微专题13 牛顿运动定律应用之传送带问题

合集下载

2018高三备考专题:牛顿运动定律的应用之传送带模型

2018高三备考专题:牛顿运动定律的应用之传送带模型

【高三一轮教学案】牛顿运动定律应用--传送带模型2 017.10.1一、模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c) 所示。

①②③1.①擦力2.中S3.体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

【名师点睛】1. 在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。

传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。

物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻。

v物与v传相同的时刻是运动分段的关键点,也是解题的突破口。

2. 判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键。

3.在倾斜传送带上需比较mg sin θ与F f的大小与方向,判断F f的突变情况。

4. 考虑传送带长度——判定临界之前是否滑出;物工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。

(取g=10 m/s2)(1) 若传送带静止不动,求v B;(2) 若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B点的速度v B;来源于网络来源于网络(3) 若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。

【典例2】 如图所示,水平传送带A 、B 两端相距s =3.5 m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )A. 若传送带不动,v B = 3 m/sB. 若传送带逆时针匀速转动,v B 一定等于3 m/sC. 若传送带顺时针匀速转动,v B 一定等于3 m/sD.情况,从而确定其是否受到滑动摩擦力作用。

4-5牛顿运动定律的应用之传送带模型 课件 -高一上学期物理人教版(2019)必修第一册

4-5牛顿运动定律的应用之传送带模型 课件 -高一上学期物理人教版(2019)必修第一册
解析:(1)根据牛顿第二定律可知μmg=ma, 则a=μg=6 m/s2,且vA2-vB2=2ax,故vB=2 m/s。
(2)能。传送带顺时针转动时, 工件受力不变。
追问:如果传送带足够长,或者vA 比较小,滑块到不了B端,则滑块会 如何运动?
【例1】如图所示,水平传送带两端相距x=8 m,工件与传送 带间的动摩擦因数μ=0.6,工件滑上A端时速度vA=10 m/s,设 工件到达B端时的速度为vB。(取g=10 m/s2)
(3)若传送带以v=13 m/s逆时针匀速转动,求vB及工件由A 到B所用的时间。
任务2 倾斜传送带的问题分析
情 (1)可能一直加速
景 (2)可能先加速后匀速
1

(1)可能一直加速

(2)可能先加速后匀速
2
(3)可能先以a1加速后再以a2加速
(1)可能一直加速 (2)可能一直匀速 情 (3)可能先加速后匀速 景 (4)可能先减速后匀速 3 (5)可能先以a1加速后再以a2加速 (6)可能一直减速
解析 匀加速阶段1:mgsin 3பைடு நூலகம்°+μmgcos 37°=ma1 a1=10 m/s2 t1=av1=1100 s=1 s,x1=12a1t12=5 m<l=16 m 匀加速阶段2:
作业:
1、完成:《全品》P76-77 2、订正:上节课的作业错题
(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;
解析 传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力方向沿 传送带向上,物体沿传送带向下做匀加速运动,根据牛顿第二定律有: mg(sin 37°-μcos 37°)=ma 则a=gsin 37°-μgcos 37°=2 m/s2, 根据 l=12at2 得 t=4 s.

牛顿运动定律传送带模型专题

牛顿运动定律传送带模型专题

传送带模型专题——送你去远方Type 1:水平传送带问题:物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L =5 m ,并以v 0=2 m/s 的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s 2(1)求旅行包经过多长时间到达传送带的右端;(2) 若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,g=10m/s 2,则: (1)物体由静止沿斜面下滑到斜面末端的速度大小?(2)为使物体不掉下传送带,传送带左右两端AB 间的距离L 至少为多少?(3)物体在传送带上先向左运动后向右运动,最后沿斜面上滑所能达到的最大高度h ′为多少?Type 2:倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.Attention 1:判断摩擦力的方向:当物体速度与传送带速度相等之前,物体受到摩擦力的作用,使得其速度趋向于传送带速度。

Attention 2:判断共速后是否还存在加速度:当物体速度与传送带速度相等时,判断重力沿斜面向下的分力(x G )与最大静摩擦力(m ax 静f )之间的关系,若max 静f G x >,则物体仍有沿斜面向下的加速度;若max 静f G x ≤,则物体相对于传送带静止,与传送带一起做匀速直线运动。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)

高考物理计算题复习《用牛顿运动定律分析传送带问题》(解析版)

《用牛顿运动定律分析传送带问题》一、计算题1.如图所示,光滑水平面MN左端足够远的地方有一弹性挡板(碰撞时无能量损失)P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=2m,传送带逆时针匀速转动,其速度v=2m/s.MN上放置着两个可视为质点的质量m A=4kg、m B=1kg的小物块A、B,开始时A、B都静止,A、B间压缩一锁定的轻质弹簧,其弹性势能E P=10J.现解除锁定,弹簧弹开A、B后迅速移走弹簧,g=10m/s2.求:(1)物块A、B被弹开时各自的速度大小;(2)要使两物块能在水平面MN上发生碰撞,则小物块B与传送带间的动摩擦因数至少为多大;(3)若物块A、B与传送带间的动摩擦因数都等于第(2)问中的临界值,且两物块碰撞后结合成整体.在此后物块A、B三次离开传送的运动过程中,两物块与传送带间产生的总热量.2.如图1所示,水平传送带保持以速度v0向右运动,传送带长L=10m。

t=0时刻,将质量为M=1kg的木块轻放在传送带左端,木块向右运动的速度—时间图象(v−t图象)如图2所示。

当木块刚运动到传送带最右端时,一颗质量为m=20g的子弹以大小为v1=250m/s水平向左的速度正对射入木块并穿出,子弹穿出时速度大小为v2=50m/s,以后每隔时间Δt=1s就有一颗相同的子弹射向木块。

设子弹与木块的作用时间极短,且每次射入点各不相同,木块长度比传送带长度小得多,可忽略不计,子弹穿过木块前后木块质量不变,重力加速度取g=10m/s2。

求:(1)传送带运行速度大小v0及木块与传送带间动摩擦因数μ;(2)木块在传送带上最多能被多少颗子弹击中。

3.现在传送带传送货物已被广泛地应用,如图所示为一水平传送带装置示意图。

紧绷的传送带AB始终保持恒定的速率v=1m/s沿顺时针运行,一质量为m=4kg的物体被无初速度地放在A处,传送带对物体的滑动摩擦力使物体开始做匀加速直线运动,随后物体又以与传送带相等的速率做匀速直线运动。

高中物理传送带问题(全面)课件

高中物理传送带问题(全面)课件
为动能和内能。
物体沿下坡的传送带下滑
当物体沿下坡的传送带下滑时,重力沿斜面向下的分力使物体加速下滑,摩擦力阻 碍物体下滑。
当物体速度与传送带速度相同时,物体与传送带相对静止,摩擦力消失,物体将做 匀速运动。
物体下滑过程中,若支持力不做功,则重力势能转化为动能,若支持力做负功,则 重力势能转化为动能和内能。
垂直传送带问题
物品在垂直传送带上滑动,需要考 虑物品的初速度、末速度、加速度 以及重力。
传送带问题的解题步骤
分析物体的受力情况
分析物体在传送带上所受的力 ,包括重力、支持力、摩擦力
和可能存在的其他外力。
确定物体的运动状态
根据受力情况确定物体的运动 状态,如静止、匀速直线运动 、匀加速或匀减速运动等。
根据牛顿第二定律,物体所受的合外力等于物体质量与加速 度的乘积,即$F_{合} = ma$。由于物体受到的滑动摩擦力不 变,因此加速度不变,物体将做匀加速运动。
水平传送带上物体减速
当物体在水平传送带上减速时,物体所受的摩擦力方向与传送带的速度方向相反 ,即为滑动摩擦力。由于滑动摩擦力不变,物体的加速度不变,物体将做匀减速 运动。
应用物理公式解题
根据物体的运动状态和所受的 力,应用物理公式求解问题, 如牛顿第二定律、运动学公式 等。
验证答案的合理性
最后需要验证所得答案的合理 性,确保答案符合实际情况和
物理规律。
水平传送带问题
02
水平传送带上的物体加速
物体在水平传送带上加速时,由于受到传送带的摩擦力作用 ,物体的速度会逐渐增加。此时,物体所受的摩擦力与传送 带的速度方向相同,即为滑动摩擦力。
原理
传送带通过与物品之间的摩擦力来传 输物品,这种摩擦力可以是由带子的 拉力产生的静摩擦力,也可以是由带 子与物品之间的滑动摩擦力。

牛顿运动定律应用---瞬时问题及传送带问题

专题:牛顿运动定律应用---瞬时问题及传送带问题例1、如图13-7所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A 、B ,A 、B 的质量均为2 kg ,它们处于静止状态.若突然将一个大小为10 N 、方向竖直向下的力施加在物块A 上,则此瞬间A 对B 的压力大小为(g =10 m/s 2)( )A .10 NB .20 NC .25 ND .30 N例2.如图所示,竖直平面内两根光滑细杆所构成的角AOB 被铅垂线OO′平分,∠AOB =120°.两个质量均为m 的小环通过水平轻弹簧的作用静止在A 、B 两处,A 、B 连线与OO′垂直,连线与O 点距离为h ,已知弹簧原长为3h ,劲度系数为k.现在将两个小环在竖直方向上均向下平移距离h ,释放瞬间A 环加速度为a ,则下列表达式正确的是( )A .k =mg3hB .k =mg6hC .a =gD .a =3g例3、如图14-6甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图14-5乙所示.已知v2>v1,则( )A. t2时刻,小物块离A处的距离达到最大B. t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用例4、某飞机场利用如图所示的传送带将地面上的货物运送到飞机上,传送带与地面的夹角θ=30°,传送带两端A、B的长度L=10 m,传送带以v=5 m/s的恒定速度匀速向上运动.在传送带底端A轻轻放一质量m=5 kg的货物,货物与传送带间的动摩擦因数μ=32,求货物从A端运送到B端所需的时间.(g取10 m/s2)当堂练习:1.如图所示,静止在光滑水平面上的物体A,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短的过程中,物体的速度和加速度变化的情况是()A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大2.受水平外力F作用的物体,在粗糙水平面上作直线运动,其v t 图线如图所示,则()0t秒内,外力F大小不断增大A.在1t时刻,外力F为零B.在1t t秒内,外力F大小可能不断减小C.在12t t秒内,外力F大小可能先减小后增大D.在123.“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节处,从几十米高处跳下的一种极限运动.某人做蹦极运动,所受绳子拉力F的大小随时间t变化的情况如图所示.将蹦极过程近似为在竖直方向的运动,重力加速度为g.据图可知,此人在蹦极过程中最大加速度约为( )A.g B.2g C.3g D.4g4、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B. g C.2 33g D.33g5、把一钢球系在一根弹性绳的一端,绳的另一端固定在天花板上,先把钢球托起(如图13-2所示),然后放手.若弹性绳的伸长始终在弹性限度内,关于钢球的加速度a、速度v随时间t变化的图象(如图13-3所示),下列说法正确的是( )A.甲为a-t图象B.乙为a-t图象C.丙为v-t图象 D.丁为v-t图象6.如图所示,用皮带输送机将质量为M的物块向上传送,两者间保持相对静止,则下列关于物块所受摩擦力f的说法正确的是( )A.皮带传送的速度越大,f越大B.皮带加速运动的加速度越大,f越大C.若皮带速度恒定,则物块质量越大,f越大D.f的方向一定与皮带速度方向相同7.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止,重力加速度为g.下列说法正确的是( )A.只有a>gsinθ,A才受沿传送带向上的静摩擦力作用B.只有a<gsinθ,A才受沿传送带向上的静摩擦力作用C.只有a=gsinθ,A才受沿传送带向上的静摩擦力作用D.无论a为多大,A都受沿传送带向上的静摩擦力作用专题:牛顿运动定律应用---瞬时问题及传送带问题参考答案例1、[答案]C[解析] 当AB整体处于静止状态时,弹簧的弹力等于AB整体的重力,当施加力F的瞬间,弹力在瞬间不变,故AB整体所受合力为10 N,则加速度为a=F合2m=2.5 m/s2,然后隔离A物块受力分析,由牛顿第二定律得F+mg-FN =ma,解得FN=25 N,所以A对B的压力大小也等于25 N. 例2、[答案] AC[解析] 小环静止时,受力如图所示, 弹簧的长度L =2htan60°=2 3h ,即弹簧的伸长量为3h ,则有mgsin30°=k 3hcos 30°,解得k =mg3h ,选项A 正确;在向下平移h 后,弹簧的形变量为33h ,由牛顿第二定律可知:k33hcos30°-mgsin30°=ma , 解得:a =g ,选项C 正确.例3、[答案] B[解析] 结合图乙,在0~t 1时间内,物体向左做匀减速直线运动,t 1时刻运动到最左边,A 错;在t 1~t 2时间内,物体向右做匀加速直线运动,但由于速度小于传送带的速度,物体与传播送带的相对位移仍在增大,t 2时刻相对位移最大,B 对;0~t 2时间内,物体相对传送带向左运动,一直受到向右的滑动摩擦力,f =μmg 不变,但t 2时刻以后物体相对传送带静止,摩擦力为0,CD 错.例4、[答案] 3 s[解析] 由牛顿第二定律μmgcos30°-mgsin30°=ma 解得a =2.5 m/s 2货物匀加速运动的时间t 1=va=2 s货物匀加速运动的位移x 1=12a t 21=12×2.5×22 m =5 m随后货物做匀速运动,运动位移x 2=L -x 1=5 m匀速运动时间t 2=x 2v=1 s运动的总时间t =t 1+t 2=3 s 1、答案 D解析 物体开始挤压弹簧后,由F -kx =ma 知,随x 的增大,物体A 的加速度逐渐变小,但a 、v 同向,物体A 速度仍增加;当kx >F 后,加速度反向,物体A 开始减速,此过程中物体的加速度反向增大,故A 、B 、C 均错误,D 正确.2、答案:CD【解析】本题考查牛顿运动学和t v -图像,考查学生对图像与模型的结合能力。

牛顿运动定律的应用 皮带专题


A
B
例题分析:
分析:题目的物理情景是,物体离皮带很近处轻轻 分析: 题目的物理情景是, 落到A 视初速度为零, 落到A处,视初速度为零,当物体刚放上传送带一段 时间内,与传送带之间有相对滑动,在此过程中, 时间内 , 与传送带之间有相对滑动 , 在此过程中 , 物体受到传送带的滑动摩擦力是物体做匀加速运动 的动力,物体处于相对滑动阶段。 的动力 , 物体处于相对滑动阶段 。 然后当物体与传 送带速度相等时,物体相对传送带静止而向右以速度 送带速度相等时, 做匀速运动直到B 此过程中无摩擦力的作用。 υ做匀速运动直到B端,此过程中无摩擦力的作用。
水平传送带
演示
例题分析:
如图所示为水平传送带装置, 例 1: 如图所示为水平传送带装置 , 绷紧的皮 带始终保持以υ m/s的速度移动 的速度移动, 带始终保持以 υ=1m/s 的速度移动 , 一质量 m=0 kg的物体 视为质点) 的物体( m=0.5kg的物体(视为质点)。从离皮带很近 处轻轻落到一端A 处轻轻落到一端A处。若物体与皮带间的动摩 擦因素= AB两端间的距离为L=2 两端间的距离为L= 擦因素 =0.1。AB两端间的距离为L=2.5m。试 物体从A 运动到B 求 : 物体从 A 运动到 B 的过程所需的时间为多 少?
A
B
ቤተ መጻሕፍቲ ባይዱ 总结
传送带问题的分析思路: 传送带问题的分析思路: 初始条件→相对运动→ 初始条件→相对运动→判断滑动摩擦力的大小和 方向→分析出物体受的合外力和加速度大小和方 方向→ 向→由物体速度变化再分析相对运动来判断以后 的受力及运动状态的改变。 的受力及运动状态的改变。 难点是当物体与皮带速度出现大小相等、 难点是当物体与皮带速度出现大小相等、方向相 同时,物体能否与皮带保持相对静止。 同时,物体能否与皮带保持相对静止。一般采用 假设法, 是否在0 假设法,假使能否成立关键看F静是否在0- Fmax之 间

新人教必修一4.7牛顿定律的运用传送带问题16张ppt

物体可以相对传送带静止,(皮带足够长)
可能先加速后匀速或先加速后匀速,
a由不为零变为零,
当mgsinθ ≧ μmgcosθ( μ ≦ tanθ)时:
物体不能相对传送带静止,
a一定不为零,而且方向沿斜面向下
2、由v物≠v带变为v物=v带的时刻,摩擦力发生突变
(1)μ ≧tanθ:由滑动摩擦变为静摩擦 (2)μ ≦ tanθ:滑动摩擦力的方向发生改变
由于a<a0,故v<v0,煤块继续受到滑动摩擦力的作用。设
经历时间t,煤块由静止开始加速到速度等于v0 ,有 v0=at 另解:黑色痕迹的长度
即为图中阴影部分面积
此后,煤块与传送带运动速度相同,相对于传送带不再滑
动,不再产生新的痕迹。 设在煤块的速度从0增加到v0的整个过程中,传送带和煤块 移动的距离分别为s0和s,有s0=v02/2a+v0 (t-t0) s=v02/2a
(发生在V物与V传相同的时刻) 1.滑动摩擦力消失;
2.滑动摩擦力突变为静摩擦力; 3.滑动摩擦力改变方向;
二、运动分析
1.注意参考系的选择,传送带模型中选择地面为参考系;
2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是 继续加速运动?对于倾斜传送带需要结合μ与tanθ的大小关系进行分析。
3.判断传送带长度——临界之前是否滑出?
(4)要使从A到B物体运动时间最短,对传送带的速度
有何要求?
m
(4)当物体一直以a2加速,物体从A到 A
B用时最短,物体到B时速度为v’,
B
由v’2=2a2L得,
θ
当传送带速度 v传v'8 5m/s 物体用时最短
小结3
物体在斜置匀速运行的传送带上 运动情况分析

高中物理【传送带问题】(含经典习题)

牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。

难点疑点:传送带与物体运动的牵制。

牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。

分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 7 微专题13 牛顿运动定律应用之传送带问题 【核心方法提示】 1. 涉及传送带的动力学问题分析时抓住两个时刻 (1)初始时刻,比较物块速度与传送带速度关系,判断物块所受的摩擦力性质与方向,进而判断物块开始阶段的运动性质。 (2)物块与传送带速度相同时刻,再次判断物块所受的摩擦力性质与方向,进而判断下阶段物块的运动性质。 2. 涉及传送带的动力学问题分析时注意一个问题:要判断物块速度与传送带速度相同时,物块有没有完成整个运动过程。 【微专题训练】 (多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g=10 m/s2,则煤块从A运动到B的过程中( )

A.煤块到A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 s C.划痕长度是0.5 m D.划痕长度是2 m 【解析】根据牛顿第二定律,煤块的加速度

a=μmgm=4 m/s2,

煤块运动到速度与传送带速度相等时的时间t1=v0a=1 s, 位移大小x1=12at 21=2 m<x, 此后煤块与传送带以相同的速度匀速运动直至B端,所以划痕长度即为煤块相对于传送带的位移大小,即 Δx=v0t1-x1=2 m,选项D正确,C错误;

x2=x-x1=2 m,匀速运动的时间t2=x2v0=0.5 s, 运动的总时间t=t1+t2=1.5 s,选项B正确,A错误. 【答案】BD

(2016·河南洛阳高三一检)如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀 2 / 7

速转动,在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则下图中能客观地反映小木块的速度随时间变化关系的是( )

【解析】初状态时,物体所受重力的分力与摩擦力均沿着斜面向下,且都是恒力,所以物体先沿斜面匀加速直线运动,由牛顿第二定律得,mgsin θ+μmgcos θ=ma1,解得a1=gsin θ+μgcos θ;当小木块的速度与传送带速度相等时,由μ<tan θ可知,木块继续沿传送带加速向下,但是此时摩擦力的方向沿斜面向上,再由牛顿第二定律得,mgsin θ-μmgcos θ=ma2,解得a2=gsin θ-μgcos θ,则a1>a2,由图象的斜率表示加速度可知,D正确。 【答案】D 如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是( )

A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等 B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动 C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动 D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a≥gsin θ 【解析】若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B端时的速度小于v;μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B端时速度与v相同;若μ<tan θ,则粮袋先做加速度为g(sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g(sin θ-μcos θ)的匀加速运动,到达B端时的速度大于v,选项A正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmgcos θ,根据牛顿第二定律得加速度a=mgsin θ+μmgcos θm=g(sin θ+μcos θ),选项B错误;若μ≥tan θ,粮袋从A到B可能一直是

做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C、 3 / 7

D均错误. 【答案】A

(2015·浙江宁波高三调研)如甲图所示,绷紧的水平传送带始终以恒定速率v1运行。初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。已知v2>v1,则下列说法中正确的是( )

A.t1时刻,小物块离A处的距离达到最大 B.0~t2时间内,小物块受到的摩擦力方向先向右后向左 C.t2~t3时间内,小物块与传送带相对静止,小物块不受到静摩擦力作用 D.0~t2时间内,小物块运动方向发生了改变,加速度方向也发生了改变 三角传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m,且与水平方向的夹角均为37°。现有两小物块A、B从传送带顶端都以1m/s的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为0.5,下列说法正确的是()

A.物块A先到达传送带底端 B.物块A、B同时到达传送带底端 C.传送带对物块A、B均做负功 D.物块A、B在传送带上的划痕长度不相同 【答案】BCD 某面粉厂有一条运送小麦的黑色传送带,某物理兴趣小组对传送带传送小麦进行了研究。传送小麦的倾斜传送带与水平面成夹角θ,传送带两轮之间距离为L,一小麦袋(可视为质点)与传送带间的动摩擦因数为μ(μ>0),传送带静止时,小麦袋以初速度v0从底端滑上传送带,被送到顶端,小麦袋在传送带上的运动时间为t1。传送带以速度0.5v0逆时针运动,小麦袋仍以初速度v0从底端滑上传送带,小麦袋在传送带上的运动时间为t2;传送带以速度0.5v0

顺时针运动,小麦袋仍以初速度v0从底端滑上传送带,小麦袋在传送带上的运动时间为t3,

则下列判断可能正确的是( ) 4 / 7

A.t1t3 C. t1=t2【答案】B 如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:

(1)物体从A点到达B点所需的时间; (2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少? 【解析】(1)设物体速度大于传送带速度时加速度大小为a1,由牛顿第二定律得Mgsin θ+μMgcos θ=Ma1①

设经过时间t1物体的速度与传送带速度相同,

t1=v0-va1②

通过的位移x1=v 20-v22a1③ 设物体速度小于传送带速度时物体的加速度为a2 Mgsin θ-μMgcos θ=Ma2④ 物体继续减速,设经t2速度到达传送带B点

L-x1=vt2-12a2t 22⑤ 联立得①②③④⑤式可得:t=t1+t2=2.2 s (2)若传送带的速度较大,物体沿AB上滑时所受摩擦力一直沿传送带向上,则所用时间最短,此种情况加速度一直为a2,

L=v0t′-12a2t′2 t′=1 s(t′=5 s舍去) 【答案】(1)2.2 s (2)1 s (多选)如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度vA=4 m/s,到达B端的瞬时速度设为vB.下列说法中 5 / 7

正确的是( ) A.若传送带不动,vB=3 m/s B.若传送带逆时针匀速转动,vB一定等于3 m/s C.若传送带顺时针匀速转动,vB一定等于3 m/s D.若传送带顺时针匀速转动,有可能等于3 m/s 【解析】当传送带不动时,物体从A到B做匀减速直线运动,a=μg=1 m/s2,由2μgx=v2A-v2B得,vB=3 m/s;当传送带逆时针转动时,物体相对传送带运动方向不变,物体以相同的加速度一直减速至B,vB=3 m/s;当传送带顺时针匀速转动时,传送带的速度不同,物体滑上传送带后的运动情况不同.有下面的五种可能:①匀速;②一直减速;③先减速后匀速;④一直加速;⑤先加速后匀速.所以本题正确选项为A、B、D. 【答案】ABD 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8.g=10 m/s2.求:

(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间; (2)传送带逆时针转动时,物体从顶端A滑到底端B的时间. 【解析】(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,又μ<tan 37°,故向下匀加速运动,设加速度为a,根据牛顿第二定律有 mg(sin 37°-μcos 37°)=ma 则a=gsin 37°-μgcos 37°=2 m/s2,

根据l=12at2得t=4 s. (2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得 mgsin 37°+μmgcos 37°=ma1

则有a1=mgsin 37°+μmgcos 37°m=10 m/s2 设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有 t1=va1=1010 s=1 s,x1=12a1t 21=5 m<l=16 m 当物体运动速度等于传送带转动速度的瞬间,有mgsin 37°>μmgcos 37°,则下一时刻物体相

相关文档
最新文档