11[1].3角平分线的性质(2)

合集下载

专项11-1 三角形的边、高、中线与角平分线等相关计算(解析版)

专项11-1  三角形的边、高、中线与角平分线等相关计算(解析版)

2020—2021八年级上学期专项冲刺卷(人教版)专项11.1 三角形的边、高、中线与角平分线等相关计算姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三角形中,某两条边的长分别为5和9,则另一条边的长可能是()A.4 B.5 C.3 D.14【答案】B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:9+5=14,9-5=4,所以第三边在4到14之间,只有B中的5满足.故选:B.【点睛】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和.2.三边都不相等的三角形有两边长分别为3和5,第三长是奇数,则其周长为()A.15 B.13 C.11 D.15或13或11【答案】A【分析】本题可先求出第三边的取值范围,找出其中三边都不相等,且为奇数的数,即为第三边的长,再将三者相加即可得出周长的值.【详解】解:设第三边长为x.根据三角形的三边关系,则有5−3<x<5+3,即2<x<8,因为三边都不相等,第三边长是奇数,所以x =7,所以周长=3+5+7=15.故选:A .【点睛】考查了三角形的三边关系,根据三角形三边长关系,得到第三边长的范围,是解题的关键. 3.如图,线段AD ,AE ,AF 分别是ABC 的高线,角平分线,中线,比较线段AC ,AD ,AE ,AF 的长短,其中最短的是( )A .AFB .AEC .ACD .AD【答案】D【分析】 根据垂线段最短即可得.【详解】解:由三角形的高线的定义得:AD BC ⊥,由垂线段最短得:线段AD 最短,故选:D .【点睛】本题考查了三角形的高线、角平分线、中线、以及垂线段最短,掌握理解垂线段最短是解题关键. 4.如图AB AC ⊥,AD BC ⊥,其中4AC =,3AB =,5BC =,125AD =,165CD =,则B 到AD 距离为( )A .3B .5C .165D .95【答案】D【分析】根据三角形高的定义可知,AD 长度就是点A 到线段BC 的距离,根据此解答即可.【详解】解:∵AB ⊥AC ,AD ⊥BC ,∴BD 垂直于AD ,∴B 到AD 的距离等于BD 的长度=BC -CD =95,∴点B 到线段AD 的距离是95,故选:D .【点睛】本题主要考查了三角形的高的概念,结合图形找出△ABC 边BC 上的高是解题的关键.5.若线段AM 和线段AN 分别是ABC 边BC 上的中线和高,则下列判断正确的是( ) A .AM AN > B .AM AN ≥ C .AM AN < D .AM AN ≤【答案】B【分析】根据三角形的高的概念得到AN ⊥BC ,根据垂线段最短判断.【详解】解:∵线段AN 是△ABC 边BC 上的高,∴AN ⊥BC ,由垂线段最短可知,AM ≥AN ,故选:B .【点睛】本题考查的是三角形的角平分线、中线和高的概念,掌握垂线段最短是解题的关键.6.如图,在ABC ∆中,,AD AE 分别是边BC 上的中线和高,2,3ABD AE S ∆==,则BC =( )A .2B .32C .4D .6【答案】D【分析】 先根据面积公式求出BD ,再根据中线的定义即可求解.【详解】解:∵AE 是ABC ∆边BC 上的高,2,3ABD AE S ∆==,∴BD =2×3÷2=3,∵AD 为ABC ∆边BC 上的中线,∴BC =2BD =6.故选:D【点睛】本题考查三角形的中线和高, 三角形的面积,熟练掌握中线的定义和三角形的面积公式是解题的关键.7.三角形的重心是( )A .三角形三边的高所在直线的交点B .三角形的三条中线的交点C .三角形的三条内角平分线的交点D .三角形三边中垂线的交点【答案】B【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断.【详解】解:三角形三条高的交点是垂心,A 选项不符合题意;三角形三条边中线的交点是三角形的重心,B 选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意.故选:B.【点睛】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键.8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能【答案】C【分析】根据三角形的三条高线与三角形的位置关系即可直接得出结论.【详解】解:锐角三角形的三条高的交点在三角形内部(如图1),钝角三角形的三条高所在直线的交点在三角形外部(如图2),直角三角形的三条高的交点在三角形的直角顶点上(如图3).故选C.【点睛】本题主要考查了三角形的三条高线的交点问题,掌握三角形的三条高线交点的特征是解题的关键. 9.如图,△ABC的中线AD、BE相交于点F.若△ABF的面积是4,则四边形DCEF的面积是()A.3.5 B.4 C.4.5 D.5【答案】B【分析】利用F 点为△ABC 的重心得到AF =2DF ,BF =2EF ,根据三角形面积公式得到S △BDF =2,S △AEF =2,再利用E 点为AC 的中点得到S △BCE =S △ABE =6,然后利用四边形DCEF 的面积=S △BCE -S △BDF 进行计算.【详解】解:∵△ABC 的中线AD 、BE 相交于点F ,∴F 点为△ABC 的重心,∴AF =2DF ,BF =2EF ,∴S △BDF =12S △ABF =12×4=2,S △AEF =12S △ABF =12×4=2, ∵BE 为中线,∴S △BCE =S △ABE =4+2=6,∴四边形DCEF 的面积=S △BCE -S △BDF =6-2=4.故选:B .【点睛】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.10.如图,AD 是ABC 的中线,BE 是ABD △的中线,EF BC ⊥于点F .若12,3ABC SBD ==,则EF 长为( )A .1B .2C .3D .4 【答案】B【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可. 【详解】 解:∵AD 是△ABC 的中线,S △ABC =12,∴S △ABD =12S △ABC =6,同理,BE 是△ABD 的中线,S △BDE =12S △ABD ,∴S △BDE =14S △ABC ,∵S △BDE =12BD •EF ,∴12BD •EF =14S △ABC ,又∵△ABC 的面积为12,BD =3,∴EF =2,故选B .【点睛】此题考查了三角形的面积,要理解三角形高的定义,根据三角形的面积公式求解.11.在ABC ∆中,AD 是BC 边上的中线,点G 是重心,如果6AG =,那么线段DG 的长为( )A .3B .4C .9D .12【答案】A【分析】根据三角形重心的定义求解即可.【详解】∵AD 是BC 边上的中线,点G 是重心,∴AG :DG=2:1,∵6AG =,∴DG=3.故选A.【点睛】本题考查了三角形重心的性质,熟记重心的性质,并能灵活运用是解题的关键.12.如图,D ,E 分别是ABC 的边AC ,BC 的中点,则下列说法错误的是( )A .DE 是BCD △的中线B .BD 是ABC 的中线C .AD CD BE EC ==, D .BD 是ABC 的角平分线【答案】D【分析】根据三角形的中线、线段中点的定义、三角形的角平分线判断即可得.【详解】点D,E分别是ABC的边AC,BC的中点,∴==,AD CD BE EC,△的边BC上的中线,BD∴是ABC的边AC上的中线,DE是BCD则选项A、B、C正确,∠,因为BD不一定平分ABC所以选项D错误,故选:D.【点睛】本题考查了三角形的中线、线段中点的定义、三角形的角平分线,掌握理解三角形中线的定义是解题关键.二、填空题(本大题共6小题,每小题3分,共18分)13.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是_____.【答案】三角形的稳定性【解析】【分析】本题主要考察三角形稳定性的应用.如果已知三角形的三边长度确定,那么这个三角形的形状和大小就完全确定了,且它的形状和大小是固定不变的,这个性质叫做三角形的稳定性.本题即是根据上述知识解答的.【详解】解:根据三角形的特性可知照相机的底部的三脚架支撑利用的是三角形的稳定性由此可知本题的答案.故答案为:三角形的稳定性.【点睛】本题考察三角形稳定性的应用.14.如图,点O 在ABC 内部,且到三边的距离相等.且∠A=70°,则∠BOC=______°.【答案】125【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠BOC .【详解】解:∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB ,∴∠BOC =180°-(∠OBC +∠OCB ) =180°-12(∠ABC +∠ACB ) =180°-12(180°-∠A ) =180°-12⨯(180°-70°)=125°,故答案为:125.【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键. 15.如图,AB CD ∥,BE 平分ABC ∠,CE 平分BCD ∠,则CBE BCE ∠+∠=______°.【答案】90【分析】先根据平行线性质得出180ABC DCB ∠+∠=︒,再根据角平分线定义进行求解即可.【详解】∵AB CD ∥∴180ABC DCB ∠+∠=︒∵BE 平分ABC ∠,CE 平分BCD ∠∴,ABE CBE DCE BCE ∠=∠∠=∠ ∴11118090222CBE BCE ABC DCB ∠+∠=∠+∠=⨯︒=︒ 故填:90.【点睛】 本题考查平行线性质和角平分线定义,熟练掌握性质是关键. 16.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.【答案】2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABC SAB CE BC AD =⨯=⨯, ∵AB=3,BC=6,CE=5,∴1135622AD ⨯⨯=⨯⨯, 解得 2.5AD =.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.17.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE的长为_________.【答案】2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.18.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.【答案】6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图所示,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4 cm,BC=5 cm,∠CAB=90°.(1)求AD的长.(2)求△ABE的面积.【答案】(1)125cm ;(2)3cm 2 【分析】 (1)利用“面积法”来求线段AD 的长度;(2)△AEC 与△ABE 是等底同高的两个三角形,它们的面积相等【详解】解:∵∠BAC=90°,AD 是边BC 上的高,∴12AB•AC=12BC•AD , ∴341255AB AC AD BC ⋅⨯===(cm ),即AD 的长度为125cm ; (2)如图,∵△ABC 是直角三角形,∠BAC=90°,AB=3cm ,AC=4cm , ∴S △ABC =12AB•AC=12×3×4=6(cm 2). 又∵AE 是边BC 的中线,∴BE=EC ,∴12BE•AD=12EC•AD ,即S △ABE =S △AEC , ∴S △ABE=12S △ABC =3(cm 2). ∴△ABE 的面积是3cm 2.【点睛】本题考查了中线的性质.解题的关键是利用三角形面积的两个表达式相等,求出AD .20.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长.【答案】(1)见解析 (2)1360=CD 【分析】(1)过C 点作CD ⊥AB 即可;(2)根据三角形的面积求解即可.【详解】解:(1)如图:(2)∵在ABC 中,5AC =,12BC =,13AB =,∠ACB =90°,∴S △ABC =12AC ×BC =12AB ×CD , ∴125601313AC BC CD AB ⋅⨯=== 【点睛】本题考查了做三角形高线和利用三角形的面积求高,属于常考题型,熟练掌握基本知识是解题的关键.21.如图,在89⨯的正方形网格中,每个小正方形的边长为1,ABC 的顶点在网格的格点上(小正方形的顶点即为格点),借助网格完成以下任务.(1)在图中画出ABC 的高AD ,中线BE ;(2)先将ABC 向左平移1格,再向上平移2格:①在图中画出平移后的A B C ''',并分别标注出点A ,B ,C 的对应点A ',B ',C ';②图中与BAC ∠相等的角是________.【答案】(1)见解析;(2)①见解析;②∠B ′A ′C ′,∠AC ′A ′【分析】(1)根据三角形的高和中线的概念作图即可;(2)①将三个顶点分别向左平移1格,再向上平移2格得到其对应点,继而首尾顺次连接即可;②根据平移的性质可得答案.【详解】解:(1)如图所示,线段A D 、BE 即为所求;(2)①如图所示,△A ′B ′C ′即为所求;②由平移的性质知AC ∥A ′C ′,∠BAC =∠B ′A ′C ′,∴∠BAC =∠AC ′A ′,故答案为:∠B ′A ′C ′,∠AC ′A ′.【点睛】本题主要考查作图—平移变换和三角形的高和中线的概念,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.22.如图,12180,3B ∠+∠=︒∠=∠.(1)求证://EF AB ;(2)求证:AED ACB ∠=∠;(3)若点D E F 、、分别是AB AC CD 、、边上的中点,16ABC S =,求ADFE S 四边形.【答案】(1)见解析;(2)见解析;(3)6【分析】(1)由∠1+∠2=180°和∠1+∠4=180°得到∠2=∠4,根据平行线的判定得AB ∥EF ;(2)根据AB ∥EF 得到∠ADE =∠3,再由∠3=∠B ,得到∠ADE =∠B ,从而判定DE ∥BC ,即可得到结论;(3)根据中点的定义,三角形面积公式,逐步求出S △ADE 和S △DEF 的面积,从而可得结果.【详解】解:(1)∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴EF ∥AB ;(2)∵AB ∥EF ,∴∠ADE =∠3,∵∠3=∠B ,∴∠ADE =∠B ,∴DE ∥BC ,∴∠AED =∠ACB ;(3)∵D 为AB 的中点,∴S △ADC =12S △ABC =8, ∵E 为AC 的中点,∴S △ADE =S △CDE =12S △ADC =4, ∵F 为DC 的中点,∴S △DEF =S △CEF =12S △DEC =2, ∴S 四边形ADFE =S △ADE +S △DEF =4+2=6.【点睛】本题考查了行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系;应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.也考查了三角形面积公式.23.如图,AD 、BE 分别是△ABC 的高,AF 是角平分线.(1)若∠ABC=35°,∠C=75°,求∠DAF 的度数;(2)若AC=4,BC=6.求AD 与BE 的比.【答案】(1)20︒;(2)2:3【分析】(1)根据题意易得180357570BAC ∠=︒-︒-︒=︒,1352BAF BAC ∠=∠=︒,然后根据角的和差关系可求解;(2)根据等积法可得1122ABC S BC AD AC BE ∆=⨯=⨯,然后根据题意可进行求解. 【详解】解:(1)∵35ABC ∠=︒,75C ∠=︒,∴180357570BAC ∠=︒-︒-︒=︒,∵AF 平分BAC ∠,∴1352BAF BAC ∠=∠=︒, ∴353570BFB ABC BAF ∠=∠+∠=︒+︒=︒,∵AD 是ABC ∆的高,∴90ADF ︒∠=,∴907020DAF ∠=︒-︒=︒;(2)∵AD BE 、分别是ABC ∆的高, ∴1122ABC S BC AD AC BE ∆=⨯=⨯, ∵4,6AC BC ==,∴116422AD BE ⨯⨯=⨯⨯, 即:2:3AD BE =.【点睛】本题主要考查三角形的高线、中线及角平分线,熟练掌握三角形的高线、中线及角平分线的定义是解题的关键.24.如图,在△ABC 中,∠BAC=120°,AD ,BE 分别为△ABC 的角平分线,连结DE . (1)求证:点E 到DA ,DC 的距离相等;(2)求∠DEB 的度数.【答案】(1)见解析;(2)30°.【详解】(1)过E 作EH ⊥AB 于H ,EF ⊥BC 于F ,EG ⊥AD 于G ,∵AD平分∠BAC,∠BAC=120°,∴∠BAD=∠CAD=60°,∵∠CAH=180°﹣120°=60°,∴AE平分∠HAD,∴EH=EG,∵BE平分∠ABC,EH⊥AB,EF⊥BC,∴EH=EF,∴EF=EG,∴点E到DA、DC的距离相等;(2)解:∵由(1)知:DE平分∠ADC,∴∠EDC=∠DEB+∠DBE,∴12CDA=∠DEB+12∠ABC,∴∠DEB=12(∠CDA﹣∠ABC)=12∠BAD=30°.【点睛】本题考查了角平分线性质,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距离相等.。

第6章--西姆松定理及应用(含答案)

第6章--西姆松定理及应用(含答案)

第6章--西姆松定理及应用(含答案)-CAL-FENGHAI.-(YICAI)-Company One1第六章西姆松定理及应用【基础知识】西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线).证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有βαγβLMAPBNC图6-1PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠.又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线.注 此定理有许多证法.例如,如下证法:如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=⋅,cos LC PC β=⋅,cos CM PC γ=⋅, cos MA PA α=⋅,cos AN PA β=⋅,cos NB PB γ=⋅.对ABC △,有cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ⋅⋅⋅⋅⋅=⋅⋅=⋅⋅⋅.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线.西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略).西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上.证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上.【典型例题与基本方法】1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作PE AC ⊥于E ,作PF BC ⊥于F .求证:111PF PD PE+=. PEFABCD图6-2证明由PD ⊥直线AB 于D ,PE AC ⊥于E ,PF BC ⊥于F ,知A ,E ,P ,D 及E ,F ,C ,P 分别四点共圆,则60DPE BAE ∠=∠=︒,60EPF ECF ∠=∠=︒. 由西姆松定理,知D ,E ,F 三点共线,从而以P 为视点,对PDF △应用张角定理, 有sin sin sin DPF DPE EPF PE PF PD ∠∠∠=+,即sin120sin60sin60PE PF PD︒︒︒=+,故111PF PD PE +=. 例2如图6-3,设AD ,BE ,CF 为ABC △的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS .求证:Q ,R 在直线PS 上.QHES R ABDCPF 图6-3证明由于BFH △的外接圆为BDHF ,而D 为该圆上一点,且D 在BFH △三边所在直线上的射影分别为P ,Q ,R ,于是,由西姆松定理知P ,Q ,R 三点共线.同理,可证Q ,R ,S 是HEC △的西姆线上三点.由于直线PQR 与直线QRS 有两个公共点Q ,R ,所以这两直线重合,故Q ,R 在直线PS 上.例3如图64-,设P 为ABC △外接圆上一点,作PA BC '⊥交圆周于A ',作PB '⊥直线AC 交圆周于B ',作PC AB '⊥交圆周于C '.求证:AA BB CC '''∥∥.L MPNAB C C 'B'A'图6-4证明设PA BC '⊥于L ,PB '上直线AC 于N ,PC AB '⊥于M ,则由西姆松定理知L ,M ,N 三点共线.注意到L ,B ,P ,M 及A ',B ,P ,A 分别四点共圆,连BP ,则 AMN BML BPL BPA BAA ''∠=∠=∠=∠=∠,于是AA LN '∥.同样,注意到A ,B ,P ,B '及A ,M ,P ,N 分别四点共圆,连PA ,则ABB APB APN AMN ''∠=∠=∠=∠,于是BB LN '∥.由A ,P ,C ',C 四点共圆,知180ACC APC ''∠+∠=︒.注意到APC APM ANM CNM '∠=∠=∠=∠,则180ACC CNM '∠+∠=︒,于是CC LM '∥,故AA BB CC '''∥∥.例4如图6-5,设P 为ABC △外接圆上BC 内一点,过P 作PD ⊥BC 于D ,作PF ⊥直线AB 于F ,设H 为ABC △的垂心.延长PD 至P ',使PD P D '=.求证:HP DF '∥.(1979年山西省竞赛题改编)MA'H P'PABCD FE H '图6-5证明连AH 并延长交BC 于A ',交圆于H ',则由HCB BAH BCH ''∠=∠=∠,知HA A H '''=. 又由已知PP BC '⊥,且P D DP '=,连PH ',则知PH '与P H '关于BC 对称,从而PH H P HH '''∠=∠.由于从P 点已向ABC △的两边所在直线AB ,BC 引了垂线PF ,PD ,再过点P 向边AC 所在直线作垂线PE ,垂足为E ,则由西姆松定理,知F ,D ,E 三点共线,设西姆松线EF 与HA '交于M .此时,又由P ,C ,E ,D 四点共圆,有CPE CDE ∠=∠.在Rt PCE △中,CPE ∠与PCE ∠互余;在Rt MDA '△中,A DM CDE '∠=∠与DMA '∠互余.故DMA PCE PCA PH H P HH ''''∠=∠=∠=∠=∠,由此即知HP EF '∥,故HP DF '∥.例5如图66-,设P 为ABC △外接圆上一点,过点P 分别作PL BC ⊥于L ,作PN ⊥直线AB 于N ,直线LN 交BC 边上的高线于K ,设H 为ABC △的垂心.求证:PK LH ∥.FPM HS Q BD G L CA K 图6-6N证明由于从P 点引了ABC △的边BC ,BA 所在直线的垂线,再过P 点作PM AC ⊥于M ,则由西姆松定理,知L ,M ,N 三点共直线,即L ,M ,N ,K 四点共线.设BC 边上的高线为AD ,延长AD 交圆于F ,连PF 交BC 于G ,交西姆松线NL 于Q ,连PH 交西姆松线NL 于S .由P ,C ,L ,M 四点共圆及A ,F ,C ,P 共圆,连PC ,则MLP MCP AFP LPF ∠=∠=∠=∠,从而QP QL =,即Q 为Rt PLG △的斜边PG 的中点.连HG ,由DFC ABC DHC ∠=∠=∠,知HD DF =,有HGD DGF LGP QLG ∠=∠=∠=∠,从而HG ML ∥,即SQ 是PHG △的中位线,亦即HS SP =.又PL KH ∥,有LPS KHS ∠=∠及PSL HSK ∠=∠,于是PSL HSK △△≌,即有PL KH ∥,亦即四边形PKHL 为平行四边形,故PK LH ∥.注由此例可得,三角形外接圆周上一点P 与垂心H 的连线段PH ,被关于P 点的西姆松线所平分,这是西姆松线的一条重要性质.2.注意发现四点共圆与三点共线的联系,灵活应用西姆松定理及其逆定理例6如图67-,延长凸四边形ABCD 的边AB ,DC 交于E ,延长AD ,BC 交于F .试证:BCE △,CDF △,ADE △,ABF △的四个外接圆共点.EMPRSDB CA 图6-7FQ证明设BCE △与CDF △的两个外接圆除交于点C 外,另一交点为M .设点M 在直线BE ,EC ,BC 上的射影分别为P ,Q ,R ,则由西姆松定理,知P ,Q ,R 三点共线.同样,M 点在直线DC ,CF ,DF 上的射影Q ,R ,S 也三点共线,故P ,Q ,R ,S 四点共线.在ADE △中,P 在AE 上,Q 在DE 上,S 在边AD 所在直线上,且P ,Q ,S 三点共线,则由西姆松定理的逆定理,知M 点在ADE △的外接圆上.在ABF △中,P 在直线AB 上,R 在BF 上,S 在AF 上,且P ,R ,S 三点共线,由西姆松定理的逆定理,知M 点在ABF △的外接圆上. 故BCE △,CDF △,ADE △,ABF △的四个外接圆共点.注此例题的结论实际为宪全四边形ABECFD 的四个三角形AED △、BEC △、CFD △、ABF △的外接圆共点,此点称为密克尔(Miquel )点,直线PQRS 称为完全四边形的西姆松线.【解题思维策略分析】 1.证明点共线的又一工具例7如图68-,设P 为四边形1234A A A A 外接圆上任一点,点P 在直线12A A ,23A A ,34A A ,41A A ,上的射影分别为1B ,2B ,3B ,4B ,又点P 在直线12B B ,23B B ,34B B ,41B B 上的射影分别为1C ,2C ,3C ,4C .求证:1C ,2C ,3C ,4C 共线.Q PB 1B 4B 3B 2C 4C 3C 2C 1A 2A 3A 4A 1图6-8证明连13A A ,过P 作13A A 的垂线,垂足为Q .从而,点P 关于123A A A △的西姆松线为12B B Q 同样,点P 关于134A A A △的西姆松线为34B QB .由14111A B P AQP A B P ∠=∠=∠,知点P 在14QB B △的外接圆上,由西姆松定理,知点P 在14QB B △三边上的垂足1C ,3C ,4C 共线.同理,1C ,2C ,4C 三点也共线.故1C ,2C ,3C ,4C 四点共线(此直线称为P 点圆内接四边形关于1234A A A A 的西姆松线).2.注意西姆松线在转化问题中的媒介作用例8如图69-,设P 为ABC △外接圆周上任一点,P 点关于边BC ,AC 所在直线的对称点分别为1P ,2P .求证:直线12P P 经过ABC △的垂心H .P 2P 1BHLC P图6-9N证明由于1P ,2P 分别为P 点关于直线BC ,AC 的对称点,设1PP 交直线BC 于L ,2PP 变直线AC 于N ,则L ,M 分别为P 点在ABC △的边BC ,CA 所在直线上的射影,且L ,N 分别为线段1PP ,2PP的中点. 由西姆松定理,知LN 为西姆松线,此时2LN PP ∥.又由前面例5知,当H 为ABC △的垂心时,直线LN 平分线段PH .于是,可知H 点在直线12P P 上,即直线12P P 经过H 点.例9如图610-,一条直线L 与圆心为O 的圆不相交,E 是l 上一点,OE l ⊥,M 是l 上任意异于E 的点,从M 作O 的两条切线分别切圆于A 和B ,C 是MA 上的点,使得EC MA ⊥,D 是MB 上的点,使得ED MB ⊥,直线CD 交OE 于F .求证:点F 的位置不依赖于M 的位置.(IMO 35-预选题)图6-10M l E证明令OE a =,O 的半径为R ,连结EA ,EB ,OA ,OB ,OM ,AB ,设AB 交OM 于G ,交OE 于Q ,则,OA MA ⊥,OB MB ⊥,OM ⊥AB .由射影定理,得2OG OM OB ⋅=,又由M ,E ,Q ,G 四点共圆,有22OQ OE OG OM OB R ⋅=⋅==,从而知2R OQ a=,由2OB OQ OE =⋅,有OEB OBQ △∽△,既有BEO OBQ BAO ∠=∠=∠,即123∠=∠=∠.由此得(901)903180MEB MAB ∠+∠=︒+∠+︒-∠=︒(),故A ,B ,E ,M 四点共圆.作EN AB ⊥交AB 的延长线于N ,由西姆松定理,知C ,D ,F ,N 四点共线.注意到A ,N ,E ,C 与A ,O ,E ,M 均四点共圆,有ENF EAM EOM ∠=∠=∠又由EN OM ∥,有ENF NEF ∠=∠,故ENF NEF ∠=∠.在Rt NEQ △中,由上推知F 为EQ 的中点,因此,()2211===222a R EF EQ OE OQ a--.故F 的位置不依赖于M 的位置.例10已知锐角ABC △,CD 是过点C 的高线,M 是边AB 的中点,过M 的直线分别与CA 、CB 交于点K 、L ,且CK CL =.若CKL △的外心为S ,证明:SD SM =.(2003年波兰奥林匹克题)证明如图6-11,作ABC △的外接圆,延长CS 交ABC 于点T ,联结TM ,作TK AC '⊥于点K ',TL BC '⊥于点L '.图6-11L'LSDB MAK 'K C注意到S 为KLC △的外心,且KC LC =,所以CS 为KCL ∠的平分线.于是T 为弧AB 的中点.又M 为AB 的中点,则TM AB ⊥.由西姆松定理,知K '、M 、L '三点共线.又CT 是K CL ''∠的角平分线,且K '、L '、M 三点共线,则CK CL ''=.即直线K ML ''是过M 与CT 垂直的直线,又直线KML 也是过M 与CS 垂直的直线,从而K '与K 重合,L '与L 重合.即90CKT CLT ∠=∠=︒,亦即知C 、K 、T 、L 四点共圆.故S 为四边形CKTL 的外接圆圆心,即有SC ST =,于是S 为TC 的中点.又CD AB ⊥,则CD MT ∥.故SM SD =. 3.注意西姆松线性质的应用三角形外接圆上一点的西姆松线平分该点与三角形垂心的连线. 此性质已在例5给出一种证法,现另证如下:如图6-12,设H 为ABC △的垂心,P 为其外接圆上一点,作HBC △的外接圆HBC ,则该圆与ABC 关于BC 对称(参见垂心性质7).P'LHQM PABCN图6-12设点P 的垂足线(即西姆松线)为LMN ,由P 、B 、L 、M 四点共圆,有PLM PBM ∠=∠ 设HBC 与直线PL 交于点P '、Q ,则L 为PP '的中点,连HP ',由LP H QH '∠=的度数PA =的度数PBA PBM PLM =∠=∠=∠,知P H LMN '∥.由此即知PH 被直线LMN 平分.例11如图613-,由ABC △的顶点A 引另两顶点B 、C 的内、外角平分线的垂线,垂足分别为F 、G 、E 、D ,则F 、G 、E 、D 四点共线,且此线与ABC △的中位线重合.IFGE DBCKLA图6-13证明延长BE 、CD 相交于点K ,设CG 与BE 相交于点I ,则I 为ABC △的内心.由1=2CAI A ∠∠,1119090222CKI CIK B C A ⎛⎫∠=︒-∠=︒-∠+∠=∠ ⎪⎝⎭,知A 、I 、C 、K 四点共圆.对ICK △及点A 应用西姆松定理,知G 、E .D 三点共线.图6-13 同理,对BCL △及点A 应用西姆松定理,知F 、G 、E 三点共线. 故F 、G 、E 、D 四点共线.由于C 为ICK △的垂心,则由西姆松线的性质知直线GED 平分AC .同理,直线FGE 平分AB ,故直线FD 与ABC △的中位线重合.注由例11再回过来看例2,在例2中,是由点D 引DEF △另两个顶点E .F 的内、外角平分线的垂线,垂足分别为P 、Q 、R 、S . 4.注意西姆松定理与托勒密定理的等价性 可用西姆松定理证明托勒密定理:如图614-,ABCD 为任意圆O 内接凸四边形,连AC ,过D 向ABC △各边作垂线,AB ,AC ,BC 所在直线上的垂足分别为1C ,1B ,1A ,连11C B ,11B A ,由西姆松定理,知111111C B B A C A +=.①图6-14由A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有111111sin sin C B AD C DB AD C AB =⋅∠=⋅∠,设R 为O 半径,则11sin sin 2BCC AB BAC R∠=∠=,故 112AD BCC B R⋅=. 同理,112CD AB B A R ⋅=,112AC BDC A R⋅= 于是,由①式有AD BC CD AB AC BD ⋅+⋅=⋅.此即为托勒密定理. 也可用托勒密定理证明西姆松定理:设ABCD 是O 的内接四边形,则由托勒密定理,有AD BC AB CD AC BD ⋅+⋅=⋅.②作1DC ⊥直线AB 于1C ,作1DB ⊥直线AC 于1B ,则由1A ,1C ,1B ,D 四点共圆,且AD 为该圆直径及正弦定理,有11111111sin sin C B C B AD C DB C AB ==∠∠,即1111sin 2BCC B AD C AB AD R=⋅∠=⋅.(R 为O 半径),亦即112AD BC R C B ⋅=⋅. 同理,112AB CD R A B ⋅=⋅,112AC BD R AC ⋅=⋅. 把上述三式代入②式,有111111C B A B AC +=,故1A ,1B ,1C 三点在一条直线上,此即为西姆松定理,因此,在应用中,我们应当注意灵活处置,若应用哪个定理方便,就应用哪个定理. 【模拟实战】习题A1.设P 为ABC △外接圆周劣孤BC 上一点,P 在边BC ,CA ,AB 上的射影分别为L ,M ,N ,令PL l =,PM m =,PN n =,BC a =,CA b =,AB c =.求证:mna lnb lmc =+.2.设PA ,PB ,PC 为O 的三条弦,分别以它们为直径作圆两两相交于D ,E .F .求证:D ,E ,F 三点共线.3.自ABC △的顶点A 作B ∠的内、外角平分线BE ,BF 的垂线,垂足为E ,F ,再作C ∠的内、外角平分线CG ,CD 的垂线,垂足为G ,D .求证:F ,G ,E ,D 四点共线. 4.求证:正三角形外接圆周上任一点到三边距离的平方和为定值.5.若三圆均经过其三圆心所成的外接圆上任何一点,则此三圆两两相交于三个共线点.习题B1.点P ,Q 是ABC △的外接圆上的两点(异于A ,B ,C ),点P 关于直线BC ,CA ,AB 的对称点分别是U ,V ,W ,连线QU ,QV ,QW 分别与直线BC ,CA ,AB 交于点D ,E ,F .求证:(Ⅰ)U ,V ,W 三点共线;(Ⅱ)D ,E ,F 三点共线.2.设ABCD 是一个圆内接四边形,点P ,Q 和R 分别是D 到直线BC ,CA 和AB 的射影. 证明:PQ QR =的充要条件是ABC ADC ∠=∠的角平分线的交点在AC 上.(IMO -44试题)3.(卡诺定理)过ABC △外接圆上一点P ,向三边所在直线引斜线分别交BC ,CA ,AB 于点D ,E ,F ,且PDB PEC PFB ∠=∠=∠.求证:D ,E ,F 共线.4.过ABC △的三顶点引互相平行的三直线,它们和ABC △的外接圆的交点分别为A ',B ',C '.在ABC △的外接圆上任取一点P ,设PA ',PB ',PC '与BC ,CA ,AB 或其延长线分别交于D ,E ,F .求证:D ,E ,F 共线.5.(清宫定理)设P ,Q 为ABC △外接圆上异于A ,B ,C 的任意两点,P 点关于BC ,CA ,AB的对称点分别为U ,V ,W ,而QU ,QV ,QW 和BC ,CA ,AB 分别交于D ,E ,F .求证:D ,E ,F 共线.6.设P ,Q ,为ABC △外接圆半径OK 或延长线上两点,2OP OQ R ⋅=,其中R 为外接圆半径,P 点关于BC 、CA 、AB 的对称点分别为U ,V ,W ,而QU ,QV ,QW 分别交BC ,CA ,AB 于点D ,E ,F .求证:D ,E ,F 共线.第六章西姆松定理及应用答案习题A1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有()sin sin sin B C B CPLPM PN∠+∠∠∠=+,即sin sin sin mn A ln B lm C ⋅∠=⋅∠+⋅∠再应用正弦定理,得mn a ln b lm c ⋅=⋅+⋅.2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=︒,90BFP CFP ∠=∠=︒,90CEP AEP ∠=∠=︒,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线.又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线.3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的内心.由12CAI BAC ∠=∠,而()11909022CKI CIK B C BAC ∠=︒-∠=︒-∠+∠=∠,从而A ,I ,C ,K 四点共圆.又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线.4.设正ABC △外接圆弧AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为D ,E ,F ,正三角形边长为a .由面积等式可得a b c h h h +-=.此式两边平方,得()2222324a b c a b b c a c h h h h h h h h h a +++--=.由sin sin b a h hPAC PBD PA PB=∠=∠=,有a b h PA h PB ⋅=⋅. 同理,a c h PA h PC ⋅=⋅,故a b h PA h PB k PC ⋅=⋅=⋅.又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠,得PFD PAC △△≌,故c h PA a DF =⋅,同理,a h PB a DE =⋅,b hPC a EF=⋅,即 a c b a c bh h h h h h k EF DE EF⋅⋅⋅===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ®---=--=⋅,故222234a b c h h h a ++=.5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A 与B另交于D ,A 与C 另交于E ,B 与C 另交于F .注意到A 与B 中,公共弦MD ⊥连心线AB ;A 与C 中,公共弦ME ⊥连心线AC ;B 与C 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线.习题B1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z三点共线,故U ,V ,W 三点共线.(Ⅱ)由P ,C ,A ,B 四点共圆,有PCE ABP ∠=∠.亦有22PCV PCE ABP PBW ∠=∠=∠=∠. 又PCQ PBQ ∠=∠,则PCV PCQ PBW PBQ ∠+∠=∠+∠. 即QCV QBW ∠=∠,从而QCV QBWS CV CQS BQ BW⋅=⋅△△.同理,QAW QCUS AW AQ S CQ CU ⋅=⋅△△,1QBU QCV QAW QBUQAV QBW QCU QAVS S S S BQ BU S AQ AV S S S ⋅=∴⋅⋅=⋅△△△△△△△△. 于是,1QBU QCV QAWQCV QAV QBWS S S BD CE AF DC EA FB S S S ⋅⋅=⋅⋅=△△△△△△ 由梅勒劳斯定理的逆定理,知D ,E ,F 三点共线.2.由西姆松定理知P ,Q ,R 三点共线.而90DPC DQC ∠=∠=︒,则D ,P ,C ,Q 四点共圆.于是,DCA DPQ DPR ∠=∠=∠.同理,由D ,Q ,R ,A 共圆,有DAC DRP ∠=∠.故DCA DPR △∽△.类似地,DAB DQP △∽△,DBC DRQ △∽△,从而//DA DR DB QR BC QP BA DC DP DB PQ BA PQ BC ⋅⋅===⋅⋅,故DA BAPQ QR DC BC=⇔=,而ABC ∠和ADC ∠的角平分线分AC 的比分别为BA BC 和DADC.即可证. 3.设P 在BC ,由PDB PFB PEC PEA ∠=∠=∠=∠,知B ,P ,D ,F 四点共圆,P ,F ,A ,E 四点共圆,从而PFD PBD PBC PAE PFE ∠=∠=∠=∠=∠,故F ,D ,E 共线(当 90PBD PEC PFB ∠=∠=∠=︒时,即为西姆松定理).4.由PCE A '∠=∠及AA BB ''∥,有A BGD '=∠ (G 为PA '与BB '的交点),即PCE BGD ∠=∠.又CBB CPB ''∠=∠,从而在BGD △和PCE △中,有BDP CEP ∠=∠,即知D ,P ,E ,C 四点共圆,有PDE PCE A '∠=∠=∠,故AA DE '∥.同理,AA DF '∥,所以D ,E ,F 共线(当PA BC '⊥时,即为西姆松定理).另证设P B '与AB 交于点X .注意到BB CC ''∥,则知B BC C ''为等腰梯形,有B C BC ''=,即有B PC BAC ''∠=∠.从而AXP XAC AXP XPC ∠+∠=∠+∠. 于是E F ∠=∠.同理E D ∠=∠,F D ∠=∠.故E D F ∠=∠=∠. 由卡诺定理(即上一题)知D 、E 、F 三点共线.5.设Q ,P 顺次在BC 上,由PCE PBA ∠=∠.有PCV PBW ∠=∠.又PCQ PBQ ∠=∠,有QCV QBW ∠=∠.故QCN QBWS VC QC PC QCS WB QB PB QB⋅⋅==⋅⋅△△.同理,QAW QCUS PA QA S PC QC ⋅=⋅△△,QBV QAV S PB QBS PA QA⋅=⋅△△.于是,1QBU QCU QAW QCU QAV QBW S S S BD CE AF PB QB PC QC PA QADC EA FB S S S PC QC PA QA PB QB⋅⋅⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅⋅△△△△△△ 由梅勒劳斯定理的逆定理,知D ,E ,F 共线(当P ,Q 重合时,即为西姆松定理).6.设K 点在BC 上,连OC ,则2OP OQ OC ⋅=,又POC COQ ∠=∠,则OPC COQ △∽△,有OCP OQC ∠=∠.又OKC OQC KCQ ∠=∠+∠,OCK OCP KCP ∠=∠+∠,而 OKC OCK ∠=∠,O CP OQC ∠=∠,知PCK KCQ ∠=∠,即2QCV KCE ∠=∠. 同理,2QBW KBA ∠=∠.又KCE KBA ∠=∠,则QCV QBW ∠=∠,有QCV QBWS CV CQ PC QC S QB WB PB QB ⋅⋅==⋅⋅△△.同理QAW QCU S PA QA S PC QC ⋅=⋅△△,QBU QAVS PB QBS PA QA ⋅=⋅△△.故1QBU QCV QAWQCU QAV QBWS S S BD DE AF DZ EA FB S S S ⋅⋅=⋅⋅=△△△△△△,故D ,E ,F 共线[当P (或Q )在圆周上时,即为西姆松定理]。

三角形的重点知识-精选文档

三角形的重点知识-精选文档

4.三角形的中线 定义:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中. 表达方式:如图25-3所示.
(1)AM是△ABC的中线; (2)AM是△ABC中BC边上的中线; (3)点M是BC的中点; (4)BM=MC=12BC; (5)BC=2BM=2MC; (6)S△ABM=S△ACM=12S△ABC. 特性:三角形的三条中线交于三角形内一点,这一点叫做三角形的重心. 规律:(1)三角形的一条中线将三角形分成两个面积相等(等底同高) 的三角形; (2)三角形的重心把三角形的中线分成两部分的比为1∶2.
3.三角形的高线 定义:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之 间的线段叫做三角形的高线,简称高. 表达方式:如图25-2所示.
(1)AD是△ABC的高; (2)AD垂直于BC,垂足为D; (3)∠ADB=∠ADC=90°. 特性:三角形的三条高所在的直线相交于一点,这一点叫做三角形的垂. 注意:锐角三角形三条高的交点在三角形的内部;钝角三角形三条高的交 点在三角形的外部;直角三角形的两条高线恰好是它的两条直角边,因此 三条高的交点在直角顶点上.
【解析】设∠BED=x,∠BDE=y,则x=(180°-∠1)×12,y=(180°-∠ 2)×12,x+y=12[360°-(∠1+∠2)] =12(360°-80°)=140°,∴∠B=40°. 【点悟】解决此类问题关键是:①对折后重叠部分的角度相等;②灵活运 用整体代入的方法;③内角与平角的综合运用. 类型之三 三角形中位线的性质运用 如图25-5,D是AB边上的中点,将△ABC沿过点D的直线折叠, 使点A落在BC边上的点F处,若∠B=50°,则 ∠BDF=80 度. 【解析】由题意知BD=DA,又AD=DF, ∴BD=DF,∴∠B=∠DFB=50°, ∴∠BDF=180°-2×50°=80°. 【点悟】折叠相当于轴对称变换,图形经过轴 对称变换后形状和大小不发生改变, 但位置发生改变.

人教版数学七年级下学期《期中检测卷》有答案解析

人教版数学七年级下学期《期中检测卷》有答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 42.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D度数为( )A. 60°B. 70°C. 80°D. 90°5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定6.如图,若直线a∥b,那么∠x=( )A 64° B. 68° C. 69° D. 66°7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.438.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是( )A. 1B. 2C. 3D. 49.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.5710.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°二.填空题(共4小题)11.已知关于x,y的方程组3225435x y kx y k+=⎧⎨+=-⎩与方程3x y+=的解相同,则k的值为________.12.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).三.解答题(共6小题)15.解二元一次方程组(1)2316413x yx y+=⎧⎨+=⎩;(2)0.310.20.519x yx y-=⎧⎨-=⎩;(3)3(1)521123x yx y-=+⎧⎪+-⎨=+⎪⎩.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋) 40 38售价(元/袋) 60 54根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.答案与解析一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 4[答案]B[解析][分析]根据实数的性质、两直线的关系、全等三角形的判定及角度关系即可判断正确,进行求解.[详解]①若a>0,b>0,则a+b>0,正确;②两直线平行,同位角相等,故错误;③有两边及其夹角分别对应相等的两个三角形全等,故错误;④三角形的最大角不小于60°,正确;故选B[点睛]此题主要考查命题的正误,解题的关键是熟知各知识点的判断.2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°[答案]B[解析][分析]先根据平行线的性质得出∠BCD的度数,进而可得出结论.[详解]解:如下图所示:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:B.[点睛]本题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,[答案]D[解析]解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是20{210x yx y+-=--=,故选D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为( )A. 60°B. 70°C. 80°D. 90°[答案]C[解析]分析]依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.[详解]解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B=360920110︒︒︒--=80°,∴四边形ABCD中,∠D=360°-∠A-∠B-∠C=80°,故选:C.[点睛]本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定[答案]B[解析][分析]设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,由“若购买A种2件、B种1件、C 种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元”,即可得出关于x,y,z的三元一次方程组,由(①+②)÷5可求出(x+y+z)的值,此题得解.[详解]解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,依题意,得:2324 34236x y zx y z++=⎧⎨++=⎩①②,(①+②)÷5,得:x+y+z=12.故选:B.[点睛]本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.6.如图,若直线a∥b,那么∠x=( )A. 64°B. 68°C. 69°D. 66°[答案]A[解析]试题解析:令与130°互补的角为∠1,如图所示.∵∠1+130°=180°,∴∠1=50°.∵a∥b,∴x+48°+20°=∠1+30°+52°,∴x=64°.故选A.[点睛]本题考查了平行线的性质、平行线间的折线问题以及角的计算,解题的关键是:利用“两平行线间的折线所成的角之间的关系-左边角之和等于右边角之和”规律做题.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.43[答案]A[解析][分析]首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可[详解]∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD ′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32故选A.8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )A. 1B. 2C. 3D. 4[答案]D[解析][分析] 由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.[详解]∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC,AB=AC,∠B=∠C=60°, 在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.[点睛]本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.9.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.57[答案]C[解析][分析]设已知等式等于k,表示出x,y,z,代入原式计算即可得到结果.[详解]解:设x y z234k===,得到x=2k,y=3k,z=4k则原式=26128 2349k k kk k k-+=++.故选:C.[点睛]本题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°[答案]C[解析]分析]根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.[详解]∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°, ∵CE 平分∠ACD,∴∠ECD=12∠ACD=50°, 故选C .[点睛]本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键. 二.填空题(共4小题)11.已知关于x ,y 的方程组3225435x y k x y k +=⎧⎨+=-⎩与方程3x y +=的解相同,则k 的值为________. [答案]11[解析][分析]首先解方程组,利用k 表示出x 、y 值,然后代入3x y +=,即可得到一个关于k 的方程,求得k 的值. [详解]解:3225435x y k x y k +=⎧⎨+=-⎩①②, 2⨯-①②,得5x k =+,把5x k =+代入①,得31522k y k ++=,解得152k y +=-, 代入3x y +=,得15532k k ++-=,去分母, 得210156k k +--=,解得11k =.故答案为11.[点睛]本题考查了二元一次方程组的解法,二元一次方程的解,解题关键是掌握二元一次方程组的解法. 12.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D,交边AC 于点E,则△BCE 的周长为_______.[答案]13[解析]试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.[答案]67.[解析][分析]设小长方形的长为xcm,宽为ycm,根据图中给定的数据可得出关于x,y的二元一次方程组,解之即可得出x,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:31927 x yx y y+=⎧⎨+-=⎩,解得:103xy=⎧⎨=⎩,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).[答案]①②④[解析][分析]易证△ABD ≌△EBC ,可得∠BCE=∠BDA,AD=EC 可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE ,即AD=AE=EC ,根据AD=AE=EC 可求得④正确[详解]解:①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBC(SAS),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD ≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE 为等腰三角形,∴AE=EC,∵△ABD ≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD 为△ABC 的角平分线,EF ⊥AB ,而EC 不垂直与BC,∴EF≠EC ,∴③错误;④过E 作EG ⊥BC 于G 点,∵E 是BD 上点,∴EF=EG,在Rt △BEG 和Rt △BEF 中,BE BE BE EG=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF(HL),∴BG=BF,在Rt △CEG 和Rt △AFE 中,EF FG AE CE=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,∴④正确.故答案为①②④.[点睛]本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.三.解答题(共6小题)15.解二元一次方程组(1)2316413x y x y +=⎧⎨+=⎩; (2)0.310.20.519x y x y -=⎧⎨-=⎩; (3)3(1)521123x y x y -=+⎧⎪+-⎨=+⎪⎩. [答案](1)52x y =⎧⎨=⎩;(2)370110x y =⎧⎨=⎩;(3)610x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.[详解]解:(1)2316413x yx y+=⎧⎨+=⎩①②,②×2﹣①得:5y=10,解得:y=2,把y=2代入②得:x=5,则方程组的解为52 xy=⎧⎨=⎩;(2)方程组整理得:31010 25190x yx y-=⎧⎨-=⎩①②,②×2﹣①得:x=370,把x=370代入②得:y=110,则方程组的解为370110 xy=⎧⎨=⎩;(3)方程组整理得:380322x yx y-=⎧⎨-=-⎩①②,①﹣②得:y=10,把y=10代入①得:x=6,则方程组的解为610 xy=⎧⎨=⎩.[点睛]本题考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg ,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg ,其中,红枣的销售量不低于1200kg .假设这后八个月,销售红枣x (kg ),销售红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?[答案](1)销售这种规格的红枣1000袋,小米500袋;(2)y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[解析][分析](1)设销售这种规格的红枣x 袋,小米y 袋,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y 与x 之间的函数关系式,再根据函数的增减性,得出何时利润最少.[详解]解:(1)设销售这种规格的红枣x 袋,小米y 袋,由题意得,22000(6040)(5438)28000x y x y +=⎧⎨-+-=⎩解得,x =1000,y =500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y =(60﹣40)x +(54﹣38)40002x -=12x +32000, ∵12>0,∴y 随x 的增大而增大,∵x ≥1200,当x =1200时,y 最小=12×1200+32000=46400元, 答:y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[点睛]考查二元一次方程组解法及其应用,一次函数的性质等知识,正确的得到函数关系式是解决问题的关键.17.如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.[答案](1)见解析;(2)见解析.[解析][分析](1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小.[详解](1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.[点睛]本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm 时,身高为105.5dm .(1)写出y 与x 之间的关系式;(2)当该动物腿长10dm 时,其身高为多少?[答案](1)y =7.5x +0.5;(2)当该动物腿长10dm 时,其身高为75.5dm .[解析][分析](1)根据题意,可以先设出y 与x 的函数关系式为y =kx +b ,然后再根据当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,即可求得该函数的解析式;(2)将x =10代入(1)中的函数解析式,即可得到相应的身高.[详解]解:(1)根据题意,设y 与x 之间的关系式为y =kx +b ,∵当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,645.514105.5k b k b +=⎧⎨+=⎩ , 解得7.50.5k b =⎧⎨=⎩, 即y 与x 之间的关系式是y =7.5x +0.5;(2)当x =10时,代入y 与x 之间的关系式y =7.5x +0.5,得到y =7.5×10+0.5=75.5,答:当该动物腿长10dm 时,其身高为75.5dm .[点睛]本题主要考查一次函数的应用,解答本题的关键是学会用待定系数法求解一次函数的解析式,并明确题意,利用一次函数的性质解答.19.如图,△ABC 中,∠ACB=90°,AD 平分∠BAC,DE ⊥AB 于E,(1)若∠BAC=50°,求∠EDA 的度数;(2)求证:直线AD 是线段CE 的垂直平分线.[答案](1)65°(2)证明见解析[解析] [分析](1)由题意可得∠EAD=12∠BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;(2)由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.[详解](1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=12∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,又∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.[点睛]本题考查了直角三角形两锐角互余、三角形全等的判定与性质、线段垂直平分线的判定等,熟练掌握相关的性质定理与判定定理是解题的关键.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.[答案](1)见解析(2) ∠AEB=15°(3) 见解析[解析]试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形性质、全等三角形的判定及性质,证得△ABE≌△ADC是解决本题的关键.。

(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)

(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)

一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。

其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑? 解析:蜗牛需41天才爬到树顶不下滑. 【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答. 【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40° 【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠,∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =. (1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =,∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠,即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠,即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.11.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.12.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)

5.数据分析
平均数与方差公式
名称
公式
平均数
x
1 n
( x1
x2
...
xn
)
加权平均数
x1w1 x2w2 ... xnwn w1 w2 ... wn
方差
s2
1 n
[(x1
x)2
(x2
x)2
...
(xn
x)2 ]
6.分式的运算
(1) 分式的基本性质:① a c a (b 0,c 0) bc b
an
1 an
(a
0, n为正整数)
(9) 解分式方程的一般步骤:
①去分母:在方程左右两边都乘以最简公分母,化为整式方程.
②解方程:解整式方程.
③验根:把整式方程的根代入最简公分母,若结果为零,则这个根是方程
的增根,必须舍去.
4
7.全等三角形
证明三角形全等的常见思路:
找夹角 SAS (1)已知两边: 找直角 HL
9.一元一次方程与一元一次不等式的区别
解法步骤
一元一次方程 ①去分母 ②去括号 ③移项 ④合并同类项 ⑤系数化为 1
一元一次不等式 ①去分母 ②去括号 ③移项 ④合并同类项 ⑤系数化为 1 在上面的步骤①和⑤中,如果乘的因数或除数是负 数,则不等号的方向要改变

一元一次方程只有一个解
一元一次不等式一般有无数多个解
5
10.一元一次不等式组解集的基本类型
不等式组 (设 a b )
在同一数轴上的表示
x a x b
0
ab
x a x b
0
a
b
x a x b x a x b
0
ab
0

(2021年整理)专题训练(五)角平分线的六种运用

(完整版)专题训练(五)角平分线的六种运用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)专题训练(五)角平分线的六种运用)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)专题训练(五)角平分线的六种运用的全部内容。

(完整版)专题训练(五)角平分线的六种运用编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)专题训练(五)角平分线的六种运用这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)专题训练(五)角平分线的六种运用〉这篇文档的全部内容。

专题训练(五)角平分线的六种运用►运用一确定点的坐标和线段的长1.如图5-ZT-1所示,在平面直角坐标系中,AD是Rt△OAB的角平分线,点D到AB的距离DE=3,则点D的坐标是________.图5-ZT-12.如图5-ZT-2,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.图5-ZT-2►运用二确定三角形的面积3.如图5-ZT-3,在△ABC中,∠A=90°,BD是角平分线.若AB=8,BC=10,S△ABD=错误!,求△BDC的面积.图5-ZT-34.如图5-ZT-4,D,E,F分别是△ABC三边上的点,AD平分∠BAC,CE=BF。

黑龙江省双鸭山市集贤县2022-2023学年七年级上学期期末数学试题(含答案解析)

黑龙江省双鸭山市集贤县2022-2023学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算结果正确的是()A .3a +2b =5abB .22232x y x y x y -=-C .246+=a a a D .2257a a a +=2.下列几何体中,从上面看和从正面看得到的图形完全相同的是()A .B .C .D .3.下列是一元一次方程的是()A .2230x x --=B .10x +=C .32x -D .25x y +=4.下列各图中有关角的表示正确的个数有()A .1个B .2个C .3个D .4个5.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A .3场B .4场C .5场D .6场6.若=1x -是关于x 的方程236x m x -=-的解,则m 的值是()A .1B .1-C .23-D .32-A .相等B .互为相反数C .相等或互为相反数D .以上均不对8.两个角的比是6:4,它们的差为36︒,则这两个角的关系是()A .互余B .相等C .互补D .以上都不对9.已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或310.如图,平面内90AOB COD ∠=∠=︒,OF 平分AOD ∠,有以下结论:①AOE DOE ∠=∠;②180AOD COB ∠+∠=︒;③90COB AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中结论正确的序号有()A .①②④B .①②③C .②③④D .①③④二、填空题11.将98900万用科学记数法表示为______.12.规定一种新运算:()a b ab a b =-+※,则()()32--=※______.13.已知||3(4)20m m x --+=是关于x 的一元一次方程,则m 的值为__________.14.下列式子:13-,3a,π-,235x y -,224x y +,12x -.其中整式有______个.15.已知40A ∠=︒,则A ∠的补角的度数为________.16.当x =______.时,式子423x -与24x -互为相反数.17.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.18.爸爸今年37岁,是儿子年龄的3倍还多1岁,设儿子今年x 岁,则可列方程为______.19.已知∠AOB =50°,∠BOC =30°,则∠AOC =_____.20.已知:如图,点M 在线段AN 的延长线上,且线段51MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;…连续这样操作20次,则2020M N =___________.三、解答题21.计算:(1)135126412⎛⎫-⨯-+- ⎪⎝⎭;(2)222313232⎡⎤⎛⎫⎛⎫-⨯-⨯--⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.22.解方程:(1)()824x x =-+;(2)3157146x x ---=.23.先化简,再求值:()()22242123x x x x x -+-+--,其中12x =.24.如果410a b -++=,求4a b+的值.25.一个角的补角加上10︒后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.26.已知点C 在直线AB 上,且6cm AC =,4cm BC =,点M ,N 分别是AC 、BC 的中点,求线段MN 的长度.27.小明用的练习本可以到甲、乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是全部按标价的80%出售.小明要购买()10x x >本练习本.(1)当小明到甲商店购买时,需付款______元;当到乙商店购买时,需付款______元;(2)买多少本练习本时,到两家商店花费相同?(3)小明准备买50本练习本,为了节约开支,选择哪家更划算?28.如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线.(1)如图①,当90AOB ∠=︒,60BOC ∠=︒时,求MON ∠的度数;(2)如图②,当AOB α∠=时,求MON ∠的度数.参考答案:1.B【分析】根据合并同类项运算法则进行计算,从而作出判断.【详解】解:A 、3a 与2b 不是同类项,不能合并计算,故此选项不符合题意;B 、原式=-2x 2y ,故此选项符合题意;C 、a 2与a 4不是同类项,不能合并计算,故此选项不符合题意;D 、原式=7a ,故此选项不符合题意;故选:B .【点睛】本题考查整式的加减运算,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.2.C【分析】从上面看到的图形即为俯视图,从正面看到的图形即为主视图,结合图形找出各图形的俯视图以及主视图,然后进行判断即可.【详解】解:A 、从上面看是有圆心的圆,从正面看是三角形,不相同,故此选项不符合题意;B 、从上面看是圆,从正面看是长方形,不相同,故此选项不符合题意;C 、从上面看是正方形,从正面看是正方形,相同,故此选项符合题意;D 、从上面看是三角形,从正面看是长方形,不相同,故此选项不符合题意;故选:C .【点睛】本题考查了简单几何体的三视图.解题的关键是明确从上面看到的图形即为俯视图,从正面看到的图形即为主视图.3.B【分析】根据一元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】2230x x --=是一元二次方程,故选项A 不符合题意;10x +=是一元一次方程,故选项B 正确;32x -是代数式,不是方程,故选项A 不符合题;25x y +=是二元一次方程,故选项D 不符合题意;故选:B .【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的定义,从而完成求解.4.B【分析】根据角的表示方法,平角、射线、周角的定义分析判断即可.【详解】解:图1中,角的顶点为A ,应表示为CAB ∠;图2表示正确;图3,射线和周角是两个概念,射线不能表示周角;图4表示正确.所以表示正确的个数为2.故选:B .【点睛】本题主要考查了角的表示方法、平角、射线、周角等知识,理解并掌握相关知识是解题关键.5.C【分析】设这个队胜了x 场,则这个队平了()145x --场,再根据胜一场得3分,平一场得1分,负一场得0分,总积分为19列出方程求解即可.【详解】解:设这个队胜了x 场,由题意得()314519x x +--=,解得5x =,∴这个队胜了5场,故选C .【点睛】本题主要考查了一元一次方程的应用,正确理解题意找到等量关系列出方程求解是解题的关键.6.B【分析】将x =-1代入方程,从而求解.【详解】解:把x =-1代入方程,可得:2×(-1)-3=6m -(-1),解得:m =-1,故选:B .【点睛】本题考查了一元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.7.C【分析】根据绝对值的性质选择即可.【详解】根据绝对值性质可知,若|a|=|b|,则a 与b 相等或互为相反数.【点睛】本题考查了绝对值的意义,解决本题的关键是明确互为相反数的绝对值相等.8.C【分析】若两角之和等于90︒,则这两角互余;若两角之和等于180︒,则这两角互补.根据题意设这两个角分别为6x ,4x ,可得到6436x x -=︒,求解即可获得答案.【详解】解:因为两个角的比是6:4,设两个角分别为6x ,4x ,根据题意,可得6436x x -=︒,解得18x =︒,所以这两个角分别为108︒,72︒,因为10872180︒+︒=︒,所以两个角的关系是互补.故选:C .【点睛】本题主要考查了一元一次方程的应用以及两个角之间的关系,解题的关键是熟练掌握两角之间关系的判定.9.C【分析】先分C 在AB 上和C 在AB 的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.【详解】解:如图:当C 在AB 上时,AC =AB -BC =2,∴AD =12AC =1如图:当C 在AB 的延长线上时,AC =AB +BC =6,∴AD =12AC =3【点睛】本题主要考查了线段的和差、中点的定义以及分类讨论思想,灵活运用分类讨论思想成为解答本题的关键.10.A【分析】根据角平分线的性质再结合90AOB COD ∠=∠=︒,逐项分析即可获得答案.【详解】解:∵OF 平分AOD ∠,∴AOF DOF ∠=∠,∴180180AOF DOF ︒-∠=︒-∠,即AOE DOE ∠=∠,故结论①正确;∵90AOB COD ∠=∠=︒,∴180AOD COB AOD AOC AOB ∠︒+∠=∠++∠=,故结论②正确;∵90COB AOD AOC AOB D AOD AOC AO ∠-∠=∠+∠+︒-∠-=∠,又∵AOC AOD ∠≠∠,∴90COB AOD ︒∠-∠≠,故结论③不正确;∵90AOB COD ∠=∠= ,∴90AOC AOD AOD BOD ∠+∠=∠+∠= ,∴AOC BOD ∠=∠,∵AOF DOF ∠=∠,∴AOF AOC DOF BOD ∠+∠=∠+∠,即COF BOF ∠=∠,∴180COE BOF COE COF ∠+∠=∠+∠= ,故结论④正确.综上所述,结论正确的序号有①②④.故选:A .【点睛】本题主要考查了角平分线的定义和性质以及平面内角的计算,熟练掌握角平分线的定义和性质是解题关键.11.89.8910⨯【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,n -为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:98900万89890000009.8910==⨯.故答案为:89.8910⨯.【点睛】本题主要考查了用科学记数法的知识,正确确定a 与n 的值是解题的关键.12.11【分析】利用题中的新定义计算即可求出值.【详解】解:根据新定义的运算,可得()()32(3)(2)[(3)(2)]--=-⨯---+-※65=+11=.故答案为:11.【点睛】此题主要考查了有理数混合运算,理解新定义是解题的关键.13.-4【分析】根据一元一次方程的定义列出关于m 的方程即可解答.【详解】∵||3(4)20m m x --+=是关于x 的一元一次方程,∴4m -≠0且31m -=,解得,m=-4,故答案为:-4【点睛】本题考查了一元一次方程的定义,熟练掌握并准确计算是解题的关键.14.4【分析】整式为单项式和多项式的统称,是代数式的一部分,代数式可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母.根据整式的定义进行判断即可.【详解】解:下列式子:13-,3a ,π-,235x y -,224x y +,12x -,整式有13-,π-,235x y -,12x -,共计4个.故答案为:4.【点睛】本题主要考查了整式的定义,解题的关键在于能够理解并熟练掌握整式的定义.15.140︒##140度【分析】根据互为补角的两个角的和等于180︒计算即可.【详解】解:∵40A ∠=︒,∴它的补角18040140=-=︒︒︒.故答案为:140︒.【点睛】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.16.2【分析】先根据相反数的定义列出关于x 的一元一次方程,求出x 的值即可.【详解】解:∵423x -与24x -互为相反数,∴422034x x --+=,解得:2x =,故答案为:2.【点睛】本题考查的是解一元一次方程,熟知相反数的定义是解答此题的关键.17.7.5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC ,∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点,∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm .故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.18.3137x +=【分析】设儿子今年x 岁,根据题意可知爸爸今年的年龄为(31)x +,即可获得答案.【详解】解:根据题意,可列方程为3137x +=.故答案为:3137x +=.【点睛】本题主要考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.19.20°或80°【详解】解:当OC 在∠AOB 内部,如图1,因为∠AOB =50°,∠BOC =30°,所以∠AOC =50-30°=20°;当OC 在∠AOB 外部,如图2,因为∠AOB =50°,∠BOC =30°,所以∠AOC =50°+30°=80°;综上可知,∠AOC 为20°或80°.故答案为:20°或80°.20.20512【分析】根据线段中点定义先求出11M N 的长度,再由11M N 的长度求出22M N 的长度,从而找到n n M N 的规律,即可求出结果.【详解】解:∵线段51MN =,线段AM 和AN 的中点1M ,1N ,∴1111211111515122222M N AM AN AM AN AM AN MN =-=-=-==⨯=().∵线段1AM 和1AN 的中点2M ,2N ;∴222211111122111111151515122222222M N AM AN AM AN AM AN M N =-=-=-==⨯⨯=⨯=().发现规律:1515122n n n n M N =⨯=,202020512M N ∴=.故答案为:20512.【点睛】本题考查两点间的距离,根据线段中点的定义得出512n n nM N =是解题关键.21.(1)2-(2)9-【分析】(1)利用乘法分配律求解即可;(2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式135(12)((12)(12)()6412=-⨯-+-⨯+-⨯-2(9)5=+-+2=-;(2)解:原式431(92)()92=-⨯-⨯-⨯-31(42)()2=-⨯--⨯-31(6)()2=-⨯-⨯-9=-.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.22.(1)0.8x =-(2)=1x -【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【详解】(1)解:()824x x =-+去括号得:828x x =--,移项得:828x x +=-,合并同类项得:108x =-,系数化为1得:0.8x =-;(2)解:3157146x x ---=去分母得:()()33112257x x --=-,去括号得:93121014--=-x x ,移项得:91014312x x -=-++,合并同类项得:1x -=,系数化为1得:=1x -.【点睛】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.23.243x x -+,54【分析】按照去括号、合并同类项的步骤化简整式,再代入求值即可.【详解】解:原式22242123x x x x x=--++--243x x =-+,当12x =时,原式211()4322=-⨯+54=.【点睛】本题主要考查了整式化简求值,熟练进行整式加减混合运算是解题关键.24.43【分析】根据非负数的性质求出a 、b 的值,代入所求的式子计算即可.【详解】解:由题意得,40a -=,10b +=,解得4a =,1b =-,∴444413a b ==+-.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.25.这个角的度数为40︒,它的补角为140︒,它的余角为50︒.【分析】设这个角的度数为x ︒,则其补角为(180)x ︒-︒,其余角为(90)x ︒-︒,根据题意可得(180)103(90)x x ︒-︒+︒=︒-︒,求解即可获得答案.【详解】解:设这个角的度数为x ︒,则它的补角为(180)x ︒-︒,它的余角为(90)x ︒-︒,根据题意,可得(180)103(90)x x ︒-︒+︒=︒-︒,解得40x =,所以180140x ︒︒-=︒,9050x ︒︒-=︒,所以,这个角的度数为40︒,它的补角为140︒,它的余角为50︒.【点睛】本题主要考查了补角和余角的相关计算以及一元一次方程的应用,理解补角和余角的定义是解题关键.26.1cm 或5cm .【分析】分两种情况:当点B 在线段AC 上时,当点C 在线段AB 上时,根据线段中点的性质及线段和差计算得到答案.【详解】当点B 在线段AC 上时,如图,∵6cm AC =,点M 是AC 的中点,∴MC=3cm ,∵4cm BC =,点N 是BC 的中点,∴NC=2cm ,∴MN=MC-NC=3cm-2cm=1cm ;当点C 在线段AB 上时,如图,∵6cm AC =,点M 是AC 的中点,∴MC=3cm ,∵4cm BC =,点N 是BC 的中点,∴NC=2cm ,∴MN=MC+NC=3cm+2cm=5cm ;综上,线段MN 的长为1cm 或5cm ..【点睛】本题考查线段的中点概念及求线段的长度问题,可根据线段中点的概念求解,线段上一个点把这个线段分成两个相等的线段,那么这个点就叫做这个线段的中点,以及根据线段的加减计算求解,解题中注意分情况求解.27.(1)()1.46x +,1.6x(2)30本(3)选择甲商店更划算【分析】(1)利用总价=单价×数量,结合两家商店给出的优惠条件,即可用含x 的代数式表示出到两家商店购买所需费用;(2)根据两家商店花费相同,即可得出关于x 的一元一次方程,解之即可得出结论;(3)分别将50x =代入()1.46x +和1.6x 中可求出到两家商店购买所需费用,比较后即可得出结论.【详解】(1)解:依题意得:小明到甲商店购买需付款()210270%10 1.46x x ⨯+⨯-=+(元);小明到乙商店购买需付款280% 1.6x x ⨯=(元).故答案为:()1.46x +,1.6x ;(2)依题意得:1.46 1.6x x +=,解得:30x =.答:买30本练习本时,两家商店花费相同.(3)当50x =时,1.46 1.450676x +=⨯+=;当50x =时,1.6 1.65080x =⨯=.∵7680<,∴选择甲商店更划算.【点睛】本题考查了一元一次方程的应用、列代数式以及代数式求值,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出到各商店购买所需费用;(2)找准等量关系,正确列出一元一次方程;(3)代入50x =,分别求出到各商店购买所需费用.28.(1)45︒(2)12α【分析】(1)根据题意可知150AOC ∠=︒,结合角平分线的定义可得75COM ∠=°,30CON ∠=︒,由MON COM CON ∠=∠-∠即可获得答案;(2)当AOB α∠=,可有AOC BOC α∠=+∠,结合角平分线的定义可得,1()2COM BOC α∠=+∠,12CON BOC ∠=∠,由MON COM CON ∠=∠-∠即可获得答案.【详解】(1)解:∵90AOB ∠=︒,60BOC ∠=o ,∴9060150AOC AOB BOC ∠=∠+∠=︒+︒=︒,∵OM 是AOC ∠的平分线,∴111507522COM AOC ∠=∠=⨯︒=︒,∵ON 是BOC ∠的平分线,∴11603022CON BOC ∠=∠=⨯︒=︒,∴753045MON COM CON ∠=∠-∠=︒-︒=︒;(2)当AOB α∠=,可有AOC AOB BOC BOC α∠=∠+∠=+∠,∵OM是AOC∠的平分线,∴11()22COM AOC BOCα∠=∠=+∠,∵ON是BOC∠的平分线,∴12CON BOC ∠=∠,∴111()222 MON COM CON BOC BOCαα∠=∠-∠=+∠-∠=.【点睛】本题考查了角平分线定义和平面内角的相关计算,理解并掌握角平分线的定义是解题关键.。

人教版数学八年级上学期《期末测试卷》带答案解析

B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
[答案]C
[解析]
[分析]
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
[详解]解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即 ,乙图中阴影部分长方形的长为 ,宽为 ,阴影部分的面积为 ,根据两个图形中阴影部分的面积相等可得 .
18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
三、解答题(共8题,共66分 )
19.分解因式:
A. ∠1=∠2+∠AB. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A
二、填空题(每小题3分,共24分)
11.当x=时,分式 无意义.
12.如图,在△ABC中,AM是中线,AN是高.如果BM=3.5cm,AN=4cm,那么△ABC的面积是___________cm2.
13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.
8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()
A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°
[答案]B
[解析]
[详解]∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,

沪教版 八年级数学 暑假同步讲义 第20讲 线段垂直平分线及角平分线(解析版) 培优

线段的垂直平分线和角平分线内容分析线段的垂直平分线和角平分线是八年级数学上学期第十九章第四节内容,主要对线段的垂直平分线和角平分线进行讲解,重点是线段的垂直平分线和角平分线定理的理解,难点是线段的垂直平分线和角平分线定理的运用.通过这节课的学习一方面为我们后期学习直角三角形提供依据,另一方面也为后面学习勾股定理奠定基础.知识结构模块一:线段的垂直平分线知识精讲一、线段的垂直平分线的性质及逆定理1、线段的垂直平分线上的任意一点到这条线段的两个端点的距离相等;注意:垂直平分线中的垂直是相互的,而平分则要看清楚到底是谁被平分.2、和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2 / 15【例1】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=︒,DE 垂直平分AB 于点D ,交AC于点E .求证:DE CE =.【解析】连接BE∵DE 垂直平分AB 于点D , ∴EB AE =, ∴︒=∠=∠30ABE A∵︒=∠+∠90ABC A ,30A ∠=︒, ∴︒=∠60ABC ,∴︒=∠30EBC .可证BCE BDE ≌△△()S A A ..,则CE DE =.【总结】本题主要考查直角三角形的性质以及线段垂直平分线的性质.【例2】 已知:如图,在ABC ∆中,90ACB ∠=°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD M ,为垂足,DE 交AC 于点F .求证:E 在AF 的垂直平分线上.【解析】∵EM 垂直平分BD ,∴ED EB =,∴D B ∠=∠∵90ACB ∠=°,∴︒=∠+∠90B A ,︒=∠+∠90DFC D ∴DFC A ∠=∠ ∵AFE DFC ∠=∠, ∴AFE A ∠=∠,∴EF AE = ∴E 在AF 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例3】 如图,ABC ∆中,AD 是BAC ∠的平分线,点E 在BC 延长线上,且例题解析DEABCABACONNMGFEDC BABAE ACE ∠=∠.求证:点E 在AD 的垂直平分线上.【解析】∵AD 是BAC ∠的平分线,∴DAC BAD ∠=∠∵BAD DAE BAE ∠+∠=∠,DAC ADE ACE ∠+∠=∠,又BAE ACE ∠=∠ ∴DAE ADE ∠=∠ ∴ED EA =∴点E 在AD 的垂直平分线上.【总结】本题一方面考查三角形的外角性质,另一方面考查线段垂直平分线逆定理的运用.【例4】 已知:在ABC ∆中,90ACB ∠=,30A ∠=°,BD 平分B ∠交AC 于点D .求证:点D 在AB 的垂直平分线上.【解析】∵︒=∠+∠90ABC A ,30A ∠=︒,∴︒=∠60ABC ,∵BD 平分B ∠,∴︒=∠30DBA ∴ABD A ∠=∠,∴BD AD = ∴点D 在AB 的垂直平分线上.【总结】本题一方面考查直角三角形的性质,另一方面考查线段垂直平分线逆定理的运用.【例5】 已知:在ABC 中,ON 是AB 的垂直平分线, OA OC =.求证:点O 在线段BC 的垂直平分线.【解析】∵ON 是AB 的垂直平分线, ∴OB OA =∵OA OC =,∴OC OB = ∴点O 在线段BC 的垂直平分线.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例6】 如图,在△ABC 中,∠A =30°,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD .求证:AF = FG = BG . 【答案】见解析【解析】∵DE 垂直平分AB ,4 / 15GF ECBAEDCBA∴︒=∠=∠30DAB A ∵FM 垂直平分AD , ∴DF AF =, ∴FDA A ∠=∠,∴︒=∠+∠=∠60ADF A DFE 同理可得:︒=∠60DGB , ∴DFG △是等边三角形, ∴BG FG DF ==又∵DF AF =,BG DG =, ∴AF = FG = BG .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.【例7】 如图,在△ABC 中,∠B =22.5°,边AB 的垂直平分线交BC 于点D ,DF ⊥AC ,并与BC 边上的高AE 交于点G . 求证:EG = EC . 【答案】见解析【解析】∵边AB 的垂直平分线交BC 于点D ,∴DA DB =,∴︒=∠=∠5.22B BAD ∴︒=∠+∠=∠45BAD B ADC , ∴ADE △为等腰直角三角形, ∴AE DE =证得:()A S A ACE DGE ..≌△△, ∴EG = EC .【总结】本题主要考查等腰直角三角形的性质以及线段垂直平分线的性质.【例8】 如图,已知:△ABC 中,AB = CB ,点D 在线段AC 上,且AB = AD ,∠ABC =108°,过点A 作AE ∥BC ,交∠ABD 的平分线于E ,联结CE . 求证:BD 垂直平分EC .【解析】连接ED∵AB = CB ,∠ABC =108°,∴︒=∠=∠36BCA BAC ∵AB = AD ,∴︒=∠=∠72ADB ABD , ∴︒=︒-︒=∠3672108DBC∵BE 平分ABD ∠,∴︒=∠=∠36EBD ABE ∵AE ∥BC ,∴︒=︒-︒=∠72108180BAE , ∴BEA BAE ∠=∠,∴BE BA =又∵AB = CB ,∴BC BE =证得:()S A S BCD BED ..≌△△,∴CD DE =∵BE BA =,CD DE =,∴ BD 垂直平分EC .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.二、 角平分线的性质定理和角平分线的性质定理的逆定理1、 角的平分线上的点到这个角两边的距离相等.2、 在一个角的内部(包括顶点)到这个角两边距离相等的点,在这个角的平分线上注意:角的平分线可以看作是在这个角的内部(包括顶点)到这个角两边距离相等的点的集合.【例9】 如图,//AD BC AC ,平分BAD ∠,BE 平分ABC ∠,交CD 于点E ,交AC 于点F .求证:点F 到EA EC 、的距离相等. 【答案】见解析【解析】∵AC 平分BAD ∠,∴DAC BAC ∠=∠∵BC AD ∥,∴DAC ACB ∠=∠ ∴BAC ACB ∠=∠,∴BC AB =证得:()S A S CBE BAE ..≌△△,∴CEB AEB ∠=∠ ∴点F 到EA EC 、的距离相等.【总结】本题主要考查角平分线的意义和逆定理的运用.例题解析知识精讲模块二:角平分线AFBDEC6 / 15FG EBPON CDM A 【例10】 如图,90B C ∠=∠=°,M 是BC 的中点,DM 平分ADC ∠.求证:AM 平分DAB ∠. 【答案】见解析【解析】过M 作MN ⊥AD ,垂足为N∵DM 平分ADC ∠,∴CM MN =∵M 是BC 的中点,∴MB CM =,∴MB MN = ∴AM 平分DAB ∠.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例11】已知:如图,//AD OB OC ,平分AOB P ∠,是OC 上一点,过点P 作直线MN ,分别交AD OB 、于点M 和N ,且MP NP =. 求证:点P 到AO 和AD 的距离相等. 【答案】见解析【解析】过P 作PE ⊥OB 于点E ,PF ⊥OA 于点F ,PG ⊥AD 于点G .∵OC 平分AOB ∠,∴PF PE =可证得:()S A A PGM PEN ..≌△△,则PG PE =,∴PG PF = ∴点P 到AO 和AD 的距离相等.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例12】如图,AD 为ABC ∆的角平分线,//DE AC ,交AB 于E ,过E 作AD 的垂线交BC 延长线于F . 求证:B FAC ∠=∠.【解析】∵AD 为ABC ∆的角平分线,∴DAC BAD ∠=∠∵//DE AC ,∴DAC EDA ∠=∠ ∴EDA BAD ∠=∠,∴AE DE = ∵AD EF ⊥,∴EF 垂直平分AD , ∴FD FA =,∴FDA FAD ∠=∠∵DAC FAC FAD ∠+∠=∠,BAD B FDA ∠+∠=∠ ∴B FAC ∠=∠.【总结】本题主要考查线段垂直平分性质定理及平行线+角平分线可以得到等腰三角形这个基本模型的运用.CMA DBABC DEF【例13】 已知:如图,在等腰直角三角形ABC 中,90ACB ∠=°,D 为BC 的中点,且DE AB ⊥,垂足为点E ,过点B 作//BF AC 交DE 的延长线于点F ,联结CF .(1)求证:AD CF ⊥;(2)联结AF ,试判断ACF ∆的形状,并说明理由.【解析】(1)∵ABC △为等腰直角三角形,∴︒=∠=∠45CBA CAB ∵//BF AC ,∴︒=∠45ABF证得:FBE DBE ≌△△,则可得DB BF = ∵D 为BC 的中点,∴DB CD =,∴BF CD = 证得:()S A S BCF CAD ..≌△△,∴BCF CAD ∠=∠∵︒=∠+∠90ACF BCF ,∴︒=∠+∠90ACF CAD ,∴AD CF ⊥; (2)等腰三角形.由(1)可得:AF AD =,CF AD =,∴CF AF = ∴ACF △是等腰三角形.【总结】本题主要考查等腰直角三角形的性质,本题(1)中的全等是一个基本模型,要注意理解,在后期证明中也会经常用到.【例14】如图,AP BP 、分别平分MAB ∠和NBA ∠,PC PD 、分别垂直于AM BN 、,如果123AC cm CP cm BD cm ===,,,那么PD =_______,AB = _________.【答案】2cm ,4cm .【解析】过P 作PE ⊥AB 于E .∵AP BP 、分别平分MAB ∠和NBA ∠ ∴2===PD PE PC可证:()S A A PEA PCA ..≌△△,()S A A PDB PEB ..≌△△ 则CE AC =,BE BD = ∴431=+=+=EB AE AB【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例15】如图,ABC ∆中,90C ∠=°,点O 为ABC ∆的三条角平分线的交点,OD BC ⊥,OE AC ⊥,OF AB ⊥,点D E F 、、分别为垂足,且1086AB BC CA ===,,,则点OPBCAM NDAEFABCDEF8 / 15GFEDCBA GFDA到三边AB AC 、和BC 的距离分别为_______. 【答案】2. 【解析】∵24862121=⨯⨯=⋅⋅=BC AC S ABC △ ∴ABC ABO OBC AOC S S S S =++△△△△111108624222OF OD OE =⨯⨯+⨯⨯+⨯⨯=∵点O 为ABC ∆的三条角平分线的交点, ∴OF OE OD == ∴2=OD【总结】本题一方面考查角平分线的性质定理,另一方面考查等积法的运用.【例16】如图,在ABC ∆中,90ACB ∠=°,AC BC =,AD 是BC 边上的中线,过C 作CF AD ⊥,E 为垂足,延长CE 交AB 于F .求证:ADC BDF ∠=∠. 【答案】见解析【解析】过B 作BG ∥AC 交CF 的延长线于G .证得:()A S A BCG CAD ..≌△△, ∴BG CD =,G ADC ∠=∠ ∵D 为BC 的中点, ∴DB CD =,∴BG BD =证得:()S A S GBF DBF ..≌△△,则可得G BDF ∠=∠ ∴ADC BDF ∠=∠【总结】本题一方面考查直角三角形的性质,另一方面考查全等的基本模型.【例17】如图,已知正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AE DC CE =+.求证:AF 平分DAE ∠.EQ PDCBA 【答案】见解析【解析】连接EF 交AD 的延长线于G .可证得:()A S A ECF GDF ..≌△△,则DG CE =,FG EF = ∵BC AD =,AE DC CE =+ ∴AE AG =可证得:()S S S AGF AEF ..≌△△, ∴GAF EAF ∠=∠ 即AF 平分DAE ∠.【总结】本题主要考查利用中线倍长构造全等,总而证明角平分线的成立.【例18】已知:如图,正方形ABCD 的边长为1,AB AD 、上各有一点P Q 、,若APQ∆的周长为2.求PCQ ∠的度数. 【答案】45°.【解析】∵APQ ∆的周长为2,∴2=++PQ AP AQ .∵正方形ABCD 的边长为1,∴2=+++PB AP AD AQ ∴BP DQ PQ +=. 延长PB 至E ,使得BE =DQ可证:()S A S CBE CDQ ..≌△△,则CE CQ =,BCE DCQ ∠=∠ ∵BP DQ PQ +=,DQ BE =,∴EP PQ = 可证:()S S S CPE CPQ ..≌△△,∴PCE QCP ∠=∠ ∵︒=∠+∠90BCQ DCQ ,BCE DCQ ∠=∠, ∴︒=∠+∠90BCQ BCE ,即︒=∠90QCE 又∵︒=∠+∠90PCE QCP ,PCE QCP ∠=∠ ∴︒=∠45PCQ【总结】本题综合性较强,主要考查了全等的运用,以及截长补短辅助线的添加,最终目的是构造全等,在解题时要注意认真分析.【习题1】ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,且OC BC =,则A∠随堂检测10 / 15EODCBA=________. 【答案】30°【解析】∵ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,∴OC OB OA ==∴OCB B ∠=∠,ACO A ∠=∠ ∵︒=∠+∠+∠+∠180ACO A OCB B ∴︒=∠+∠90OCB ACO ,即︒=∠90ACB ∵OC BC =∴OBC △为等边三角形,∴︒=∠60B ∵︒=∠+∠90A B ,∴︒=∠30A .【总结】本题主要考查线段垂直平分线性质以及等边三角形的性质.【习题2】 △ABC 中,AB = AC ,AC 的中垂线交AB 于E ,△EBC 的周长为20cm ,AB = 2BC ,则腰长为___________.【答案】cm 340.【解析】∵AC 的中垂线交AB 于E ,∴EC AE =∵△EBC 的周长为20cm ,∴20=+=++BC AB EC BC EB∵AB = 2BC ,∴340=AB【总结】本题主要考查线段垂直平分线性质以及等腰三角形的性质.【习题3】 如图所示,AB //CD ,O 为∠A 、∠C 的平分线的交点,OE ⊥AC 于E ,且OE =2, 则AB 与CD 之间的距离等于___________. 【答案】4【解析】过O 作OF ⊥AB 于F ,OG ⊥CD 于G∵O 为∠A 、∠C 的平分线的交点,∴2===OG OF OE , ∵AB //CD , ∴F 、O 、G 三点共线,∴4=FG . 【总结】本题主要考查角平分线性质以及平行线的性质. 【习题4】ABC ∆中,AD 平分BAC ∠,DE DF 、分别垂直于AB AC 、,垂足分别为E F 、,如果48ABC S ∆=,79AC AB ==,,则DF =______________. 【答案】6【解析】∵AD 平分BAC ∠,∴DF DE =∵487219212121=⨯⨯+⨯⨯=⋅⋅+⋅⋅=+=DF DE DF AC DE AB S S S ADC ABD ABC △△△MNABC ∴6=DF【总结】本题主要考查角平分线性质以及等积法的运用.【习题5】 已知:点A 和点D 都是线段BC 外一点,且AB = AC ,DB = DC ,E 是AD 上一点.求证:BE = CE .【答案】见解析【解析】∵AB = AC ,∴A 在线段BC 的垂直平分线上,∵DB = DC ,∴D 在BC 的垂直平分线上, ∴AD 是BC 的垂直平分线 ∵E 是AD 上一点 ∴BE = CE【总结】本题主要考查线段垂直平分线性质定理及其逆定理的运用.【习题6】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=°,MN 是AB 的垂直平分线.求证:12CM AM =.【答案】见解析. 【解析】∵MN 是AB 的垂直平分线,∴︒=∠=∠30MBA A∵90C ∠=°,30A ∠=°,∴︒=∠60CBA ,∴︒=︒-︒=∠303060CBM , ∴NBM CBM ∠=∠,∴MN CM =. 在直角△AMN 中,︒=∠30A ,则AM MN 21=,∴AM CM 21=. 【总结】本题主要考查线段垂直平分线性质以及直角三角形的性质.【习题7】 已知:如图,ABC ∆中,90A ∠=°,AB AC BD ==,ED BC ⊥.求证:AE DE DC ==. 【答案】见解析 【解析】连接BE可证:()L H BDE BAE .≌△△,∴DE AE = ∵90A ∠=°,AB AC =, ∴︒=∠45C ∵ED BC ⊥∴△DEC 为等腰直角三角形, ∴DC DE =BEACD12 / 15ABCDOEF∴AE DE DC ==【总结】本题一方面考查了直角三角形全等的判定方法,另一方面考查了等腰直角三角形的性质,由于部分学生还未学过(H .L )的判定定理,因此可选择性的讲解.【习题8】 如图,在ABC ∆中,BD 平分ABC ∠,EF 垂直平分BD 交CA 延长线于E .求证:EAB EBC ∠=∠. 【答案】见解析【解析】∵EF 垂直平分BD∴ED EB = ∴EDB EBD ∠=∠ ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠∵ABD EDB EAB ∠+∠=∠,DBC EBD EBC +∠=∠ ∴EAB EBC ∠=∠【总结】本题一方面考查线段垂直平分线的性质定理,另一方面考查三角形外角性质的运用.【习题9】 已知:如图,在凹四边形ABCD 中,EO 垂直平分BC ,FO 垂直平分AD ,EO与FO 相交于点O ,且AB CD =. 求证:ABO DCO ∠=∠. 【答案】见解析 【解析】连接OD 、OA∵EO 垂直平分BC ∴OC OB = ∵FO 垂直平分AD ∴OD OA =可证:()S S S DOC AOB ..≌△△ ∴ABO DCO ∠=∠.【总结】本题主要考查线段垂直平分线以及角平分线性质定理的综合的运用.课后作业ABCDEF【作业1】 如图,Rt ABC ∆中,90C ∠=°,AD 平分BAC ∠,DE AB ⊥于E ,如果14DC cm AB cm ==,,那么ABD S ∆=___________.【答案】2【解析】∵AD 平分BAC ∠,DE AB ⊥,90C ∠=°, ∴1==DE CD∴2142121=⨯⨯=⋅⋅=DE AB S ABD △.【总结】本题主要考查角平分线性质定理的运用.【作业2】 如图,已知ABC ∆中,DE 是AC 的垂直平分线,5AC =,ABD ∆的周长为13,求ABC ∆的周长. 【答案】18【解析】∵DE 是AC 的垂直平分线,∴DC AD =∵ABD ∆的周长为13, ∴13=++AD BD AB ∴ABC ∆的周长为:AB AC BC AB AC BD DC AB AC BD AD ++=+++=+++13518=+=.【总结】本题主要考查线段垂直平分线性质定理的运用.【作业3】 如图,在ABC ∆中,已知点D 在BC 上,且DB AD BC +=.求证:点D 在AC的垂直平分线上. 【答案】见解析【解析】∵DB AD BC +=,BC DC DB =+∴DC AD =∴点D 在AC 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理逆定理的运用,证明点在线段垂直平分线上. 【作业4】 如图,在ABC ∆中,AB AC =,120BAC ∠=°,AC 的垂直平分线DE 交BC 于D E ,为垂足,且18BC cm =,求DE 的长.【答案】3cm【解析】∵AB AC =,120BAC ∠=°,∴︒=∠=∠30C B∵AC 的垂直平分线DE 交BC 于D ∴DC AD =,︒=∠=∠30CAD C ,ABCEDAB C DD BACEADBEC14 / 15ED CBA ∴︒=︒-︒=∠9030120BAD在直角△BAD 中,︒=∠30B ,则BD AD 21= ∴182=+=+=DC DC DC BD BC ∴6=DC在直角△CED 中,︒=∠30C ,则321==DC DE .【总结】本题主要考查线段垂直平分线性质定理及其直角三角形性质的运用.【作业5】 如图,正方形ABCD 的边长为1,AE 是CAB ∠的平分线,交BC 于点E ,则点E 到AC 的距离为___________. 【答案】12-.【解析】过E 作EF ⊥AC ,垂足为F可得:△CEF 为等腰直角三角形, 则由勾股定理可得:EF CE 2=∵AE 是CAB ∠的平分线,EF ⊥AC ,90B ∠= ∴BE EF = 又∵1=+EB CE ∴12=+EF EF ∴12-=EF【总结】本题综合性较强,主要考查了角平分线的性质以及正方形的性质,还运用勾股定理计算线段长.【作业6】 如图,已知ABC ∆中,点E 是AB 延长线上的一点,AE AC AD =,平分BAC ∠,BD = BE .求证:2ABC C ∠=∠. 【答案】见解析【解析】由题意,易得:()S A S ACD AED ..≌△△则:C E ∠=∠∵BD = BE ,∴BDE E ∠=∠ ∴C E DBE E ABC ∠=∠=∠+∠=∠22ABCDE【总结】本题主要考查等边对等角以及三角形外角性质的运用,解题时注意分析,当看到证明一个角是另一个角的两倍时,通常都考虑采用外角性质证明.【作业7】 如图,在ABC ∆中,AD BC ⊥于D ,AC CD BD +=.求证:2C B ∠=∠. 【答案】见解析【解析】在BD 上截取一点E ,使得DE =DC∵DC DE =,AC CD BD += ∴AC BE =可证:AED ACD ≌△△,则AE AC =,AED C ∠=∠ ∴AE BE =,∴BAE B ∠=∠ ∴C B BAE B AED ∠=∠=∠+∠=∠22 ∴2C B ∠=∠【总结】本题一方面考查了截长补短辅助线的添加,主要是看到两条线段和等于第三条线段的模型,另一方面考查了证明一个角是另一个角的两倍的基本模型,通常都考虑采用外角性质证明.ABCD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3 “角的平分线的性质”(2)
一、学习目标
1、知道角平分线性质定理的逆命题,并会进行应用
2、注意区别这两个定理的条件和结论,熟练用来解题
二、忆一忆:
1、角平分线的性质:
2、画出三角形三个内角的平分线
你发现了什么特点吗?
三、 探究新知:
活动一:如图,要在S区建一个集贸市场,使它到公路、铁路
距离相等,离公路与铁路交叉处500米,这个集贸市场应建在
何处(在图上标出它的位置,比例尺1:20000)?
小结:角平分线上的点到 距离相等;那么到角两边距离相等的点是否也在这个角平分线上呢?
活动二:求证:到角的两边的距离相等的点在角的平分线上
如图,已知:
求证:
证明:
符号语言:
∵点P 在∠AOB 内,PD ⊥OA ,PE ⊥OB ,PD= PE (已知)
∴点P 在∠AOB 的平分线OC 上 (到角的两边的距离相等的点在角的平分线上) 即:∠AOC=∠
变式题:已知:如图,∠C= ∠C ′=90° ,AC=AC ′ .
求证:(1) ∠ABC= ∠ABC ′ ;(2)BC=BC ′ .(要求不用三角形全等的判定)
B P O
A C E D C /
A
活动三:如图,△ABC 的角平分线BM ,CN 相交于点P ,求证:点P 到三边AB ,BC ,CA 的距离相等
四、练一练:
1、如图已知△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F ,
求证:点F 在∠DAE 的平分线上.
证明:
过点F 作FG ⊥AE 于G ,FH ⊥AD 于H ,FM ⊥BC 于M ,
∵点F 在∠BCE 的平分线上,FG ⊥AE , FM ⊥BC
∴ =
又∵
∴ =
∴FG =FH
∴点F 在∠DAE 的平分线上
2、如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD
相交于点O ,OB =OC.,求证:∠OAB =∠OAC
3、如图:在△ABC 中,∠B=∠C=50°,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,求∠BAD 的度数.
4、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证:DF =EF
P。

相关文档
最新文档