2018届高考数学二轮复习板块一系统思想方法__融会贯通四数形结合直观快捷课件文
2018届高考数学文二轮复习课件:1.1 函数与方程思想 求解数学问题最实用的工具 精品

[变式训练 2] 已知首项为32的等比数列{an}不是递减数列,其前 n 项和为 Sn(n∈N*),且 S3+a3,S5+a5,S4+a4 成等差数列.
(1)求数列{an}的通项公式; (2)设 Tn=Sn-S1n(n∈N*),求数列{Tn}的最大项的值与最小项的值.
解:(1)设等比数列{an}的公比为 q, 因为 S3+a3,S5+a5,S4+a4 成等差数列, 所以 S5+a5-S3-a3=S4+a4-S5-a5, 即 4a5=a3, 于是 q2=aa53=14. 又{an}不是递减数列且 a1=32, 所以 q=-12. 故等比数列{an}的通项公式为
[思路点拨] (1)先求当 x>0 时的函数解析式,然后再对它求导, 将 x=1 代入导函数中得到切线的斜率,从而确定切线方程即可.
(2)利用函数的单调性列不等式求解.
[自主解答] (1)先利用函数奇偶性求出 x>0 时 f(x)的解析式,再 求切线方程.
因为 f(x)为偶函数,所以当 x>0 时,f(x)=f(-x)=ln x-3x,所以 f′(x)=1x-3,则 f′(1)=-2.所以 y=f(x)在点(1,-3)处的切线方程为 y+3=-2(x-1),即 y=-2x-1.
方法归纳 1.函数的思想 函数的思想,就是用运动和变化的观点,分析和研究数学中的数 量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问 题、转化问题,从而使问题获得解决的数学思想. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程 或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性 质去分析、转化问题,使问题获得解决的数学思想.
2018大二轮高考总复习文数文档:第1板块 第2单元 数学思想方法 Word版含解析

第二单元 数学思想方法高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想.一、函数与方程思想已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.【解】 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ),(列出方程) 解得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n .(2)因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n+3,令f (x )=2x +1x (x ≥1),(构造函数)则f ′(x )=2-1x2,当x ≥1时,f ′(x )>0恒成立, 所以f (x )在[1,+∞)上是增函数,故当x =1时,f (x )min =f (1)=3,即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立,则须使k ≥(b n )max =16,所以实数k 的最小值为16.本题完美体现了函数与方程思想的应用,第(1)问直接列方程求公差;第(2)问求出b n 的表达式,说明要求b n ≤k 恒成立时k 的最小值,只需求b n 的最大值,从而构造函数f (x )=2x +1x(x ≥1),利用函数求解.1.如图是函数y =A sin(ωx +φ)(其中A >0,ω>0,-π<φ<π)在一个周期内的图象,则此函数的解析式是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x +2π3 C .y =2sin ⎝⎛⎭⎫x 2-π3D .y =2sin ⎝⎛⎭⎫2x -π3 解析:依函数图象,知y 的最大值为2,所以A =2. 又T 2=5π12-⎝⎛⎭⎫-π12=π2,所以T =π,又2πω=π, 所以ω=2,所以y =2sin(2x +φ). 将⎝⎛⎭⎫-π12,2代入可得sin ⎝⎛⎭⎫-π6+φ=1,故φ-π6=π2+2k π,k ∈Z ,又-π<φ<π,所以φ=2π3.所以函数的解析式为y =2sin ⎝⎛⎭⎫2x +2π3,故选B . 答案:B2.f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. 解析:若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. 答案:4函数与方程思想在解题中的应用(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.二、数形结合思想——求解数学问题最快捷的途径设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)【解析】 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(0,+∞)上为减函数, 且g (1)=f (1)=-f (-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数, ∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1, 当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A . 【答案】 A本例利用了数形结合思想,由条件判断函数的单调性,再结合f (-1)=0可作出函数的图象,利用图象即可求出x 的取值范围.3.(2017·南昌模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]解析:设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3), ∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D .答案:D4.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是________.解析:集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),如直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是m ≥2-1.答案:[)2-1,+∞运用数形结合思想分析解决问题的3原则(1)等价性原则,在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.(2)双向性原则,在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.(3)简单性原则,找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单.三、分类与整合思想——求解数学问题最简便的技巧分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值. 【解】 ①若∠PF 2F 1=90°. 则|PF 1|2=|PF 2|2+|F 1F 2|2,又∵|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72. ②若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, ∴|PF 1|2+(6-|PF 1|)2=20, ∴|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2. 综上知,|PF 1||PF 2|=72或2.(1)本题中直角顶点的位置不定,影响边长关系,需按直角顶点不同的位置进行讨论. (2)涉及几何问题时,由于几何元素的形状、位置变化的不确定性,需要根据图形的特征进行分类讨论.5.若m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的离心率是( )A .32B . 5C .32或52D .32或 5 解析:因为m 是2和8的等比中项,所以m 2=2×8=16,所以m =±4. 当m =4时,圆锥曲线y 24+x 2=1是椭圆,其离心率e =c a =32;当m =-4时,圆锥曲线x 2-y 24=1是双曲线,其离心率e =c a =51= 5.综上知,选项D 正确. 答案:D6.已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( )A .-12B .12C .0D .-12或0解析:不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线y =kx +1与直线x =0或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.答案:D7.已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值. 解:函数f (x )的定义域为(0,+∞), 因为f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,所以函数f (x )无极值. 当a >0时,由f ′(x )=0,解得x =a .因为当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上:当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.分类与整合思想在解题中的应用(1)由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.(3)由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.四、转化与化归思想——求解数学问题最普遍的方法转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF与FQ 的长分别是p 、q ,则1p +1q等于( )A .2aB .12aC .4aD .4a【解析】 由x 2=1a y (a >0)知抛物线开口向上,故过焦点F 作一条在特殊位置的直线即平行于x 轴的直线交抛物线于P 、Q ,则|PF |=|FQ |=12a ,即1p +1q=4a .【答案】 C本题将一般问题特殊化,即简洁又准确,事半功倍,这种解法对解选择题和填空题较为有效.8.由命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的取值是( )A .(-∞,1)B .(-∞,2)C .1D .2解析:命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,可知它的否定形式“任意x ∈R ,使e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.答案:C9.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析:由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.(主次转化)对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案:⎝⎛⎭⎫-23,1 10.已知a 为正常数,若不等式1+x ≥1+x 2-x 22a 对一切非负实数x 恒成立,则a 的最大值为________.解析:原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立, 所以(t +1)2a ≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4. 答案:41.转化与化归的原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟悉的知识、经验来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)直观化原则:将比较抽象的问题化为比较直观的问题来解决.(4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解.2.转化与化归的指导思想(1)把什么问题进行转化,即化归对象. (2)化归到何处去,即化归目标. (3)如何进行化归,即化归方法.转化与化归思想是一切数学思想方法的核心.。
2018届高考数学文二轮复习全国通用课件:专题八 数学思想方法选用 第1讲 精品

即四边形 AEBF 面积的最大值为 2 2.
探究提高 解析几何中的最值是高考的热点,在圆锥曲线的 综合问题中经常出现,求解此类问题的一般思路为在深刻认 识运动变化的过程之中,抓住函数关系,将目标量表示为一 个(或者多个)变量的函数,然后借助于函数最值的探求来使问 题得以解决.
热点二 数形结合思想的应用
[微题型3] 解析几何问题的方程(函数)法
【例 1-3】 设椭圆中心在坐标原点,A(2,0),B(0,1)是它的 两个顶点,直线 y=kx(k>0)与 AB 相交于点 D,与椭圆相交 于 E、F 两点. (1)若E→D=6D→F,求 k 的值; (2)求四边形 AEBF 面积的最大值.
解 (1)依题意得椭圆的方程为x42+y2=1,直线 AB, EF 的方程分别为 x+2y=2,y=kx(k>0).如图,设 D(x0, kx0),E(x1,kx1),F(x2,kx2),其中 x1<x2,且 x1,x2 满足方程(1+4k2)x2=4,故 x2=-x1= 1+2 4k2.① 由E→D=6D→F知 x0-x1=6(x2-x0), 得 x0=17(6x2+x1)=57x2=7 11+0 4k2; 由 D 在 AB 上知 x0+2kx0=2,
[微题型2] 利用数形结合思想解不等式或求参数范围 【例 2-2】 (1)若不等式 9-x2≤k(x+2)- 2的解集为区间
[a,b],且 b-a=2,则 k=________. (2)若不等式|x-2a|≥12x+a-1 对 x∈R 恒成立,则 a 的取值 范围是________. 解析 (1)如图,分别作出直线 y=k(x+2)- 2与半 圆 y= 9-x2.由题意,知直线在半圆的上方,由 b-a=2,可知 b=3,a=1,所以直线 y=k(x+2) - 2过点(1,2 2),则 k= 2.
2018届高考数学二轮复习系统思想方法课件 转化化归 峰回路转

转化化归
峰回路转
转化与化归思想的含义
转化与化归思想方法,就是在研究和解决有关数学问题 时采用某种手段将问题通过变换使之转化,进而解决问题的 一种方法.一般总是将复杂的问题通过变换转化为简单的问 题,将难解的问题通过变换转化为易解的问题,将未解决的 问题通过变换转化为已解决的问题.
解析:设球心为O,半径为R, 则4πR2=16π,解得R=2. 又由正弦定理,得△ABC外接圆直径2r= 2 3 a =4,则r=2, = sin A sin 60° 所以△ABC外接圆的圆心即是球心,如图所示. 因为平面PAB⊥平面ABC,
所以点P在平面ABC上的射影D落在AB上, 所以PD⊥平面ABC. 易知当D为AB的中点时,PD的值最大,即所求三棱锥的 体积最大. 因为△ABC是边长为2 3的等边三角形, 所以AB=2 3,CD=3,OD=1,PD= OP2-OD2= 3, 3 又S△ABC= ×(2 3)2=3 3, 4 1 所以VPABC= ×3 3× 3=3. 3 答案:3
[应用体验]
x-y≥0, 1.已知D是由不等式组 x+y≥0
所确定的平面区域, ( )
则圆x2+y2=9在区域D内的弧长为 3π π 3π A. B. C.π D. 4 2 2 解析:图中阴影部分内的圆弧长即为所求,
易知图中两直线的斜率分别是1,-1,设α π 为两直线的夹角,所以α= ,而圆的半径 2 π 3π 是3,所以弧长是 ×3= . 2 2
答案:D
2.在△ABC中,M是BC的中点,AM=1,点P在AM上,且满 ―→ ―→ ―→ ―→ ―→ 足 PA =-2 PM ,则 PA · ( PB + PC )=________. 解析:如图所示,∵AM=1,点 P 在
2018大二轮高考总复习理数文档:第1板块 第2单元 数学

第二单元 数学思想方法高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想.一、函数与方程思想已知数列{a n }是各项均为正数的等差数列.阿凡题1083911(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.【解】 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ),(列出方程) 解得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n .(2)因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n+3,令f (x )=2x +1x (x ≥1),(构造函数)则f ′(x )=2-1x2,当x ≥1时,f ′(x )>0恒成立, 所以f (x )在[1,+∞)上是增函数,故当x =1时,f (x )min =f (1)=3,即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立,则须使k ≥(b n )max =16,所以实数k 的最小值为16.本题完美体现了函数与方程思想的应用,第(1)问直接列方程求公差;第(2)问求出b n 的表达式,说明要求b n ≤k 恒成立时k 的最小值,只需求b n 的最大值,从而构造函数f (x )=2x +1x(x ≥1),利用函数求解.1.如图是函数y =A sin(ωx +φ)(其中A >0,ω>0,-π<φ<π)在一个周期内的图象,则此函数的解析式是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x +2π3C .y =2sin ⎝⎛⎭⎫x 2-π3 D .y =2sin ⎝⎛⎭⎫2x -π3 解析:依函数图象,知y 的最大值为2,所以A =2.又T 2=5π12-⎝⎛⎭⎫-π12=π2,所以T =π,又2πω=π, 所以ω=2,所以y =2sin(2x +φ). 将⎝⎛⎭⎫-π12,2代入可得sin ⎝⎛⎭⎫-π6+φ=1, 故φ-π6=π2+2k π,k ∈Z ,又-π<φ<π,所以φ=2π3.所以函数的解析式为y =2sin ⎝⎛⎭⎫2x +2π3,故选B . 答案:B2.f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. 解析:若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. 答案:4函数与方程思想在解题中的应用(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.二、数形结合思想——求解数学问题最快捷的途径设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是阿凡题1083912( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)【解析】 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数, ∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1, 当x <0时,由f (x)>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A . 【答案】 A本例利用了数形结合思想,由条件判断函数的单调性,再结合f (-1)=0可作出函数的图象,利用图象即可求出x 的取值范围.3.(2017·南昌模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]解析:设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D .答案:D4.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是________.解析:集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),如直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是m ≥2-1.答案:[)2-1,+∞运用数形结合思想分析解决问题的3原则(1)等价性原则,在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.(2)双向性原则,在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.(3)简单性原则,找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单.三、分类与整合思想——求解数学问题最简便的技巧分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.阿凡题1083913 【解】 ①若∠PF 2F 1=90°. 则|PF 1|2=|PF 2|2+|F 1F 2|2,又∵|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72. ②若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, ∴|PF 1|2+(6-|PF 1|)2=20, ∴|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2. 综上知,|PF 1||PF 2|=72或2.(1)本题中直角顶点的位置不定,影响边长关系,需按直角顶点不同的位置进行讨论. (2)涉及几何问题时,由于几何元素的形状、位置变化的不确定性,需要根据图形的特征进行分类讨论.5.若m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的离心率是( )A .32 B . 5 C .32或52D .32或 5 解析:因为m 是2和8的等比中项,所以m 2=2×8=16,所以m =±4. 当m =4时,圆锥曲线y 24+x 2=1是椭圆,其离心率e =c a =32;当m =-4时,圆锥曲线x 2-y 24=1是双曲线,其离心率e =c a =51=5.综上知,选项D 正确. 答案:D6.已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( )A .-12B .12C .0D .-12或0解析:不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示,由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线y =kx +1与直线x =0或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.答案:D7.已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值. 解:函数f (x )的定义域为(0,+∞), 因为f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,所以函数f (x )无极值. 当a >0时,由f ′(x )=0,解得x =a .因为当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x ) >0,所以f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上:当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.分类与整合思想在解题中的应用(1)由数学概念引起的分类.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论.有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.(3)由数学运算和字母参数变化引起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.四、转化与化归思想——求解数学问题最普遍的方法转化与化归思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF与FQ 的长分别是p 、q ,则1p +1q等于阿凡题1083915( )A .2aB .12aC .4aD .4a【解析】 由x 2=1a y (a >0)知抛物线开口向上,故过焦点F 作一条在特殊位置的直线即平行于x 轴的直线交抛物线于P 、Q ,则|PF |=|FQ |=12a ,即1p +1q=4a .【答案】 C本题将一般问题特殊化,即简洁又准确,事半功倍,这种解法对解选择题和填空题较为有效.8.由命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的取值是( )A .(-∞,1)B .(-∞,2)C .1D .2解析:命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,可知它的否定形式“任意x ∈R ,使e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.答案:C9.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析:由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.(主次转化)对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案:⎝⎛⎭⎫-23,1 10.已知a 为正常数,若不等式1+x ≥1+x 2-x 22a 对一切非负实数x 恒成立,则a 的最大值为________.解析:原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立, 所以(t +1)2a ≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4. 答案:41.转化与化归的原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟悉的知识、经验来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)直观化原则:将比较抽象的问题化为比较直观的问题来解决.(4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解.2.转化与化归的指导思想(1)把什么问题进行转化,即化归对象. (2)化归到何处去,即化归目标. (3)如何进行化归,即化归方法.转化与化归思想是一切数学思想方法的核心.。
2018届高考数学二轮复习第一部分论方法1_4转化与化归思想课件理

…【回顾】… 所谓直接转化就是一步到位,到位之后就可以用公式、定理标全国Ⅲ)函数f(x)= sin(x+ )+cos(x- )的 5 3 6 最大值为( 6 A. 5 3 C.5 ) B.1 1 D.5
答案 A π π π π 解析 因为cos(x- )=cos[(x+ )- ]=sin(x+ ),所 6 3 2 3 π 6 6 以f(x)= 5sin(x+ 3 ),于是f(x)的最大值为 5,故选A.
1 B.(2,1) 1 D.(0, ) 2
答案 A 解析 椭圆上存在点P使∠F1PF2为钝角 ⇔以原点O为圆心,以c为半径的圆与椭圆有 四个不同的交点⇔b<c,如图,由b<c,得a2 c -c <c ,即a <2c ,解得e= > a
2 2 2 2
2 ,又 2
2 0<e<1,故椭圆C的离心率的取值范围是( 2 ,1),选A.
…【回顾】… 换元法就是转化、化归的一种好方法,一种行之有效的工 具.常见的有三角换元和代数换元.
4.(1)若关于 x 的方程 9x+(4+a)· 3x+4=0 有解,则实数 a 的取值范围是________.
答案 解析 (-∞,-8] 设 t=3x,则原命题等价于关于 t 的方程
t2+(4+a)t+4=0 有正解,分离变量 a 得 4 4 a+4=-(t+ ),∵t>0,∴-(t+ )≤-4. t t ∴a≤-8,即实数 a 的取值范围是(-∞,-8].
2
由③④可得所求实数a的取值范围是 1- 10 - 2≤a≤ . 2
…【回顾】… 不会等价转化是很多同学的大问题,不明白题干中的信息 的含义,不能转化为自己熟悉的语言,是无法解题的.
x2 y2 2.(2017· 广州综合训练一)已知F1,F2分别是椭圆C: a2 + b2 =1(a>b>0)的左、右焦点,若椭圆C上存在点P使∠F1PF2为钝 角,则椭圆C的离心率的取值范围是( 2 A.( 2 ,1) 2 C.(0, ) 2 )
2018高考数学理二轮复习课件:2-3-2 数形结合思想 精品

(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形 的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地 说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目 的,如应用曲线的方程来精确地阐明曲线的几何性质.
类型三
利用数形结合求最值 LEIXING
0≤x≤ 3
例3
若点 P(x,y)是不等式组y≤3
x≤ 3y
恒成立,则实数 a 的取值范围是_[3_,__+__∞__).
表示的平面区域 Ω 内的一动点,且不等式 2x-y+a≥0
解析 将不等式 2x-y+a≥0 化为 a≥y-2x,只需求出 y-2x 的最大值即可.令 z=y-2x,作出
利用数形结合求方程解应注意两点
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨 论方程的解一定要注意图象的准确性、全面性,否则会得到错解.
(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去 数形结合.
模拟演练 1 已知函数 f(x)满足 f(x)+1=fx+1 1,当 x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程 f(x)
例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖 掘利用图形的几何特征,将会使得复杂的问题简单化.
高考数学二轮复习第二部分板块一系统思想方法融会贯通三函数方程稳妥实用课件文

函数与方程思想在解析几何中的应用
[典例]
已知椭圆C:
x2 a2
+
y2 b2
=
1(a>b>0)的右焦点为F(1,0),如图所
示,设左顶点为A,上顶点为B,且
―O→F ·―F→B =―A→B ·―F .
(1)求椭圆C的方程;
(2)若过F的直线l交椭圆于M,N两点,试确定
―→ FM
―→ ·FN
的取值范围.
(2)已知a,b,c为平面上三个向量,又a,b是两个相互 垂直的单位向量,向量c满足|c|=3,c·a=2,c·b=1,则对于 任意实数x,y,|c-xa-yb|的最小值为________.
[解析] 由题意可知|a|=|b|=1,a·b=0, 又|c|=3,c·a=2,c·b=1, 所以|c-xa-yb|2=|c|2+x2|a|2+y2|b|2-2xc·a-2yc·b+2xya·b =9+x2+y2-4x-2y =(x-2)2+(y-1)2+4, 当且仅当x=2,y=1时,(|c-xa-yb|2)min=4, 所以|c-xa-yb|的最小值为2. [答案] 2
根据函数y=ex与y=
1 x
的图象可知两函数图象交点x0∈(0,1),
因此函数f(x)在(0,1)上不是单调函数,故A、B选项不正确.
设g(x)=exx(0<x<1),则g′(x)=exxx-2 1. 又0<x<1,∴g′(x)<0. ∴函数g(x)在(0,1)上是减函数. 又0<x1<x2<1,∴g(x1)>g(x2), ∴x2ex1>x1ex2,故选C. 答案:C
15 ,b-c=2,cos
A=-
1 4
,则a=