辽宁本溪市七年级数学下册第五章《相交线与平行线》经典题(含答案)
七年级初一数学 数学第五章 相交线与平行线试题含答案

七年级初一数学数学第五章相交线与平行线试题含答案一、选择题1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3 D.∠A+∠ADF=180°2.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直3.如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,∠=∠=︒,则CAF∠=()ACB EDF//AB CD,90A.10︒B.15︒C.20︒D.25︒4.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.265.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个6.如图,∠1的同位角是()A .∠2B .∠3C .∠4D .∠5 7.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个8.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.9.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°10.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°二、填空题11.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.12.如图,已知AD//BC,BD平分∠ABC,∠A=112°,且BD⊥CD,则∠ADC=_____.13.如图,已知A1B//A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).14.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.15.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F,G,D,C在同一直线上,点G和点D 重合.现将△EFG沿射线FC向右平移,当点F和点C重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm2,则△EFG 向右平移了____cm.16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.17.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.18.如图,长方形ABCD的周长为30,则图中虚线部分总长为____________.19.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.20.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=62°,则∠2=______.三、解答题21.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N 为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P 点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).22.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.23.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.26.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A .∠A =∠BDF ,由同位角相等,两直线平行,可判断DF ∥AC ;B .∠2=∠4,不能判断DF ∥AC ;C .∠1=∠3由内错角相等,两直线平行,可判断DF ∥AC ;D .∠A +∠ADF =180°,由同旁内角互补,两直线平行,可判断DF ∥AC ;故选:B .【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A 、相等的角不一定是对顶角,故此选项错误;B 、平行于同一条直线的两条直线互相平行,正确;C 、两直线平行,同旁内角互补,故此选项错误;D 、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B .【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.3.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
最新七年级下册数学第五章《相交线与平行线》试题含答案

2022年七年级下册数学第五单元试题姓名:学号:分数:一、选择题(每题3分,共30分)1.下列物体运动中平移的是()A.打乒乓球的运动B.手表上指针的运动C.汽车在笔直公路上运动D.车轮的滚动2.如图,直线a,b相交于点O,∠1=60°,则∠2=()A.120°B.60°C.30°D.15°3.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定4.如图所示,下列判断正确的是()A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角C.图(3)中∠1和∠2是一组邻补角D.图(4)中∠1和∠2是一组邻补角5.点P为直线m外一点,点P到直线m上的点A的距离为PA=3cm,则点P到直线m的距离为()A.3cm B.小于3cm C.大于3cm D.不大于3cm6.已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是()A.相交B.平行C.垂直D.平行或相交7.如图,若AD∥BC,则下列结论正确的是()A.∠1=∠3 B.∠2=∠4 C.∠1=∠2 D.∠2=∠38.将△ABC沿BC方向平移3个单位得△DEF.若△ABC的周长等于8,则四边形ABFD的周长为()A.14 B.12 C.10 D.89.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°10.如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为()A.108°B.114°C.118°D.122°二、填空题(每题3分,共24分)11.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段BN的长度,这样测量的依据是____________.12.如图,将一条两边沿互相平行的纸带折叠,若∠1=50°,则∠α=.13.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为.(填写序号)14.如图,小聪把一块含有60°角的直角三角板的两个顶点分别放在长方形的一组对边上,并测得∠1=26°,则∠2的度数是.15.若∠A与∠B的两边分别平行,且∠A比∠B的5倍少20°,则∠A的度数为.16.已知,如图,AB∥CD,∠ABE=40°,若CF平分∠ECD,且满足CF∥BE,则∠ECD的度数为.17.如图,两个边长为5的正方形拼合成一个长方形,则图中阴影部分的面积是__________.18.如图,AD∥CE,∠ABC=100°,则∠2-∠1的度数是__________.三、解答题(共46分)19.(7分如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.23.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.24.(8分)如图,AB∥CD,直线EF交直线AB、CD于点M、N,NP平分∠ENC交直线AB于点P,∠EMB=76°.(1)求∠PNC的度数;(2)若PQ将∠APN分成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10答案 B B D C A B C A D D二、填空题:11.垂线段最短12.解:如图所示:∵纸片两边平行,∴∠2=∠1=50°,由折叠的性质得:2∠α+∠2=180°,∴2∠α+50°=180°,解得:∠α=65°.故答案为:65°.13.解:①∵∠3=∠4,∴AD∥BC;②∵∠1=∠2,∴AB∥CD;③∵EF∥CD,∴∠D=∠3,∵∠D=∠4,∴∠3=∠4,∴AD∥BC;④∵∠3+∠5=180°,∠4+∠5=180°,∴∠3=∠4,∴AD∥BC,故答案为:①③④14.解:∵直尺的两边互相平行,∠1=26°,∴∠3=∠1=26°,∴∠2=60°﹣∠3=60°﹣26°=34°.故答案为34°.15.解:设∠B=x,则∠A=5x﹣20°,由题意x=5x﹣20°,或x+5x﹣20°=180°,解得x=5°或()°,∴∠A=5°或()°故答案为5°或()°.16.解:如图,延长CE交AB于G,∵AB∥CD,∴∠AGE=∠ECD,∠BEG=∠FCE,∵CF平分∠ECD,∴可设∠DCF=∠GCF=α,∴∠AGE=∠DCG=2α,∠BEG=∠FCG=α,∵∠AGE是△BEG的外角,∴∠AGE=∠BEG+∠B,即2α=α+40°,∴α=40°,∴∠ECD=80°,故答案为:80°.17. 2518.18. 80°三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)AB∥CD.理由如下:如图1,延长EG交CD于点H.∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°.∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD.(2)∠BEG+12∠MFG=90°.理由如下:如图2,延长EG交CD于点H.∵AB∥CD,∴∠BEG=∠GHF.∵EG⊥FG,∴∠GHF+∠GFH=90°.∵∠MFG=2∠DFG,∴∠BEG+12∠MFG=90°.(3)∠BEG+1n∠MFG=90°.理由如下:∵AB∥CD,∴∠BEG=∠GHF.∵EG⊥FG,∴∠GHF+∠GFH=90°.∵∠MFG=n∠DFG,∴∠BEG+1n∠MFG=90°.23.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.24.解:(1)∵AB∥CD,∴∠END=∠EMB=76°,∴∠ENC=180°﹣∠END=104°,∵NP平分∠ENC,∴∠PNC=ENC=52°;(2)∵∠APQ:∠QPN=1:3,∴∠QPN=3∠APQ,∵AB∥CD,∴∠MPN=∠PNC=52°,∴∠APN=180°﹣∠MPN=128°,∴∠APQ+∠QPN=128°,∴4∠APQ=128°,∴∠APQ=32°,∴∠PQD=∠APQ=32°.则∠PQD的度数为32°.26.解:(1)∠GEF=∠BFE+180°﹣∠CGE,证明如下:如图1,过E作EH∥AB,∵AB∥CD∴AB∥CD∥EH,∴∠HEF=∠BFE,∠HEG+∠CGE=180°,∴∠HEF+∠HEG=∠BFE+180°﹣∠CGE,∴∠GEF=∠BFE+180°﹣∠CGE;(2)∠GPQ+∠GEF=90°,理由是:∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,△PMF中,∠GPQ=∠GMF﹣∠PFM=∠CGP﹣∠BFQ,∴∠GPQ+∠GEF=∠CGE﹣∠BFE+∠GEF=×180°=90°.故答案为:∠GPQ+∠GEF=90°。
人教版初中七年级数学下册第五单元《相交线与平行线》经典习题(含答案解析)

一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .3 3.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 4.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x = 5.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .16.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .1207.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3.A .38B .34C .28D .448.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43-9.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm 10.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 11.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2 12.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 13.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n 14.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元15.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x 吨,则下列所列方程正确的是( )A .x +23x −13=57B .x +23x +13=57C .x +23x =57+13D .3x +2x =57−13二、填空题16.如果3m -与21m +互为相反数,则m =________.17.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;18.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.19.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________. 20.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.21.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.22.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 23.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.24.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.25.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 三、解答题27.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a= ,若居民乙用电200千瓦时,交电费 元.(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?28.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.29.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?30.解方程:2x13+=x24+-1.。
人教版七年级数学下册第五章 相交线与平行线练习(含答案)

第五章 相交线与平行线一、单选题1.如图所示,两条直线a b ,相交于点O ,若160∠=︒,则2∠=( )A .120︒B .60︒C .30°D .15︒2.如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是( )A .PAB .PBC .PCD .PD3.下列图形中,1∠和2∠不是同位角的是( ).A .B .C .D . 4.下列说法正确的是( )①平面内,不相交的两条直线是平行线;①平面内,过一点有且只有一条直线与已知直线垂直;①平面内,过一点有且只有一条直线与已知直线平行;①相等的角是对顶角;①P是直线a外一点,A、B、C分别是a上的三点,P A=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个5.如图所示:若m①n,①1=105°,则①2=()A.55°B.60°C.65°D.75°6.如图所示,下列推理及括号中所注明的推理依据错误的是()A.①①1=①3,①AB①CD(内错角相等,两直线平行)B.①AB①CD,①①1=①3(两直线平行,内错角相等)C.①AD①BC,①①BAD+①ABC=180°(两直线平行,同旁内角互补)D.①①DAM=①CBM,①AB①CD(两直线平行,同位角相等)7.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则①1的度数是()A.45°B.60°C.75°D.82.5°8.已知l1①l2,一个含有30°角的三角尺按照如图所示位置摆放,则①1+①2的度数为()A.90°B.120°C.150°D.180°9.下列语句不是命题的是()A.两点之间线段最短B.不平行的两条直线有一个交点C.同位角相等D.如果x与y互为相反数,那么x与y的和等于0吗10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格二、填空题11.在同一平面内,直线AB与直线CD相交于点O,①BOC:①BOD=4:5,射线OE①CD,则①BOE的度数为__.12.如图,直线a、b都与直线c相交,给出下列条件:①①1=①2;①①3=①6;①①1=①8;①①5+①8=180°,其中能判断a①b 的条件是:____________(把你认为正确的序号填在空格内).13.如图,将一张长方形纸条沿某条直线折叠,若1116︒∠=,则①2等于________.14.如图,在一块长为20m ,为10m 的长方形草地上,修建两条宽为2m 的长方形小路,则这块草地的绿地面积(图中空白部分)为___m 2.三、解答题15.如图所示,直线AB ,EF 交于点O ,OD 平分BOF ∠,CO EF ⊥于点O ,70AOE ∠=︒,求COD ∠的度数16.如图所示,直线AB 和CD 相交于点O ,OA 是①EOC 的角平分线.(1)若①EOC =80°,求①BOD 的度数;(2)①EOC :①EOD =2:3,求①BOD 的度数.17.如图,①1=30°,①B =60°,AB ①AC .(1)①DAB +①B 等于多少度?(2)AD 与BC 平行吗?AB 与CD 平行吗?18.如图,直线AB 与CD 相交于点O ,直线AB 与EF 相交于点H ,//EF CD ,OG CD ⊥于点O ,40BOG ∠=︒,求AOC ∠与AHE ∠的度数.19.如图,将三角形ABC 水平向右平移得到三角形DEF ,A ,D 两点的距离为1,CE =2,①A=70°.根据题意完成下列各题:(1)AC和DF的数量关系为;AC和DF的位置关系为;(2)①1= 度;(3)BF= .答案1.B 2.B 3.C 4.B5.D6.D7.C8.A9.D10.C11.170°或10°.12.①①①13.58°14.144.15.55°16.(1)40°;(2)①BOD=36°17.解:(1)180°;(2)无法确定AB与CD的关系. 18.50°;13019.(1)AC=DF,AC①DF;(2)110;(3)4。
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)

七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
(最新)数学七年级下册《第5章 相交线与平行线》经典题及单元检测试题(含答案)

第五章相交线与平行线单元检测试题一、选择题1.已知:如图,直线AB、CD、EF都过点O,∠AOC=90°,则∠1与∠2一定成立的关系是( )A.互余B.互补C.相等D.不确定2.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.30°B.32°C.42°D.58°3.画一条线段的垂线,垂足在( )A.线段上B.线段的端点C.线段的延长线上D.以上都有可能4.下列说法中正确的有( )①对顶角的角平分线成一条直线;②相邻二角的角平分线互相垂直;③同旁内角的角平分线互相垂直;④邻补角的角平分线互相垂直.A. 1个B. 2个C. 3个D. 4个5.如果α与β是邻补角,且α>β,那么β的余角是( )A.(α+β)B.αC.(α-β)D.不能确定6.如图,在一张透明的纸上画一条直线l,在l外任取一点Q,并折出过点Q且与l垂直的直线,能折出这样的直线的条数为( )A. 0条B. 1条C. 2条D.无数条7.如图,有下列命题:①若∠1=∠2,则∠D=∠3;②若∠C=∠D,则∠3=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠F=∠A,其中正确的个数为( )A. 1B. 2C. 3D. 48.下列说法中正确的是( )A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离9.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格10.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是( )A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°二、填空题11.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A的度数为130°,第二次拐角∠B的度数为______.12.如图,工程队铺设一公路,他们从点A处铺设到点B处时,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是________.13.平面内n条直线,每两条直线都相交,最少有______个交点,最多有______个交点.14.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是____________.15.如图,直线AB、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠BOC、∠BOF的度数.解:∵OE⊥CD( ),∴∠DOE=_____°(),∵∠1=50°(),∴∠AOD=∠________-∠________=________°,∵∠BOC与∠AOD为_______角(____________),∴∠BOC=∠________=∠_________°(_____________),∵OD平分∠AOF(______________),且∠AOD=____________°(______________),∴∠AOF=2∠__________=________°(),∵∠BOF+∠AOF=______°( ),∴∠BOF=______°-∠AOF=_________°.16.如图,直角三角形ABC中,∠C=90°,若AC=3 cm,BC=4 cm,AB=5 cm,则点C到AB的最短距离等于_________ cm.17.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B.过点B作BD⊥AM于点D,则图中∠ABD和∠C的关系是______________.18.观察图中角的位置关系,∠1和∠2是______角,∠3和∠1是______角,∠1和∠4是______角,∠3和∠4是______角,∠3和∠5是______角.19.如图,直线AB、CD相交于点O,OE平分∠AOC,∠BOC-∠BOD=30°,则∠COE 的度数是______.20.在同一平面内,两条直线有两种位置关系,它们是__________.三、解答题21.如图,是一座建筑纪念物的底座,小明想测量在地面上形成的∠AOB的度数,但一时没有办法,你能帮助他吗?动动你的脑筋.22.已知AB∥C D.(1)如图①,若∠ABE=30°,∠BEC=148°,求∠ECD的度数;(2)如图②,若CF∥EB,CF平分∠ECD,试探究∠ECD与∠ABE之间的数量关系,并证明.23.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.24.如图,直线AB,CD相交于点O,∠AOC=60°,∠1∶∠2=1∶2.(1)求∠2的度数;(2)若∠2与∠MOE互余,求∠MOB的度数.25.)(1)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.(2)说出(1)的推理中运用了哪两个互逆的真命题.26.如图,在图a、图b、图c中都有直线m∥n,(1)在图a中,∠2和∠1、∠3之间的数量关系是__________________.(2)猜想:在图b中,∠1、∠2、∠3、∠4之间的数量关系是____________________.(3)猜想:在图c中,∠2、∠4和∠1、∠3、∠5的数量关系式是____________________.27.如图,AB∥DE,C为BD上一点,∠A=∠BCA,∠E=∠ECD,求证:CE⊥CA.28.如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,问这块红地毯至少要多大?答案解析1.【答案】A【解析】∵∠BOD=∠AOC=90°,∴∠1+∠2=180°-90°=90°,∴∠1与∠2互余.故选A.2.【答案】B【解析】如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°-∠3=32°,∵a∥b,AB∥b,∴AB∥a,∴∠2=∠4=32°,故选B.3.【答案】D【解析】由垂线的定义可知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.4.【答案】B【解析】①因为对顶角相等,其角平分线所分得的角也相等,可构成新的对顶角,故对顶角的角平分线成一条直线,正确;②相邻二角互补时角平分线互相垂直,其它情况下就不垂直,错误;③同旁内角互补时角平分线互相垂直,其它情况下就不垂直,错误;④由于邻补角互补,又有位置关系,故邻补角的角平分线互相垂直,正确.故选B.5.【答案】C【解析】∵α与β是邻补角,∴α+β=180°,∴(α+β)=90°,∴β的余角是90°-β=(α+β)-β=(α-β),故选C.6.【答案】B【解析】根据垂线的性质,这样的直线只能作一条.故选B.7.【答案】B【解析】①∵∠1=∠2,∠1=∠4,∴∠2=∠4,∴CE∥DB,∴∠D=∠3,故命题①正确;②若∠C=∠D,不能得出∠3=∠C,故命题②错误;③若∠A=∠F,则AC∥DF,不能得出∠1=∠2,故命题③错误;④若∠1=∠2,由①可得∠D=∠3,∵∠C=∠D,∴∠3=∠C,∴DF∥AC,∴∠F=∠A,故命题④正确.故选B.8.【答案】C【解析】A.在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B.一条直线的垂线有无数条,故B错误;C.根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D.点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.9.【答案】A【解析】由图可知,正确的平移方式向右平移4格,再向下平移4格.故选A. 10.【答案】C【解析】A.∠AOD=90°可以判定两直线垂直,故此选项错误;B.∠AOC和∠BOC是邻补角,邻补角相等和又是180°,所以可以得到∠COB=90°,能判定垂直,故此选项错误;C.∠BOC和∠BOD是邻补角,邻补角相等和是180°,不能判定垂直,故此选项正确;D.∠AOC和∠BOD是对顶角,对顶角相等,和又是180°,所以可得到∠AOC=90°,故此选项错误.故选C.11.【答案】130°【解析】∵一条公路两次转弯后,和原来的方向相同,∴∠A=∠B,又∵∠A的度数为130°,∴第二次拐角∠B的度数为130°,故答案为130°. 12.【答案】80°【解析】过C作MN∥AB,∵AB∥DE,∴MN∥DE,∴∠2+∠D=180°,∵∠CDE=140°,∴∠2=40°,∵MN∥AB,∴∠1+∠B=180°,∵∠ABC=120°,∴∠1=60°,∴∠BCD=180°-60°-40°=80°,故答案为80°.13.【答案】1【解析】2条直线相交最多有1个交点;3条直线相交最多有1+2个交点;4条直线相交最多有1+2+3个交点;5条直线相交最多有1+2+3+4个交点;6条直线相交最多有1+2+3+4+5个交点;…n条直线相交最多有1+2+3+4+5+…+(n-1)=个交点;n条直线相交与一点,最少有1个交点,故答案为1,.14.【答案】垂线段最短【解析】如图所示:过点A作AD⊥BC于点D,由“从直线外一点到这条直线所作的所有线段中,垂线段最短”可知小路AD是所用材料最少的.故答案是:垂线段最短.15.【答案】已知90 垂直的定义已知DOE 1 40 对顶已知AOD40 对顶角相等已知40 已求AOD80 角平分线定义180 邻补角定义180 100【解析】∵OE⊥CD(已知),∴∠DOE=90°(垂直的定义),∵∠1=50°(已知),∴∠AOD=∠DOE-∠1=40°,∵∠BOC与∠AOD为对顶角(已知),∴∠BOC=∠AOD=40°(对顶角相等).∵OD平分∠AOF(已知),且∠AOD=40°(已求),∴∠AOF=2∠AOD=80°(角平分线定义).∵∠BOF+∠AOF=180°(邻补角定义),∴∠BOF=180°-∠AOF=100°.故答案为已知,90,垂直的定义,已知,DOE,1,40,对顶,已知,AOD,40,对顶角相等,已知,40,已求,AOD,80,角平分线定义,180,邻补角定义,180,100.16.【答案】2.4【解析】当CD⊥AB时,点C到AB的最短距离,△ACB的面积为3×4÷2=6,CD×AB÷2=6,CD=2.4.故答案为2.4.17.【答案】∠ABD=∠C【解析】如图,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C.故答案为∠ABD=∠C.18.【答案】邻补对顶同位内错同旁内角【解析】∵∠1+∠2=180°,∴∠1和∠2是邻补角,∠3和∠1是对顶角,∠1和∠4是同位角,∠3和∠4是内错角,∠3和∠5是同旁内角;故答案为邻补,对顶,同位,内错,同旁内角.19.【答案】37.5°【解析】如图,∵∠BOC-∠BOD=30°,∠BOC+∠BOD=180°,∴∠BOD=75°,∴∠AOC=∠BOD=75°,又∵OE平分∠AOC,∴∠COE=∠AOC=37.5°.故答案是37.5°.20.【答案】相交或平行【解析】在同一平面内,两条直线有两种位置关系,即相交或平行,故答案为:相交或平行.21.【答案】如图,延长AO,先测量出∠BOC的度数,然后根据∠AOB与∠BOC是邻补角即可求解,∠AOB=180°-∠BOC.【解析】延长∠AOB的一边,然后根据邻补角的和等于180°即可求解.22.【答案】(1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE=∠BEF,∠FEC+∠ECD=180°,∵∠ABE=30°,∠BEC=148°,∴∠FEC=118°,∴∠ECD=180°-118°=62°;(2)如图②,延长BE和DC相交于点G,∵AB∥CD,∴∠ABE=∠G,∵BE∥CF,∴∠GEC=∠ECF,∵∠ECD=∠GEC+∠G,∴∠ECD=∠ECF+∠ABE,∵CF平分∠ECD,∴∠ECF=∠DCF,∴∠ECD=∠ECD+∠ABE,∴∠ABE=∠ECD.【解析】(1)过点E作EF∥AB,根据平行线的性质即可得到∠ECD的度数;(2)延长BE和DC相交于点G,利用平行线的性质、三角形的外角以及角平分线的性质即可得到答案.23.【答案】延长MF交CD于点H,∵∠1=90°+∠CHF,∠1=140°,∠2=50°,∴∠CHF=140°-90°=50°,∴∠CHF=∠2,∴AB∥CD.【解析】延长MF交CD于点H,利用平行线的判定证明.24.【答案】(1)∵∠DOB=∠AOC=60°,∴∠1+∠2=60°,又∠1∶∠2=1∶2.∴∠1=20°,∠2=40°;(2)∵∠2与∠MOE互余,∠2=40°,∴∠MOE=50°,又∠1=20°,∴∠MOB=30°.【解析】(1)根据对顶角相等得到∠DOB=60°,根据已知求出∠2的度数;(2)根据余角的概念求出∠MOE的度数,计算即可.25.【答案】(1)∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=∠ABC,∠2=∠BCD(角平分线的定义),∵BE∥CF(已知),∴∠1=∠2(两直线平行,内错角相等),∴∠ABC=∠BCD(等量代换),∴∠ABC=∠BCD(等式的性质),∴AB∥CD(内错角相等,两直线平行).(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.【解析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC =∠BCD,再根据平行线的判定,即可得出AB∥CD;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.26.【答案】(1)如图,过∠2的顶点作m∥a,∵m∥n,∴a∥m∥n,∴∠4=∠1,∠5=∠3,∵∠2=∠4+∠5,∴∠2=∠1+∠3;(2)猜想:∠2+∠4=∠1+∠3;(3)∠2+∠4=∠1+∠3+180°-∠5.【解析】(1)过∠2的顶点作m∥a,根据平行公理可得a∥n,再根据两直线平行,内错角相等可得∠4=∠1,∠5=∠3,然后根据∠2=∠4+∠5计算即可得解;(2)(3)根据顶点在左侧的角的度数之和等于顶点在右侧的角的度数之和解答.27.【答案】证明∵AB∥DE,∴∠B+∠D=180°,∵∠A=∠BCA,∠E=∠ECD,∴∠B=180°-2∠BCA,∠D=180°-2∠ECD,∴(180°-2∠BCA)+(180°-2∠ECD)=180°,∴∠BCA+∠ECD=90°,∴∠ACE=90°,∴CE⊥CA.【解析】首先根据AB∥DE,判断出∠B+∠D=180°;然后判断出∠BCA+∠ECD =90°,即可推得CE⊥CA.28.【答案】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为10米,8米,故地毯的长度为8+10=18(米),则这块红地毯面积为18×5=90(m2).【解析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积即可.。
七年级数学下册第五章相交线与平行线名师选题(带答案)

七年级数学下册第五章相交线与平行线名师选题单选题1、下列四个图形中,可以由图1通过平移得到的是()A.B.C.D.答案:D分析:平移不改变图形的形状和大小.根据原图形可知平移后的图形飞机头向上,即可解题.考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.小提示:本题考查了图形的平移,牢固掌握平移的性质即可解题.2、如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°答案:B分析:已知OE⊥CD,∠BOE=40°,根据邻补角定义即可求出∠AOC的度数.∵OE⊥CD∴∠COE=90°∵∠BOE=40°∴∠AOC=180°−∠COE−∠EOB=180°−90°−40°=50°故选:B小提示:本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.3、如图,两个全等的直角三角形重叠在一起,将Rt△ABC沿着BC的方向平移到Rt△DEF的位置,已知AB=5,DO=2,平移距离为3,则阴影部分的面积为()A.12B.24C.21D.20.5答案:A分析:根据平移的性质得到S△ABC=S△DEF,则利用S阴影部分+S△OEC=S梯形ABEO+S△OEC得到S阴影部分=SABEO,然后根据梯形的面积公式求解.梯形∵△ABC沿BCC的方向平移到△DEF的位置,∴S△ABC=S△DEF,∴S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=1×(5-2+5)×3=12.2故选A.小提示:本题考查了平移的性质,解题关键是熟记平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.4、用“垂线段最短”来解释的现象是()A.B.C.D.答案:A分析:根据点到直线的距离,直线的性质,线段的性质,可得答案.解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选: A.小提示:本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.5、如图,点A,O,B在一条直线上,OE⊥AB于点O,如果∠1与∠2互余,那么图中相等的角有()A.5对B.4对C.3对D.2对答案:A分析:根据互为余角的两个角的和等于90°和等角的余角相等解答.解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠AOC+∠2=90°,∠1+∠BOD=90°,∵∠1与∠2互余,∴∠1+∠2=90°,∴∠1=∠AOC,∠2=∠BOD,∠AOE=∠COD,∠BOE=∠COD,∴图中相等的角有5对.故选:A.小提示:本题考查了余角的定义和性质,熟记概念并准确识图是解题的关键,属中考常考题.6、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°答案:A分析:本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.解:由图可知:AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α=1∠GED=77°2故选:A.小提示:本题主要考察的是根据平行得性质进行角度的转化.7、下列四幅图中,∠1和∠2是对顶角的为()A.B.C.D.答案:B分析:根据对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”逐项判断即可.由对顶角的定义可知,选项B 中的∠1与∠2是对顶角,故选:B .小提示:本题考查顶角的定义.理解对顶角的定义是解题关键.8、如图,将△ABC 沿BC 边上的中线AD 平移到△A 'B 'C '的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA '=1,则A 'D 等于( )A .2B .3C .23D .32 答案:A分析:由S △ABC =9、S △A ′EF =4且AD 为BC 边的中线知S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92,根据△DA ′E ∽△DAB 知(A′D AD )2=S △A′DE S △ABD ,据此求解可得.解:如图,∵S △ABC =9、S △A ′EF =4,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92,∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB ,则(A′DAD )2=S△A′DES△ABD,即(A′DA′D+1)2=292,解得A′D=2或A′D=-25(舍),故选A.小提示:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9、如图,a//b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°答案:D分析:先利用“两直线平行,同位角相等”求出∠3,再利用邻补角互补求出∠2.解:如图,∵a∥b,∴∠1=∠3=60°,∴∠2=180°-∠3=120°,故选:D.小提示:本题考查了平行线的性质和邻补角互补的性质,解决本题的关键是牢记相关概念,本题较基础,考查了学生的基本功.10、如图,直线a,b被c,d所截,且a//b,则下列结论中正确的是( )A.∠1=∠2B.∠3=∠4C.∠2+∠4=180∘D.∠1+∠4=180∘答案:B分析:根据平行线的性质进行判断即可得.如图,∵a//b,∴∠1=∠5,∠3=∠4,∵∠2+∠5=180°,∴无法得到∠2=∠5,即得不到∠1=∠2,由已知得不到∠2+∠4=180∘,∠1+∠4=180∘,所以正确的只有B选项,故选B.小提示:本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.填空题11、在∠AOB中,C,D分别为边OA,OB上的点(不与顶点O重合).对于任意锐角∠AOB,下面三个结论中,①作边OB的平行线与边OA相交,这样的平行线能作出无数条;②连接CD,存在∠ODC是直角;③点C到边OB的距离不超过线段CD的长.所有正确结论的序号是________.答案:①②③分析:根据题中描述,作图判断即可得出答案.解:①作边OB的平行线与边OA相交,因为OA为射线,所以这样的平行线能作出无数条,所以①正确;②连接CD,∠ODC的大小不确定,但一定存在∠ODC是直角的情况,所以②正确;③CD可看作是点C到射线OB上任意一点的连线,则点C到边OB的距离一定小于等于CD的长,所以③正确;所以答案是:①②③.小提示:本题考查角相关的性质,做题时考虑多种情况是做题关键,并且熟练掌握角是由两条具有公共端点的射线所围成的图形,射线一端可以无限延伸.12、如图直线AB,CD相交于O,直线FE⊥AB于O,∠BOD=75°,则∠COF的度数为_____度.答案:15分析:利用图中角与角的关系即可求得,即∠COF=∠DOE=90°﹣∠BOD.解:∵直线FE⊥AB于O,∴∠BOE=90°,∵∠DOE=∠BOE﹣∠BOD,∠BOD=75°,∴∠DOE=15°,∴∠COF=∠DOE=15°.所以答案是:15.小提示:此题考查的知识点是垂线、角的计算及对顶角知识,关键是根据垂线、垂线定义得出所求角与已知角的关系转化求解.13、同一平面内三条线直线两两相交,最少有_____个交点,最多有____个交点.答案: 1 3分析:画出图形进行解答即可.如下图,三条直线两两相交有两种情况:∴最少有1个交点,最多有3个交点.所以答案是:1,3.小提示:本题考查了直线交点问题,正确画出所有情况的图形是解题的关键.14、如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,那么点B到直线CD的距离是线段_____的长.答案:BD##DB分析:根据点到直线的距离的定义作答即可.解:∵CD⊥AD,垂足为点D,∴点B到直线CD的距离是线段BD的长,所以答案是:BD.小提示:本题考查了点到直线的距离.解题的关键在于掌握点到直线的距离是垂线段的长度.15、“等边三角形是锐角三角形”的逆命题是_________.答案:锐角三角形是等边三角形分析:交换题目中的题设和结论即可.解:原命题“等边三角形是锐角三角形”的条件是“一个三角形是等边三角形”,结论是“这个三角形是锐角三角形”,互换条件和结论可得到逆命题“如果一个三角形是锐角三角形,那么这个三角形是等边三角形”.简化为“锐角三角形是等边三角形”,所以答案是:锐角三角形是等边三角形.小提示:本题考查了命题与逆命题,能准确找到命题中的题设和结论是解题的关键.解答题16、如图,有下列三个条件:①DE//BC;②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题?请你都写出来;(2)你所写出的命题都是真命题吗?若是,请你就其中的一个真命题给出推理过程;若不是,请你对其中的假命题举出一个反例(温馨提示:∠B+∠C+∠BAC=180°)答案:(1)一共能组成三个命题,见解析(2)都是真命题,推理见解析分析:(1)(1)根据两条件一结论组成命题,可得答案;(2)根据平行线的性质,可判定①②,根据平行线的判定,可判定③,即可(1)解:一共能组成三个命题:①如果DE//BC,∠1=∠2,那么∠B=∠C;②如果DE//BC,∠B=∠C,那么∠1=∠2;③如果∠1=∠2,∠B=∠C,那么DE//BC;(2)解:都是真命题,如果DE//BC,∠1=∠2,那么∠B=∠C,理由如下:∵DE//BC,∴∠1=∠B,∠2=∠C∵∠1=∠2,∴∠B=∠C.如果DE//BC,∠B=∠C,那么∠1=∠2;理由如下:∵DE//BC,∴∠1=∠B,∠2=∠C,∵∠B=∠C,∴∠1=∠2;如果∠1=∠2,∠B=∠C,那么DE//BC;理由如下:∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-∠BAC,∵∠1+∠2+∠BAC=180°,∴∠1+∠2=180°-∠BAC,∴∠B+∠C=∠1+∠2,∵∠1=∠2,∠B=∠C,∴∠B=∠1,∴DE//BC.小提示:本题考查了平行线的判定与性质,判断命题的真假,熟练掌握平行线的判定与性质是解题的关键.17、如图,已知∠1=∠2,∠3+∠4=180°,请说明AB//EF的理由.答案:见解析分析:根据同位角相等两直线平行,同旁内角互补两直线平行、平行公理即可得出AB∥EF.解:∵∠1=∠2,∴AB//CD,∵∠3+∠4=180°,∴CD//EF,∴AB//EF.小提示:此题考查了平行线的判定,用到的知识点是同位角相等两直线平行、同旁内角互补两直线平行、熟练运用平行公理是解决此题的关键.18、如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试说明BD//CE.证明:∵∠1=∠2(已知)∴________//________(________________)∴∠D=∠________(________________)又∵∠D=∠3(________)∴∠________=∠________(________________)∴BD//CE(________________).答案:AD,BE,内错角相等,两直线平行;DBE,两直线平行,内错角相等;已知,DBE,3,等量代换;内错角相等,两直线平行.分析:由∠1=∠2,根据内错角相等,两直线平行,可证得AD//BE,继而证得∠D=∠DBE,又由∠3=∠D,可证得∠3=∠DBE,继而证得BD//CE.证明:∵∠1=∠2(已知),∴AD//BE(内错角相等,两直线平行),∴∠D=∠DBE(两直线平行,内错角相等),又∵∠D=∠3(已知),∴∠3=∠DBE(等量代换),∴BD//CE(内错角相等,两直线平行).所以答案是:AD,BE,内错角相等,两直线平行;DBE,两直线平行,内错角相等;已知,DBE,3,等量代换;内错角相等,两直线平行.小提示:本题考查了平行线的性质与判定,熟悉相关证明过程是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列说法不正确的是()A.同一平面上的两条直线不平行就相交B.同位角相等,两直线平行C.过直线外一点只有一条直线与已知直线平行D.同位角互补,两直线平行D解析:D【分析】根据平行线的概念对选项A进行判断;根据平行线的性质对选项B进行判断;根据平行线的公理和判定定理对选项C和D进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C正确;D. 同旁内角互补,两直线平行,所以选项D错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.2.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.3.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°C解析:C【分析】 根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.4.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS 定理,故该项正确; ③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA 定理,故该项正确. 故选:B .【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键. 5.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.6.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠, 11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 7.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12C解析:C【分析】 如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE ,ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.8.下列说法中,正确的是A .相等的角是对顶角B .有公共点并且相等的角是对顶角C .如果1∠和2∠是对顶角,那么12∠=∠D .两条直线相交所成的角是对顶角C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A 、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B 、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C 、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D 、两条直线相交所成的角有对顶角、邻补角,错误;故选C .【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.9.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB ∥CD ,∴∠1=∠4,故选 C .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于0D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题11.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.12.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.【分析】利用垂直定义可得∠COE =90°进而可得∠COB 的度数再利用对顶角相等可得∠AOD 再利用角平分线定义可得答案【详解】解:∵EO ⊥CD 于点O ∴∠COE =90°∵∠BOE =50°∴∠COB =90解析:70︒【分析】利用垂直定义可得∠COE =90°,进而可得∠COB 的度数,再利用对顶角相等可得∠AOD ,再利用角平分线定义可得答案.【详解】解:∵EO ⊥CD 于点O ,∴∠COE =90°,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.13.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本 解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.14.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;15.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩,AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键. 16.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.46【分析】过点C 作CF ∥AB 根据平行线的传递性得到CF ∥DE 根据平行线的性质得到∠ABC =∠BCF ∠CDE+∠DCF =180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF =30°解析:46【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠ABC =∠BCF ,∠CDE +∠DCF =180°,根据已知条件等量代换得到∠BCF =76°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:过点C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥DE ∥CF ,∴∠ABC =∠BCF ,∠CDE +∠DCF =180°,∵∠ABC =76°,∠CDE =150°,∴∠BCF =76°,∠DCF =30°,∴∠BCD =46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系. 17.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E 作EG ∥AB 则EG ∥CD 由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°﹣30°=60°,因为EG ∥AB ,所以∠ABE =180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.18.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.19.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD 再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC∥DE,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a∥b,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.作图题:如图,A为射线OB外一点.(1)连接OA;(2)过点A画出射线OB的垂线AC,垂足为点C(可以使用各种数学工具)(3)在线段AC的延长线上取点D,使得CD AC;(4)画出射线OD;(5)请直接写出上述所得图形中直角有个.解析:(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)4【分析】(1)用线段连接即可;(2)用三角板的两条直角边画图即可;(3)用圆规截取即可;(4)根据射线的定义画图即可;(5)根据直角的定义结合图形解答即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示;(5)直角有:∠ACO,∠ACB,∠DCO,∠DCB共4个,故答案为:4.【点睛】本题考查了线段、射线、垂线、直角的定义,以及作一条线段等于已知线段,熟练掌握各知识点是解答本题的关键.A B C三地,但地图被墨迹污染,C地具体位置看不清楚,但知22.在一张地图上有、、道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;的度数.(2)直接写出ACB解析:(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C 地在B 地南偏东45°方向得∠SBX=45°∵SB ∥m ,AN ∥m∴SB ∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.23.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)解析:(1)见解析(2)90°+12α 【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE =180°,∠1+∠3=180°∴∠DFE =∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.24.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.解析:(1)∠BOE=54°;(2)∠AOE=120°;(3)∠EOF=30°或150°【分析】(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数;(3)先过点O作OF⊥AB,再分两种情况根据角的和差关系可求∠EOF的度数.【详解】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°-∠AOC-∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,又∵∠COE=90°,∴∠AOE=∠COE+∠AOC=90°+30°=120°;(3)由(2)∠AOE=120°如图1,OF ⊥AB∴∠AOF=90°∴∠EOF=∠AOE-∠AOF=120°-90°=30°,如图2,OF ⊥AB∴∠AOF=90°∴∠EOF=360°-∠AOE-∠AOF=360°-120°-90°=150°.故∠EOF 的度数是30°或150°.【点睛】本题主要考查了角的计算,涉及到的角有平角、直角;熟练掌握平角等于180度,直角等于90度,是解答本题的关键.25.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.解析:(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒,∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.26.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到△EFG .(1)画出平移后的图形,并写出△EFG 的三个顶点坐标.(2)求△EFG 的面积.解析:(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S△EFG=5×9-12×1×9-12×5×2-12×4×7=21.5.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.27.如图,点A、O、B在同一条直线上,∠AOC比∠BOC大100°,OE平分∠AOC.求(1)直接写出∠AOC、∠BOC的度数;(2)从点O出发画一条射线,使得∠COD=90°,求出∠EOD的度数(可以直接使用第一问的结果)解析:(1)140°;40°;(2)160°或20°【分析】(1)根据∠AOC-∠BOC=100°得到∠AOC=∠BOC+100°,利用∠AOC+∠BOC=180°求出角的度数;(2)分情况讨论,如图2,射线OD在AB下方,∠COD=90°,根据角平分线的性质求出∠COE=12∠AOC =70°,求得∠EOD=∠COE+∠COD=160°;如图1,射线OD在AB上方,∠COD=90°,同理∠COE==70°,得到∠EOD=∠COD﹣∠COE =20°.【详解】解:(1)∵∠AOC-∠BOC=100°,∴∠AOC=∠BOC+100°,∵∠AOC+∠BOC=180°,∴∠BOC+100°+∠BOC=180°,∴∠BOC=40°,∴∠AOC=140°;(2)如图2,射线OD 在AB 下方,∠COD=90°,因为OE 平分∠AOC , ∠AOC=140°,所以∠COE=12∠AOC =70° , 所以∠EOD=∠COE+∠COD=160°,如图1,射线OD 在AB 上方,∠COD=90°,同理∠COE==70°,所以∠EOD=∠COD ﹣∠COE =20°,答:∠EOD 的度数是160°或20°.【点睛】此题考查邻补角的定义,角度的和差计算,角平分线的性质,垂直的定义,解题中注意分类思想的运用避免漏解.28.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.解析:(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD , ∵AF ∥DE ,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°, ∴∠GAD=∠CGF ,∴BC ∥AD .【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。