为l 1,设切点坐标为(x 0,1-x 20),因为y =1-x 2(x ≤1)的导函数y ′=-2x 0,所以切线l 1斜率k =-2x 0,则-2x 0=1-x 20x 0-54,解得x 0=12或x 0=2(舍).所以直线l 1的斜率为-1,结合图可知,当方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实根时,实数m 的取值范围是(-1,0).[答案] (-1,0)(1)判断函数零点个数的3种方法(2)利用函数零点的情况求参数值(或范围)的3种方法[对点训练]1.[角度1]已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析] 易知f (x )是单调递减函数.∵f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (3)=2-log 23>0,f (4)=64-log 24=32-2<0,∴选项中包含f (x )零点的区间是(2,4).[答案] C2.[角度2]已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x <1,log 12x ,x ≥1.若关于x 的方程f (x )=k 有三个不同的实数根,则实数k 的取值范围是________.[解析] f (x )=k 有三个不同的实数根,即函数y =f (x )的图象与函数y =k 的图象有三个交点,如图所示.当-1<k <0时,y =f (x )与y =k 有三个交点.故-1<k <0. [答案] (-1,0)考点三函数的实际应用解决函数实际应用题的关键(1)认真读题,缜密地审题,确切地理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.(2)合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解.[对点训练]1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y=2x-2 B.y=2(x2-1)C.y=log2x D.y=log12x[解析]由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.[答案] B2.(2018·西安四校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)()A.2019年 B.2020年C.2021年 D.2022年[解析]设从2018年起,过了n(n∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n≥200,则n≥lg 20 13lg1.12≈0.30-0.110.05=3.8,由题意取n=4,则n+2018=2022.故选D.[答案] D3.如图,某小区有一边长为2的正方形地块OABC,其中阴影部分是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O 为坐标原点,以线段OC所在直线为x轴,建立如图所示的平面直角坐标系,若池边AE为函数y=-x 2+2(0≤x ≤2)的图象,且点M 到边OA 的距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43,则地块OABC 在直路l 不含泳池那侧的面积的最大值为________.[解析] M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x -t ),即y =-2tx +t 2+2,令y =2得x =t2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t 2,2;令y =0,得x =t 2+1t,故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43上单调递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116,所以地块OABC 在切线l 右上部分区域为直角梯形,面积S =12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2×2=4-t -1t=4-⎝ ⎛⎭⎪⎫t +1t ≤2,当且仅当t =1时等号成立,故地块OABC 在直路l 不含泳池那侧的面积的最大值为2.[答案] 2[快速审题] 看到实际应用题,想到函数模型.应用函数模型解决实际问题的一般程序[解析][答案] A2.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)[解析] g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0与h (x )=-x -a的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1.故选C.[答案] C3.(2017·北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与MN最接近的是( )(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093[解析] 因为lg3≈0.48,所以3≈100.48,所以M N =33611080≈(100.48)3611080=100.48×3611080=10173.281080=1093.28≈1093.故选D. [答案] D4.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.[解析] 令f (x )=0,得cos ⎝ ⎛⎭⎪⎫3x +π6=0,解得x =k π3+π9(k ∈Z ).当k =0时,x =π9;当k=1时,x =4π9;当k =2时,x =7π9,又x ∈[0,π],所以满足要求的零点有3个.[答案] 35.(2018·天津卷)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax恰有2个互异的实数解,则a 的取值范围是________.[解析] 设g (x )=f (x )-ax =⎩⎪⎨⎪⎧x 2+ax +a ,x ≤0,-x 2+ax -2a ,x >0,方程f (x )=ax 恰有2个互异的实数解即函数y =g (x )有两个零点,即y =g (x )的图象与x 轴有2个交点,满足条件的y =g (x )的图象有以下两种情况:情况一:则⎩⎪⎨⎪⎧Δ1=a 2-4a >0,Δ2=a 2-8a <0,∴4<a <8.情况二:则⎩⎪⎨⎪⎧Δ1=a 2-4a <0,Δ2=a 2-8a >0,不等式组无解.综上,满足条件的a 的取值范围是(4,8). [答案] (4,8)1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第5~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.热点课题5 复合函数的零点[感悟体验]1.(2018·山西质量检测)已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6[解析] 对于f [f (x )]=3,令f (x )=t ,则f (t )=3, 若t ≤0,则2t +1=3,解得t =1,不符合题意; 若t >0,则|ln t |=3,解得t =e 3或t =e -3, 若x ≤0,则2x +1=e 3或2x +1=e -3, 解得x =e 3-12(舍)或x =e -3-12;若x >0,则|ln x |=e 3或|ln x |=e -3,解得x =ee 3或e -e 3或ee -3或e -e -3,故一共有5个根,选C. [答案] C2.(2018·安徽马鞍山一模)已知函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( )A .[1,2]B .(1,2)C .(-2,-1)D .[-2,-1][解析] 函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图:关于x的方程[f(x)]2+(a-1)f(x)-a=0有7个不等的实数根,即[f(x)+a][f(x)-1]=0有7个不等的实数根,易知f(x)=1有3个不等的实数根,∴f(x)=-a必须有4个不相等的实数根,由函数f(x)的图象可知-a∈(1,2),∴a∈(-2,-1).故选C.[答案] C专题跟踪训练(十一)一、选择题[解析][答案] C[解析]根据零点存在性定理可得函数零点所在区间为⎝ ⎛⎭⎪⎫13,12, 即所求交点横坐标所在区间为⎝ ⎛⎭⎪⎫13,12,故选B. [答案] B3.(2018·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析] 依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.[答案] C4.(2018·河南焦作二模)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,x 2+ax +1,x >0,F (x )=f (x )-x -1,且函数F (x )有2个零点,则实数a 的取值范围为( )A .(-∞,0]B .[1,+∞)C .(-∞,1)D .(0,+∞)[解析] 当x ≤0时,F (x )=e x-x -1,此时有一个零点0,当x >0时,F (x )=x [x +(a -1)], ∵函数F (x )有2个零点,∴1-a >0,∴a <1.故选C. [答案] C5.(2018·湖南十三校二模)函数f (x )=ln x +e x(e 为自然对数的底数)的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,1eB.⎝ ⎛⎭⎪⎫1e ,1 C .(1,e)D .(e ,+∞)[解析] 函数f (x )=ln x +e x在(0,+∞)上单调递增,因此函数f (x )最多只有一个零点.当x →0+时,f (x )→-∞.∴函数f (x )=ln x +e x(e 为自然对数的底数)的零点所在的区间是⎝ ⎛⎭⎪⎫0,1e .故选A.[答案] A6.(2018·河南郑州模拟)已知函数f (x )=x 2+m 与函数g (x )=-ln 1x -3x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,2的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤54+ln2,2B.⎣⎢⎡⎦⎥⎤2-ln2,54+ln2C.⎣⎢⎡⎦⎥⎤54+ln2,2+ln2 D .[2-ln2,2][解析] 由已知,得方程x 2+m =ln 1x +3x ,∴m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解.设f (x )=-ln x +3x -x 2,求导,得f ′(x )=-1x +3-2x =-2x 2-3x +1x=-(2x -1)(x -1)x∵12≤x ≤2, 令f ′(x )=0,解得x =12或x =1.当f ′(x )>0时,12<x <1,函数单调递增,当f ′(x )<0时,1<x <2,函数单调递减, ∴f (x )在x =1处有唯一的极值点, ∵f ⎝ ⎛⎭⎪⎫12=ln2+54,f (2)=-ln2+2, 且知f (2)<f ⎝ ⎛⎭⎪⎫12, ∴f (x )极大值=f (1)=2,故方程m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解等价于2-ln2≤m ≤2.所以m 的取值范围是[2-ln2,2],故选D. [答案] D 二、填空题7.(2018·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________. [解析] f (x )的对称轴为x =-1.当a >0时,f (2)=4a +4a +1=8a +1,f (-3)=3a +1.∴f (2)>f (-3),即f (x )max =f (2)=8a +1=4,∴a =38;当a <0时,f (x )max =f (-1)=a -2a +1=-a+1=4,∴a =-3.综上所述,a =38或a =-3[答案] 38或-39.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x -4050)2+307050. 所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 4050 三、解答题10.(2018·唐山一中期末)已知函数f (x )=e x -e -x(x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.[解] (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x , ∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x-e x=-f (x ), ∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立,⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0, ∴t =-12.∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.11.(2018·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大?[解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x +250,其中⎩⎪⎨⎪⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5.(2)由(1)知f (x )=-14x +42x +250(20≤x ≤180),令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时,函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2018·江西吉安一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,lg (-x ),x <0,若关于x 的方程[f (x )]2+f (x )+t =0有三个不同的实数根,求实数t 的取值范围.[解] 原问题等价于[f (x )]2+f (x )=-t 有三个不同的实数根, 即直线y =-t 与y =[f (x )]2+f (x )的图象有三个不同的交点.当x ≥0时,y =[f (x )]2+f (x )=e 2x+e x为增函数,在x =0处取得最小值2,其图象与直线y=-t最多只有一个交点.当x<0时,y=[f(x)]2+f(x)=[lg(-x)]2+lg(-x),根据复合函数的单调性,其在(-∞,0)上先减后增,最小值为-1 4 .所以要使函数的图象有三个不同的交点,只需-t≥2,解得t≤-2.。
二次函数根的分布
【定理6】
【定理7】
推论1 推论2 【定理8】有且仅有(或)
【定理9】或 【定理10】或
三、例题精析
【例题1】
【题干】若一元二次方程有两个正根,则的取值范围为
【答案】
【解析】依题意有 解得:
【例题2】
【题干】若一元二次方程的两根都是负数,则的取值范围为
【答案】或
【解析】依题意有
解得:或
二次函数根的分布
适用学科
适用年级
适用区域 全国通用新课标版
课时时长 60 (分钟)
知识点 二次函数、一元二次方程、一元二次不等式的关系
学习目标
熟练掌握二次函数根的分布;
会根据公式进行正确的运算、变形和数据处理能根
据问题的条件寻求与设计合理简捷的运算途径;
会收集、整理、分析数据,能从大量数据中抽取对
研究问题有用的信息,并作出判断.
四、课堂运用
【基础】
【题干】在何范围内取值,一元二次方程有一个正根和一个负根?
【答案】
【解析】
【巩固】
【题干】已知关于x的二次方程
(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)
内,则m的取值范围为
(2)若方程两根均在区间(0,1)内,则的取值范围为
【答案】
【解析】
【拔高】
学习重点 二次函数根的分布
学习难点 二次函数根的分布
高中数学 高中三年级
学习过程 一、复习预习
回顾二次函数的图像以及根存在的条件
二、知识讲解
考点
设一元二次方程()的两个实根为,,且,为常数。 【定理1】,(两个正根), 推论:,或
上述推论结合二次函数图象不难得到。
2019-2020年高考数学第二轮专题复习教案函数的性质及其应用人教版
2019-2020年高考数学第二轮专题复习教案函数的性质及其应用人教版考情动态分析函数是高中数学中的重要内容,函数的观点和方法贯穿整个高中数学的全过程,函数也是一条纽带,它把中学数学各个分支紧紧地连在一起,特别是新教材中的导数的涉入,使函数的内容更加充实、方法更加灵活,自然就成为高考的重点和热点.近几年高考试题中函数部分占有相当大的比重,所考查的内容主要有函数的定义域、值域、奇偶性、单调性、周期性、反函数以及函数图象的变换等.其中多项式函数(含二次函数)、指数函数、对数函数仍是重点考核的内容.高考主要涉及:①直接通过具体函数考查某些性质;②以导数为工具围绕函数、不等式、方程综合考查;③函数与解析几何、数列等内容结合在一起,以曲线方程的变换、参数范围的探求及最值问题等综合性强的新颖试题.如xx年高考试题中的3、5、7、9题,xx年高考试题(江苏卷)中的8、11、22题,xx年高考试题(江苏卷)中的2、13、15、17、22题.二轮复习时要注意引导学生用函数的思想和方法去看待问题、解决问题,并揭示其内在联系.纵观近几年来的高考试题,以基础层次或中档难度的试题考查函数的图象,特别是图象的平移、对称变换,充分体现了图象在解题中的作用(数形结合的思想).以中等难度、组合形式一题多角度考查函数的性质预计成为新的热点或方向.函数极易与不等式、方程、最值、参数的取值范围的探求及数形结合、解析几何综合在一起编拟综合性较强的高档解答题来测试对函数思想方法的理解与灵活运用,考查等价转化及数形结合、分类讨论等解题策略的理解和掌握程度.§1.1 函数的性质考点核心整合函数的性质主要体现在五个方面:1.能使函数式有意义的实数x的集合称为函数的定义域.确定函数定义域时,常从以下几个方面考虑:(1)分式的分母不等于0;(2)偶次根式被开方数大于等于0;(3)对数式的真数大于零,底数大于0且不等于1;(4)指数为0时,底数不等于0.定义域经常和判定函数的奇偶性、求函数单调区间、求参数范围或解函数相关不等式相关联,在函数有意义的条件下转化求解.2.函数的值域在函数y= f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域.确定函数的值域的原则:(1)当函数y = f(x)用表格给出时,函数的值域是指表格中实数y的集合;(2)当函数y = f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y 的集合;(3)当函数y = f (x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; (4)当函数由实际问题给出时,函数的值域由实际问题的实际意义确定.值域的求法比较多,注意选择不同条件的适用性.如:判别式法、三角代换法、反函数法、不等式法、单调性法、图象法、数形结合法、导数法.值域往往与实际问题中的最优值或数列问题相关联. 3.函数的奇偶性如果对于函数y = f (x )定义域内的任意一个x ,都有f (-x ) = – f (x )[ f (-x ) = f (x )] ,那么函数f (x )就叫做奇函数(偶函数).在此定义中,只有当函数定义域在数轴上所表示的区间关于原点对称,这个函数才可能具有奇偶性,然后再作判断. 4.函数的单调性函数的单调性是函数的又一个重要性质.给定区间D 上的函数f (x ),若对于任意x 1、x 2∈D ,当x 1<x 2时,都有f (x 1)<f (x 2) [f (x 1)>f (x 2)],则称在区间D 上为单调函数.反映在图象上,若函数f (x )是区间D 上的增(减)函数,则图象在D 上的部分从左向右是上升(下降)的.或如果函数f(x)在给定区间(a ,b )上恒有f '(x )>0[f '(x )<0],则称f (x )在区间(a ,b )上是增(减)函数,(a ,b )为f (x )的单调增(减)区间. 5.函数的周期性设函数y = f (x ),x ∈D ,如果存在非零常数T ,使得任何x ∈D ,都有f (x + T ) = f (x ),则函数f (x )为周期函数,T 为y = f (x )的一个周期.周期性往往和单调性、奇偶性、函数的图象及其解析式相关联出现.注意从代数变换角度分析. 考题名师诠释【例1】设函数f (x ) = - x1 + |x |(x ∈R ),区间M = [a ,b ](a <b ),集合N = {y |y = f (x ),x ∈M },则使M = N 成立的实数对(a ,b )A .0个B .1个C .2个D 解析 由f (-x ) = -f (x ),可得f (x ) = - x1 + |x |是奇函数,故f (x )的图象关于原点成中心对称.当x >0时,f (x ) = -x1 + x,据此可以作出f (x )在x ∈R 上的图象(如图所示).观察f (x )的图象可知,f (x )在R 上是减函数,要使M = [a ,b ](a <b )与N = {y |y = f (x ),x ∈M }相等,必须a <0,b >0(由图可知a 、b 同号显然不能满足题意).故有⎩⎨⎧ f (a ) = b ,f (b ) = a .即⎩⎨⎧ - a 1 - a = b , - b 1 - b = a .,解得a = b = 0,与题设a <b 矛盾,从而不存在满足题意的实数对(a ,b ),应选A .答案 A评述 本题为存在性问题,它融函数的定义域、值域、奇偶性、单调性及函数图象于一炉,颇有新意,解题时要善于从函数表达式中捕捉函数的性质,通过考察函数图象的特征来处理问题,这就需要我们有较强的数形转化能力.【例2】已知函数f (x ) = 13x 3 + 12ax 2+ 2bx + c 在(0,1)内取得极大值,在(1,2)内取得极小值,求b - 2a - 1的取值范围. 解 f '(x ) = x 2+ ax + 2b .依题意,方程x 2+ ax + 2b = 0的一个根大于0且小于1,另一个根大于1且小于2.于是⎪⎪⎩⎪⎪⎨⎧>'<'>'0)2(0)1(0)0(f f f ,即⎪⎪⎩⎪⎪⎨⎧<++>++>012020b a b a b不等式组表示的平面区域如右图所示,其中A (-2,1),B (-1,0),D (1,2). 设C (a ,b )为可行域(阴影部分)内任一点,而b - 2a - 1的几何意义为直线CD 的斜率. 由图可知k BD >k CD >k AD ,故 14<b - 2a - 1<1.评述 通过对函数f (x )求导,将f (x )在(0,1)内取得极大值、在(1,2)内取得极小值的问题转化为研究二次方程f '(x ) = x 2+ ax + 2b = 0根的分布问题,利用二元一次不等式组的几何背景,联系斜率公式,运用数形结合的数学思想求得取值范围. 深化拓展若此题条件不变,结论改为:求a 2+ b 2的取值范围. 答案:1<a 2+ b 2<5【例3】设偶函数f (x )在区间[a ,b ]上是增函数(b >a >0),试判断F (x ) = (12)f (x ) – x在区间[-b ,-a ]上的单调性,并加以证明.解 ∵f (x )是偶函数,且在[a ,b ]上单调递增.∴f (x )在[-b ,-a ]上单调递减,f (x ) - x 在[-b ,-a ]上单调递减. 故F (x ) = (12)f (x ) - x在[-b ,-a ]上单调递增.证明:设-b ≤x 1<x 2≤-a ,a ≤-x 2<-x 1≤b ,∴F (x 1)F (x 2) = (12)f (x 1) - x 1(12)f (x 2) - x 2 = (12)f (x 1) – f (x 2) + (x 2 – x 1) = (12)f (–x 1) – f (–x 2) + (x 2 – x 1). ∵f (x )在上[a ,b ]单调递增,f (–x 1)>f (–x 2),∴f (–x 1) – f (–x 2) + (x 2 – x 1)>0.∴0<(12)f (–x 1) – f (–x 2) + (x 2 – x 1)<1.∴F (x 1)F (x 2)<1.故F (x 1)<F (x 2).∴F (x )为[-b ,-a ]上的增函数. 评述 本题是采用定义法证明函数的单调性,也是最通用的方法,此外还有利用基本函数性质递推、导数法等方法.【例4】(xx 年上海模拟)已知集合M D 上满足下列性质的函数的全体:对于定义在D 中的任何两个自变量x 1、x 2(x 1≠x 2),都有|f (x 1) – f (x 2)|<|x 1 – x 2|成立. (1)当D = R 时,f (x ) = x cos+ sin[∈(0,π)]是否属于M D ,为什么? (2)当D = R +时,试证明函数f (x ) = ax(0<a <1)不属于M D .(3)是否存在一个集合D R +时,使得函数f (x ) = a x(0<a <1)属于M D ?给出你的结论,并说明理由.(1)解 设任意x 1、x 2∈R (x 1≠x 2),|f (x 1) – f (x 2)| = |( x 1 – x 2)cos| = |cos|| x 1 – x 2|,∵∈(0,π),∴|cos|∈[0,1). 又∵| x 1 – x 2|>0,∴|f (x 1) – f (x 2)|<| x 1 – x 2|成立. 故f (x ) = x cos+ sin ,∈(0,π)属于M D .(2)证明 当D = R +时,f (x ) = a x(0<a <1)不属于M D . 举例:令x 1 = a n,x 2 =a n + 1(n ∈N *),此时| x 1 – x 2| = |a n – a n + 1| = an (n + 1)<a . 而|f (x 1) – f (x 2)| = |n – (n + 1)| = 1>a ,则|f (x 1) – f (x 2)|>| x 1 – x 2|. ∴f (x ) = ax(0<a <1)不属于M D .(3)解 存在一个集合D R +,使f (x ) = a x(0<a <1)属于M D .设x 1、x 2∈R +,且x 1≠x 2. 若|f (x 1) – f (x 2)| = |a x 1 – a x 2|=a | x 1 – x 2|x 1x 2<| x 1 – x 2|成立,∵| x 1 – x 2|>0,∴只需x 1x 2>a 成立.故存在D = (a ,+∞)时,任取x 1、x 2∈(a ,+∞)都有|f (x 1) – f (x 2)|<| x 1 – x 2|成立. ∴存在一个集合D R +,使f (x ) = a x(0<a <1)属于M D . (注:D 的存在是不唯一的,对于的非空子集均正确) 考能提升训练 一、选择题1.(xx 年全国卷Ⅰ,理7)设b >0,二次函数y = ax 2+ bx + a 2– 1的图象为下列之一,则a 的值为……………………… ( ) A .1B .-1C .-1-52D .-1+52(1) (2) (3) (4)2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>0,f (2) = (a + 1)(2a – 3),则a 的取值范围是…………………………………………………… ( ) A .a <32B .a <32且a ≠-1C .a >32或a <-1D .-1<a <323.(xx 年黄冈模拟)设函数f (x ) = log a x (a >0且a ≠1),若f (x 1x 2…x xx ) = 8,则f (x 12) + f (x 22)+ … + f (x xx 2)的值等于………………………………… ( ) A .4B .8C .16D .2log a 84.函数在y = a x 在[0,1]上的最大值与最小值之和为3,则a 等于………………( ) A .12B .2C .4D .145.(xx 年全国卷Ⅰ,8)设0<a <1,函数f (x ) = log a (a 2x– 2a x– 2),则使f (x )<0的x的取值范围是 A .(-∞,0) B .(0,+∞) C .(-∞,log a 3) D .(log a 3,+∞)二、填空题6.(xx 年北京海淀模拟)函数y = x 2的图象F 按向量a = (3,-2)平移得到F',则F' 的解析式为 .7.已知f (x )是R 上的奇函数,且f (12 - x ) = f (12 + x ),则f (1) + f (2) + f (3) = .三、解答题8.已知函数y = 12log a (a 2x )·log a (ax )(2≤x ≤4)的最大值是0,最小值是- 18,求a 的值.9.已知f (x )是定义在[-1,1]上的奇函数,当a 、b ∈[-1,1],且a + b ≠0时,有f (a ) + f (b )a + b>0.(1)判断函数f (x )的单调性,并给以证明;(2)若f (1) = 1,且f (x )≤m 2– 2bm + 1对所有x ∈[-1,1],b ∈[-1,1],恒成立,求实数m 的取值范围.10.(xx 年山东卷,19)已知x = 1是函数f (x ) = mx 3– 3(m + 1)x 2+ nx + 1的一个极值点,其中m 、n ∈R ,m <0.(1)求m 与n 的关系表达式; (2)求f (x )的单调区间;(3)当x ∈[-1,1]时,函数y = f (x )的图象上任意一点的斜率恒大于3m ,求m 的取值范围.简明参考答案一、1.B 2.D 3.C 4.B 5.C 二、6.y = x 2– 6x + 7 7.0三、8.129.(1)增函数,证明略;(2)m ∈(-∞,-2]∪{0}∪[2,+∞). 10.(1)n = 3m + 6;(2)f (x )在(-∞,1 + 2m ),(1,+∞)上单调递减,在(1 + 2m,1)上单调递增;(3)-43<m <0.。
高考数学一轮总复习课件:专题研究 一元二次方程根的分布
-4=-4-
t+4t
.由基本不等
式,得t+
4 t
≥4,当且仅当t=
4 t
,即t=2时等号成立,所以-
t+4t ≤-4,所以-4- t+4t ≤-8,所以a≤-8,即实数a的取
值范围是(-∞,-8].
7.(2020·四川乐山调研)已知a,b,c,d都是常数,a>b,c
>d.若f(x)=2 019-(x-a)(x-b)的零点为c,d,则下列不等式正
确的是( D )
A.a>c>b>d
B.a>b>c>d
C.c>d>a>b
D.c>a>b>d
解析 本题考查二次函数的图象以及不等式的求解.由f(x) =2 019-(x-a)(x-b)=-x2+(a+b)x-ab+2 019,
又f(a)=f(b)=2 019,c,d为函数f(x)的零点,且a>b,c> d,所以可在平面直角坐标系中作出函数f(x)的大致图象,如图 所示.由图可知c>a>b>d.故选D.
【定理 1】 x1>0,x2>0
Δ=b2-4ac≥0, (两个正根)⇔x1+x2=-ba>0, x1x2=ca>0.
Δ=b2-4ac≥0, Δ=b2-4ac≥0,
推论:x1>0,x2>0⇔af(>00,)=c>0, 或fa(<00,)=c<0,
b<0
b>0.
上述推论结合二次函数图象不难得到.
【定理 2】 x1<0,x2<0
z,c=-3b-9+z,平移直线知过C点可得z=f(3)<20,过B点
可得z=f(3)>12,故f(3)的取值范围是(12,20).故选C.
10.已知函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个
2019-2020学年高考数学二轮复习 函数 1.函数、单调性及最值学案 理.doc
2019-2020学年高考数学二轮复习 函数 1.函数、单调性及最值学案理【学习目标】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数,简单的分段函数,并能简单应用.3.理解函数的单调性、最大值、最小值及其几何意义.4.会运用函数图像理解和研究函数的单调性.【学法指导】1.先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;4.重点理解的内容:函数的定义及函数的单调性。
【高考方向】1.函数的定义。
2.函数的单调性及最值。
【课前预习】:一、知识网络构建1.函数与映射的概念?2. 如何求函数的定义域和值域?3.单调函数的定义?函数的最值与值域有何关系?二、高考真题再现[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)三、基本概念检测1、 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号).①至少有一实根 ②至多有一实根③没有实根 ④必有惟一的实根3.若函数f(x)是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)<2f(4)的解集为 .4.函数f(x)(x ∈R)的图象如下图所示,则函数g(x)=f(logax) (0<a <1)的单调减区间是 .【课中研讨】:例1、设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 .例2、设0a >,()xx e af x a e =+是R 上的偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学专题二次函数根的分布复习教学案(无答案)
教学过程
(二)教学活动:
活动一:探究一元二次方程根的0分布:
例1 求实数m的取值范围,使关于x的一元二次方程22(1)260xmxm
分析:如果问大家,这个方程怎样才有两根?显然,利用判别式大于或等于0.强调可以等
于0,因为方程有重根的说法。判别式涉及方程的系数,而系数含m,所以就得到了含m的
不等式,从而得出m的取值范围.
(1)有两个正根
分析:方程要有两个正根,需要怎样的约束条件限制m的范围?方程的系数含m,又涉及
根的问题,自然联系到根与系数的关系。设方程的两根分别为12,xx
容易得到1212000xxxx 31m
【设计意图】从最简单的两正根分布说起,学生自然联系到韦达定理。由此可见,一元二
次根的分布问题可以利用判别式和韦达定理解决。
引导学生总结规律:
一元二次方程20(0)axbxca根的0分布(即涉及根的正负):
抓住1212-bxxacxxa判别式两根之和韦达定理两根之积
分布
情 况
两正根 两负根 一正根,一负根
得
出
结
论
1212000xxxx 12
12
000xxxx
12
0xx
分析:
2
1212
0,40,0cxxbacxxa能保证所以方程的根一正一负,只需满足
【设计意图】一元二次根的分布问题,两正根在例题中解决了,学生不难类比得到两负根
和一正一负根需满足的条件。
(2)有一个根为0,一个根为正根
解法一:1212000xxxx
解法二:一个根为0,代入方程得到3m,经检验,方程的另一个根为8,符合题意
【设计意图】一元二次根的分布问题,如果涉及到具体根为0,可以将其代入方程求得参数,
再进行检验。为以后进一步研究恰有一根在某个区间的参数问题埋下伏笔。
练习:
若一元二次方程2330kxkxk有两个负根,求k的取值范围.
活动二:探究一元二次方程根的非0分布:
例1 求实数m的取值范围,使关于x的一元二次方程22(1)260xmxm
(3)有两个根,且都大于1
错解:由121,1xx,得
12
12
021xxxx
这里并不能保证两根都大于1,举反例121,84xx
解法一:可把根的非0分布转化为0分布。
设方程的两根分别为12,xx
由121,1xx,则需保证1210,10xx,即
12
12
0(1)(1)0(1)(1)0xxxx
解法二:
分析:将一元二次方程根的分布问题转化为二次函数的零点问题。二次函数的图像是一条抛
物线,要使两根都大于1,即需二次函数图像与x轴的交点都要在
(1,0)的右侧。而二次函数图像位置情况受开口方向,判别式,对称轴,特殊点所影响。
如何限制这几个影响要素,从而达到所要的函数的图像呢?
经探究,得到02(1)12(1)0mf
【设计意图】一元二次根的分布问题,除了用判别式和韦达定理的方法解决外,还可以利
用图像法,从四个要素考虑如何把图锁定。
(4)有一个根大于2,一个根小于2
解法一:20f
分析:不需要对称轴,因为对称轴的位置可以任意。不需要判别式,因为开口向上,(2,2f)
在x轴下方,二次函数图像一定会与x轴有两个交点。
解法二:设方程的两根分别为12,xx
由122,2xx,则需保证1220,20xx,即
12
(2)(2)0xx
(5)有一个根小于2,一个根大于4
解法一:20(4)0ff
解法二:设方程的两根分别为12,xx
由122,4xx,则需保证1220,40xx,即
12(2)(4)0xx,即1212
4280xxxx
,不能单纯用判别式解出,还得结合求根
公式,比较麻烦,不如解法一简洁。
【设计意图】让学生比较韦达定理法和图像法的优劣,韦达定理法并不是通性通法。图像
法有时能让解题快捷。
引导学生总结规律:
一元二次方程20(0)axbxca根的非0分布(即涉及根的大小):
抓住开口方向(注意二次项系数)判别式(注意等号)对称轴特殊点的函数值
分
布
情
况
两根都小于k
两根都大于
k, 一根小于k,一根大于k
一根小于1k,一根大于
2
k
大
致
图
象
(
0a
)
得
出
结
论
思考:非0分布的上述问题都可以转化为0分布,从而利用判别式和韦达定理得出不等式组。
0分布是否也可以用非0分布所研究的四要素来做呢?
学生容易得到:
(1)02(1)02(0)0mf(2)02(1)02(0)0mf(3)00f
(4)(0)02(1)02fm(5)02(1)02(0)0mf
继续探究
例1 求实数m的取值范围,使关于x的一元二次方程22(1)260xmxm
(6)有两个根,且都在(-2,3)内
02(1)23220(3)0mff
分析:缺少其中任何一个条件,都不能使两根都在(-2,3)内
(7)一个根在(0,1)内,一个根在(1,4)内
0010(4)0fff
分析,(0,1)区间端点值发生变号,说明在在(0,1)内f(x)有一个零点;(1,4)区间端
点值发生变号,说明在在(1,4)内f(x)有一个零点,从而说明一个根在(0,1)内,一
个根在(1,4)内
【设计意图】一元二次方程根的分布问题,层层推进,先从一个分界点出发,再从两个分
界点研究,最后再从三个分界点,四个分界点研究。不管根如何分布,把握好图像的四要
素,只要能将图锁定就是王道。有时并不同时需要四个要素,若其中的部分要素已经能将
图锁定,就已足够,如果此时考虑了四个要素,仅是增加了计算量。
引导学生总结规律
一元二次方程20(0)axbxca根的非0分布(即涉及根的大小):
抓住开口方向(注意二次项系数)判别式(注意等号)对称轴特殊点的函数值
分
布
情
况
两根都在nm,内
一根在nm,内,
另一根在,np内,
一根在nm,内,
另一根在qp,内,
大
致
图
象
(
0a
)
得
出
的
结
论
练习:
1.若方程2(2)0xkxk的两根均在(-1,1)内,求k的取值范围.
2.若一元二次方程2(21)20mxmxm的两个实根都小于1,求m的取值范围.