辽宁省本溪市2016年中考数学试题(解析版)

合集下载

7辽宁省本溪市中考数学真题试题(含解析)

7辽宁省本溪市中考数学真题试题(含解析)

中考模拟(七)一、选择题1.实数﹣的相反数是()A. B.﹣ C. 2 D.﹣22.如图是由多个完全相同的小正方体组成的几何体,其左视图是()A. B. C. D.3.下列运算正确的是()A. 5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a24.下列图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A. B. C. D.6.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是() A.甲 B.乙 C.丙 D.丁7.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球() A. 16个 B. 20个 C. 25个 D. 30个8.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A. 10cm B. 8cm C. 6cm D. 4cm9.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A. 4 B.﹣2 C. D.﹣10.如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A. B. C. D.二、填空题(本题共8小题,每小题3分,共24分)11.据《本溪日报》报道:本溪市高新区2015年1月份公共财政预算收入完成259 610 000元,首月实现税收收入“开门红”.将259 610 000用科学记数法表示为.12.分解因式:9a3﹣ab2= .13.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b 于B、C两点.若∠1=42°,则∠2的度数是.14.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.15.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.16.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .17.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD= cm.18.(2015•本溪)如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形I n,则I n的面积是.三、解答题(第19题10分,第20题12分,共22分)19.先化简再求值:(x﹣2+)÷,其中x=(π﹣2015)0﹣+()﹣120.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?四、解答题(第21题12分,第22题12分,共24分)21.(12分)暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?22.(12分)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)五、解答题(满分12分)23.(12分)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG 与围成的阴影部分的面积S.六、解答题(满分12分)24.(12分)某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)… 5 10 15 20 …y(元/件)… 75 70 65 60 …(1)由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?七、解答题(满分12分)25.(12分)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).八、解答题(满分14分)26.(14分)如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x 轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t 的函数关系式;(3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数﹣的相反数是()A. B.﹣ C. 2 D.﹣2考点:相反数.分析:根据只有符号不同的两数叫做互为相反数解答.解答:解:实数﹣的相反数是,故选A点评:本题考查了实数的性质,熟记相反数的定义是解题的关键.2.如图是由多个完全相同的小正方体组成的几何体,其左视图是()A. B. C. D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是三个小正方形,第二层靠左边两个小正方形,第三层2015年辽宁省本溪市中考数学试卷靠左边一个小正方形.故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的视图是左视图.3.下列运算正确的是()A. 5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.分析: A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.解答:解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.点评:本题主要考查的是整式的计算,掌握合并同类项法则、单项式乘单项式法则、积的乘方法则以及平方差公式是解题的关键.4.下列图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,也不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选B.点评:本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A. B. C. D.考点:由实际问题抽象出分式方程.分析:根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.解答:解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得,=,故选:C.点评:本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.6.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是() A.甲 B.乙 C.丙 D.丁考点:方差.分析:比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.解答:解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选B.点评:本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球() A. 16个 B. 20个 C. 25个 D. 30个考点:利用频率估计概率.分析:利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解答:解:设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选A.点评:此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.8.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A. 10cm B. 8cm C. 6cm D. 4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.9.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A. 4 B.﹣2 C. D.﹣考点:翻折变换(折叠问题);待定系数法求反比例函数解析式.分析:设点C的坐标为(x,y),过点C作CD⊥x轴,作CE⊥y轴,由折叠的性质易得∠CAB=∠OAB=30°,AC=AO=2,∠ACB=AOB=90°,用锐角三角函数的定义得CD,CE,得点C的坐标,易得k.解答:解:设点C的坐标为(x,y),过点C作CD⊥x轴,作CE⊥y轴,∵将△ABO沿直线AB翻折,∴∠CAB=∠OAB=30°,AC=AO=2,∠ACB=AOB=90°,∴CD=y=AC•sin60°=2×=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD=30°,∵BC=BO=AO•tan30°=2×=,CE=x=BC•cos30°==1,∵点C恰好落在双曲线y=(k≠0)上,∴k=x•y=﹣1×=﹣,故选D.点评:本题主要考查了翻折的性质,锐角三角函数,反比例函数的解析式,理解翻折的性质,求点C的坐标是解答此题的关键.10.如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A. B. C.D.考点:动点问题的函数图象.分析:首先连接CP,根据点P是斜边AB的中点,可得S△ACP=S△BCP =S△ABC;然后分别求出出发时;点N到达BC的中点、点M也到达AC的中点时;结束时,△PMN的面积S的大小,即可推得△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,据此判断出△PMN的面积S与运动时间t的函数关系图象大致是哪个即可.解答:解:如图1,连接CP,,∵点P是斜边AB的中点,∴S△ACP=S△BCP =S△ABC,出发时,S△PMN=S△BCP =S△ABC;∵两点同时出发,同时到达终点,∴点N到达BC的中点时,点M也到达AC的中点,∴S△PMN =S△ABC;结束时,S△PMN=S△ACP =S△ABC,△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,∴△PMN的面积S与运动时间t的函数关系图象大致是:.故选:A.点评:此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题(本题共8小题,每小题3分,共24分)11.据《本溪日报》报道:本溪市高新区2015年1月份公共财政预算收入完成259 610 000元,首月实现税收收入“开门红”.将259 610 000用科学记数法表示为2.5961×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将259 610 000用科学记数法表示为2.5961×108.故答案为:2.5961×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:9a3﹣ab2= a(3a﹣b)(3a+b).考点:提公因式法与公式法的综合运用.分析:观察原式9a3﹣ab2,找到公因式a,提取公因式a后发现9a2﹣b2是平方差公式,再利用平方差公式继续分解.解答:解:9a3﹣ab2,=a(9a2﹣b2),=a(3a﹣b)(3a+b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b 于B、C两点.若∠1=42°,则∠2的度数是48°.考点:平行线的性质.分析:先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.解答:解:∵∠BAC=90°,∠1=42°,∴∠3=90°﹣∠1=90°﹣42°=48°.∵直线a∥b,∴∠2=∠3=48°.故答案为:48°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.考点:列表法与树状图法;点的坐标.专题:计算题.分析:先画树状图展示所有6种等可能的结果数,而点(﹣1,1)和(﹣,1)在第二象限,然后根据概率公式求解.解答:解:画树状图为:共有6种等可能的结果数,其中在第二象限的点有2个,所以点A在第二象限的概率==.故答案为.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A 或B的概率.15.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是k<2且k≠1.考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0,然后求出两个不等式的公共部分即可.解答:解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k ﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .考点:菱形的性质.专题:计算题.分析:先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.解答:解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.17.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD= 2或cm.考点:相似三角形的性质.专题:分类讨论.分析:由于△ADE与△ABC相似,但其对应角不能确定,所以应分两种情况进行讨论.解答:解:∵S△ADE:S四边形BCED=1:8,∴S△ADE:S △ABC =1:9,∴△ADE与△ABC相似比为:1:3,①若∠AED对应∠B时,则,∵AC=5cm,∴AD=cm;②当∠ADE对应∠B时,则,∵AB=6cm,∴AD=2cm;故答案为:.点评:本题考查的是相似三角形的性质,相似三角形的对应边成比例,相似三角形的面积比等于相似比的平方,意识到有两种情况分类讨论是解决问题的关键.18.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形I n,则I n的面积是()2n+1ab .考点:中点四边形.专题:规律型.分析:利用菱形的面积为两对角线乘积的一半,得到菱形I1的面积,同理可得菱形I2的面积,根据规律可得菱形I n的面积.解答:解:由题意得:菱形I1的面积为:×AG×AE=×=()3•ab;菱形I2的面积为:×FQ×FN=×(×)×(b)=()5•ab;…,∴菱形I n的面积为:()2n+1ab,故答案为:()2n+1ab.点评:本题主要考查了菱形面积的计算和规律的归纳,利用菱形的面积为两对角线乘积的一半,是解答此题的关键.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(x﹣2+)÷,其中x=(π﹣2015)0﹣+()﹣1.考点:分式的化简求值;零指数幂;负整数指数幂.分析:先通分,然后进行四则运算,最后将x的值求出来,再代入计算即可.解答:解:原式=====1﹣2+3=2,当x=2时,原式=.点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.20.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为50 人,被调查学生的课外阅读时间的中位数是 4 小时,众数是 5 小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是144°;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.分析:(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;(2)根据(1)中求出的人数补全条形统计图即可;(3)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(4)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.解答:解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.故答案为:50,4,5(2)如图所示.(3)∵课外阅读5小时的人数是20人,∴×360°=144°.故答案为:144°;(4)∵课外阅读5小时的人数是4人,∴700×=56(人).答:九年级一周课外阅读时间为6小时的学生大约有56人.点评:本题考查的是条形统计图,熟知条形统计图与扇形统计图的特点是解答此题的关键.四、解答题(第21题12分,第22题12分,共24分)21.(12分)暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)设旅游团中儿童有x人,则成人有(2x﹣3)人,根据报名的人数共有69人,列方程求解;(2)根据题意可得能赠送4件儿童T恤衫,设每件成人T恤衫的价格是m元,根据旅行社购买服装的费用不超过1200元,列不等式求解.解答:解:(1)设旅游团中儿童有x人,则成人有(2x﹣3)人,根据题意得x+(2x﹣3)=69,解得:x=24,则2x﹣3=2×24﹣3=45.答:旅游团中成人有45人,儿童有24人;(2)∵45÷10=4.5,∴可赠送4件儿童T恤衫,设每件成人T恤衫的价格是m元,根据题意可得45x+15(24﹣4)≤1200,解得:x≤20.答:每件成人T恤衫的价格最高是20元.点评:本题考查了一元一次不等式和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程和不等式求解.22.(12分)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)考点: 解直角三角形的应用-仰角俯角问题. 分析: 过B 作BE ⊥CD 交CD 延长线于E ,由∠CAN=45°,∠MAN=30°,得到∠CAB=15°,由∠CBD=60°,∠DBE=30°,得到∠CBD=30°于是有∠CAB=∠ACB=15°所以AB=BC=20,解Rt △BCE ,可求得CE ,解Rt △DBE 可求得DE ,CE ﹣DE 即得到树高CD . 解答: 解:如图,过B 作BE ⊥CD 交CD 延长线于E , ∵∠CAN=45°,∠MAN=30°, ∴∠CAB=15°∵∠CBD=60°,∠DBE=30°, ∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB , ∴∠CAB=∠ACB=15°, ∴AB=BC=20,在Rt △BCE 中,∠CBE=60°,BC=20, ∴CE=BCsin ∠CBE=20×BE=BCcos ∠CBE=20×0.5=10,在Rt △DBE 中,∠DBE=30°,BE=10, ∴DE=BEtan ∠DBE =10×,∴CD=CE ﹣DE=≈11.5,答:这棵大树CD 的高度大约为11.5米.点评: 本题主要考查了等腰三角形的判定与性质,解直角三角形,要求学生能借助俯角、仰角构造直角三角形,并结合图形利用三角函数解直角三角形.五、解答题(满分12分) 23.(12分)如图,点D 是等边△ABC 中BC 边的延长线上一点,且AC=CD ,以AB 为直径作⊙O ,分别交边AC 、BC 于点E 、点F (1)求证:AD 是⊙O 的切线;(2)连接OC ,交⊙O 于点G ,若AB=4,求线段CE 、CG 与围成的阴影部分的面积S .考点: 切线的判定;等边三角形的判定与性质;扇形面积的计算.分析: (1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可; (2)连接OE ,分别求出△AOE 、△AOC ,扇形OEG 的面积,即可求出答案. 解答: (1)证明:∵△ABC 为等边三角形, ∴AC=BC , 又∵AC=CD ,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE ,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠A OE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO 上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG ==.点评:本题考查了等边三角形的性质和判定,勾股定理,三角形面积,扇形的面积,切线的判定的应用,能综合运用定理进行推理和计算是解此题的关键.六、解答题(满分12分)24.(12分)某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)… 5 10 15 20 …y(元/件)… 75 70 65 60 …(1)由题意知商品的最低销售单价是50 元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?考点:二次函数的应用.分析:(1)由40(1+25%)即可得出最低销售单价;根据题意由待定系数法求出y 与x的函数关系式和x的取值范围;(2)设所获利润为P元,由题意得出P是x的二次函数,即可得出结果.解答:解:(1)40(1+25%)=50(元),故答案为:50;设y=kx+b,根据题意得:,解得:k=﹣1,b=80,∴y=﹣x+80,根据题意得:,且x为正整数,∴0<x≤30,x为正整数,∴y=﹣x+80(0≤x≤30,且x为正整数)(2)设所获利润为P元,根据题意得:P=(y﹣40)•x=(﹣x+80﹣40)x=﹣(x﹣20)2+400,即P是x的二次函数,∵a=﹣1<0,∴P有最大值,∴当x=20时,P最大值=400,此时y=60,∴当销售单价为60元时,所获利润最大,最大利润为400元.点评:本题考查了二次函数的应用、用待定系数法求一次函数的解析式、二次函数的最值问题;由题意求出一次函数和二次函数的解析式是解决问题的关键.七、解答题(满分12分)。

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。

12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。

13、用换元法解方程那么原方程可变形为_________。

14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。

2016年本溪市初中毕业生学业考试

2016年本溪市初中毕业生学业考试

2016年市初中毕业生学业考试物理试卷※理化考试时间共150分钟物理试卷满分120分考生注意:请在答题卡各题目规定答题区域作答,答在本试卷上无效。

第一部分选择题(共28分)一、选择题(本题共12小题,共28分。

1~8题为单选题,每题2分;9~12题为多选题,每题3分,漏选得2分,错选得0分)1.下列数据最接近实际的是A.教室日光灯正常发光的电流约为40AB.中考物理试卷的重力约为2NC.学生常用刻度尺的分度值约为10cmD.中学生的正常体温约为37℃2.下列光学现象中与光的折射现象无关..的是3.“冰之宝”是一种可以解决夏日汽车高温问题的喷雾剂。

当向车喷洒该物质时,它会迅速吸收热量,使车温度降低。

喷出的这种物质在车发生的主要物态变化是A.凝固B.汽化C.液化D.凝华4.观察下列四幅图,为了减小压强的是5.如图所示,在实验室里的小女孩手摸几万伏的高压放电球,她神态自若、长发飞扬。

关于这一场景,下列说确的是A.几万伏电压没有超出人体的安全电压B.她的身体属于绝缘体C.她神态自若是因为双脚站在了绝缘体上D.她长发飞扬是因为异种电荷相互排斥A.用放大镜看书B.水中吸管“弯折”C.墙上人的影子D.海市蜃楼现象A.锋利的针尖B.尖锐的鞋钉C.宽大的塔基D.锐利的鹰嘴第5题图6.下列四幅图中与发电机原理相同的是7. 下列情况中,符合安全用电原则的是A .所有家用电器的外壳都要接地B .开关应该安装在灯和火线之间C .使用试电笔时手应接触笔尖金属体D .家用电器着火时,应该迅速用水来灭火8.如图所示,工人用250N 的拉力,在10s 将重为400N 的物体A 匀速提升4m ,若不计绳重及摩擦,下列说确的是A.工人向右移动的速度为0.4 m/sB .工人对滑轮组做的功为1600JC .滑轮组对物体A 做功的功率为200WD .此滑轮组的机械效率为80%9.下图是小丽从生活中收集到的一些与光现象有关的实例,以下说确的是A .甲图:验钞机利用紫外线辨别钱币真伪B .乙图:液晶电视的多彩画面是由红、黄、蓝三种色光混合而成C .丙图:雨后天边彩虹是光的色散现象D .丁图:小孔成像所成的像是倒立的实像10.2016年4月14日,NBA 著名球星科比宣布退役,虽然科比告别了赛场,但他精湛的球技给球迷留下了深刻印象。

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。

辽宁省本溪市中考数学试卷(含答案)

辽宁省本溪市中考数学试卷(含答案)

22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。

2016年辽宁省本溪市中考数学试题及参考答案(word解析版)

2016年辽宁省本溪市中考数学试题及参考答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的绝对值是( ) A .﹣2 B .12-C .2D .122.下列运算错误的是( )A .﹣m 2•m 3=﹣m 5B .﹣x 2+2x 2=x 2C .(﹣a 3b )2=a 6b 2D .﹣2x (x ﹣y )=﹣2x 2﹣2xy 3.下面几何体的俯视图是( )A .B .C .D .4.下列图形既是中心对称图形又是轴对称图形的是( )A .B .C .D .5.7名同学每周在校体育锻炼时间(单位:小时)分别为:7,5,8,6,9,7,8,这组数据的中位数是( )A .6B .7C .7.5D .860,227,2﹣2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是( ) A .15 B .25 C .35 D .457.若2a b <,且a 、b 是两个连续整数,则a+b 的值是( ) A .1 B .2 C .3 D .48.小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x 千米/时,根据题意列方程得( ) A .99203x x -= B .9920360x x -= C .99203x x -= D .9920360x x -=9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a﹣b=0 C.4a+2b+c<0 D.9a+3b+c=010.如图,点A、C为反比例函数kyx(x<0)图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为32时,k的值为()A.4 B.6 C.﹣4 D.﹣6二、填空题(本题共8小题,每小题3分,共24分.)11.截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为.12.因式分解:3ax2+6ax+3a=.13.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S乙2=0.04,成绩比较稳定的是(填“甲”或“乙”).14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.16.如图,小华把同心圆纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上),已知大圆半径为30cm,小圆半径为20cm,则飞镖击中阴影区域的概率是.17.如图,△ABC 中,AC=6,AB=4,点D 与点A 在直线BC 的同侧,且∠ACD=∠ABC ,CD=2,点E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为 .18.如图,面积为1的等腰直角△OA 1A 2,∠OA 2A 1=90°,且OA 2为斜边在△OA 1A 2,外作等腰直角△OA 2A 3,以OA 3为斜边在△OA 2A 3,外作等腰直角△OA 3A 4,以OA 4为斜边在△OA 3A 4,外作等腰直角△OA 4A 5,…连接A 1A 3,A 3A 5,A 5A 7,…分别与OA 2,OA 4,OA 6,…交于点B 1,B 2,B 3,…按此规律继续下去,记△OB 1A 3的面积为S 1,△OB 2A 5的面积为S 2,△OB 3A 7的面积为S 3,…△OB n A 2n+1的面积为S n ,则S n = (用含正整数n 的式子表示).三、解答题(第19题10分,第20题12分,共22分) 19.(10分)先化简,再求值:24339xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,请在﹣3,0,1,3中选择一个适当的数作为x 值.20.(12分)为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中m= ; (2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD 分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.22.(12分)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED 交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.五、解答题(12分)23.(12分)某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=利润成本×100%)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?六、解答题(12分)24.(12分)如图,某巡逻艇计划以40海里/时的速度从A处向正东方向的D处航行,出发1.5小时到达B处时,突然接到C处的求救信号,于是巡逻艇立刻以60海里/时的速度向北偏东30°方向的C处航行,到达C处后,测得A处位于C处的南偏西60°方向,解救后巡逻艇又沿南偏东45°方向航行到D处.(1)求巡逻艇从B处到C处用的时间.(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).2.45≈≈)七、解答题(12分)25.(12分)已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是PB=2CM;(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图③,若52ACBC=,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.八、解答题(14分)26.(14分)如图,直线112y x=-+与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的43倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.参考答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2的绝对值是()A.﹣2 B.12C.2 D.12【知识考点】绝对值.【思路分析】根据负数的绝对值等于它的相反数求解.【解答过程】解:因为|﹣2|=2,故选C.【总结归纳】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算错误的是()A.﹣m2•m3=﹣m5B.﹣x2+2x2=x2C.(﹣a3b)2=a6b2D.﹣2x(x﹣y)=﹣2x2﹣2xy 【知识考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】计算出各个选项中式子的正确结果,然后对照,即可解答本题.【解答过程】解:∵﹣m2•m3=﹣m5,故选项A正确,∵﹣x2+2x2=x2,故选项B正确,∵(﹣a3b)2=a6b2,故选项C正确,∵﹣2x(x﹣y)=﹣2x2+2xy,故选项D错误,故选D.【总结归纳】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.3.下面几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据几何体的俯视图是从物体上面看得到的图形解答即可.【解答过程】解:图中几何体的俯视图是B在的图形,故选:B.【总结归纳】本题考查的是简单组合体的三视图,主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.4.下列图形既是中心对称图形又是轴对称图形的是( )A .B .C .D .【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A 、是轴对称图形,也是中心对称图形,故选项正确; B 、是轴对称图形,不是中心对称图形,故选项错误; C 、是轴对称图形,不是中心对称图形,故选项错误; D 、是轴对称图形,不是中心对称图形,故选项错误. 故选A .【总结归纳】本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.5.7名同学每周在校体育锻炼时间(单位:小时)分别为:7,5,8,6,9,7,8,这组数据的中位数是( )A .6B .7C .7.5D .8 【知识考点】中位数.【思路分析】求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答过程】解:数据按从小到大排列后为5,6,7,7,8,8,9, ∴这组数据的中位数是7. 故选:B .【总结归纳】本题属于基础题,考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.60,227,2﹣2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是( ) A .15 B .25 C .35 D .45【知识考点】概率公式;无理数;负整数指数幂.【思路分析】先将给出的五个数计算,发现只有一个无理数:,求出抽到正面的数字是无理数的概率是.【解答过程】解: =3,()0=1,=2,2﹣2=,,无理数为:,所以抽到无理数的概率为:,故选A.【总结归纳】本题综合考查了无理数的定义、二次根式的化简、负整数指数幂及概率,虽然内容较多,但难度不大;做好本题要熟知以下几个公式:①=|a|,②a﹣p=(a≠0,p为整数).7.若2a b<,且a、b是两个连续整数,则a+b的值是()A.1 B.2 C.3 D.4【知识考点】估算无理数的大小.【思路分析】根据的整数部分是2,可知0<﹣2<1,由此即可解决问题.【解答过程】解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选A.【总结归纳】本题考查估算无理数大小,学会利用逼近法估算无理数大小是解题的关键,属于基础题中考常考题型.8.小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.99203x x-=B.9920360x x-=C.99203x x-=D.9920360x x-=【知识考点】由实际问题抽象出分式方程.【思路分析】设骑自行车的平均速度为x千米/时,则乘汽车的平均速度是3x千米/时,根据“骑自行车前往比乘汽车多用20分钟”可列方程.【解答过程】解:设骑自行车的平均速度为x千米/时,则乘汽车的平均速度是3x千米/时,根据题意,可列方程:9920360x x-=,故选:D.【总结归纳】本题主要考查根据实际问题列分式方程,由实际问题抽象出分式方程的关键是分析题意找出相等关系,注意单位统一.9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a﹣b=0 C.4a+2b+c<0 D.9a+3b+c=0【知识考点】二次函数图象与系数的关系.【思路分析】根据二次函数y=ax2+bx+c(a≠0)的图象可判断abc<0,根据对称轴为x=1可判断出2a+b=0,当x=2时,4a+2b+c>0,当x=3时,9a+3b+c=0【解答过程】解:∵抛物线的开口向下,则a<0,对称轴在y轴的右侧,∴b>0,图象与y轴交于正半轴上,∴c>0,∴abc<0,:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴2a+b=0,当x=2时,4a+2b+c>0,当x=3时,9a+3b+c=0,故选D.【总结归纳】此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).10.如图,点A、C为反比例函数kyx(x<0)图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为32时,k的值为()A.4 B.6 C.﹣4 D.﹣6【知识考点】反比例函数系数k的几何意义.【思路分析】设点C的坐标为(m,),则点E(m,),A(m,),根据三角形的面积公式可得出S△AEC=﹣k=,由此即可求出k值.【解答过程】解:设点C的坐标为(m,),则点E(m,),A(m,),∵S△AEC=BD•AE=(m﹣m)•(﹣)=﹣k=,∴k=﹣4.故选C.【总结归纳】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C的坐标,利用点C的横坐标表示出A、E点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.二、填空题(本题共8小题,每小题3分,共24分.)11.截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答过程】解:208000000=2.08×108.故答案为:2.08×108.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.12.因式分解:3ax2+6ax+3a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答过程】解:3ax2+6ax+3a,=3a(x2+2x+1),=3a(x+1)2.故答案为:3a(x+1)2.【总结归纳】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S乙2=0.04,成绩比较稳定的是(填“甲”或“乙”).【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定即可求解.【解答过程】解:因为S甲2=0.1>S乙2=0.04,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)【知识考点】一次函数图象上点的坐标特征.【思路分析】由k=﹣2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x2,即可得出结论.【解答过程】解:∵一次函数y=﹣2x+5中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【总结归纳】本题考查了一次函数的性质,解题的关键是根据k=﹣2<0得出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次项系数的正负得出该函数的增减性是关键.15.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.【知识考点】根的判别式.【思路分析】根据一元二次方程的定义和根的判别式的意义得到k≠0且b2﹣4ac>0,然后求出两个不等式的公共部分即可.【解答过程】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.【总结归纳】本题考查的是根的判别式,在解答此题时要注意k≠0的条件.16.如图,小华把同心圆纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上),已知大圆半径为30cm,小圆半径为20cm,则飞镖击中阴影区域的概率是.【知识考点】几何概率.【思路分析】首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率.【解答过程】解:大圆面积:π×302=900π,小圆面积:π×202=400π,阴影部分面积:900π﹣400π=500π,飞镖击中阴影区域的概率:=,故答案为:.【总结归纳】此题主要考查了概率,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.【知识考点】相似三角形的性质.【思路分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答过程】解:∵△DCE∽△ABC,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴或即或解得,CE=3或CE=故答案为:3或.【总结归纳】本题考查相似三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.18.如图,面积为1的等腰直角△OA1A2,∠OA2A1=90°,且OA2为斜边在△OA1A2,外作等腰直角△OA2A3,以OA3为斜边在△OA2A3,外作等腰直角△OA3A4,以OA4为斜边在△OA3A4,外作等腰直角△OA4A5,…连接A1A3,A3A5,A5A7,…分别与OA2,OA4,OA6,…交于点B1,B2,B3,…按此规律继续下去,记△OB1A3的面积为S1,△OB2A5的面积为S2,△OB3A7的面积为S3,…△OB n A2n+1的面积为S n,则S n=(用含正整数n的式子表示).【知识考点】等腰直角三角形.【思路分析】先根据等腰直角三角形的定义求出∠A1OA3=∠OA3A2=90°,得A2A3∥OA1,根据同底等高的两个三角形的面积相等得:=,所以=,同理得:A4A5∥A3O,同理得:=,根据已知的=1,求对应的直角边和斜边的长:OA2=A1A2=,A2A3=OA3=1,OA1=2,并利用平行相似证明△A2B1A3∽△OB1A1,列比例式可以求A2B1=,根据面积公式计算S1=,同理得:S2=×,从而得出规律:S n=S n﹣1=×.【解答过程】解:∵△OA1A2、△OA2A3是等腰直角三角形,∴∠A1OA2=∠A2OA3=45°,∴∠A1OA3=∠OA3A2=90°,∴A2A3∥OA1,∴=(同底等高),∴+=+,∴=,同理得:A4A5∥A3O,=,∵=1,∴OA2•A1A2=1,∵OA2=A1A2,∴OA2=A1A2=,∴A2A3=OA3=1,OA1=2,∵A2A3∥OA1,∴△A2B1A3∽△OB1A1,∴==,∵A2O=,∴A2B1=,∴S1===A1A2•A2B1=××=,同理得:OA4=A3A4==,A4A5=,∴△A 4A 5B 2∽△OA 3B 2, ∴===,∴A 4B 2==×=, ∴S 2===××=×,所以得出规律:S n =S n ﹣1=×,故答案为:×.【总结归纳】本题考查了等腰直角三角形的性质,勾股定理,相似三角形的性质和判定以及三角形面积的计算问题,比较复杂,书写时小下标较多,要认真书写,先根据等腰直角三角形的面积求各边的长,利用同底等高的三角形面积相等将所求的三角形进行转化,从而解决问题,并发现规律. 三、解答题(第19题10分,第20题12分,共22分) 19.(10分)先化简,再求值:24339x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,请在﹣3,0,1,3中选择一个适当的数作为x 值. 【知识考点】分式的化简求值.【思路分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=3x+15,再根据分式有意义的条件把x=1代入计算即可. 【解答过程】解:原式=•=•=3x+15,当x=1时,原式=3+15=18.【总结归纳】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.(12分)为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中m= ; (2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.【知识考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)用A类人数除以它所占的百分比可得到调查的总人数,然后用B类人数除以总人数可得到m的值;(2)先计算出C类人数,然后补全条形统计图;(3)用1800乘以样本中B类人数所占的百分比即可;(4)画树状图展示12种等可能的结果数,再找出所抽取的两人都最喜爱“校长信箱”栏目的结果数,然后根据概率公式求解.【解答过程】解:(1)本次被调查的学生数为30÷15%=200(人),扇形统计图中m=×100%=30%;故答案为200,30%;(2)C类人数=200×25%=50(人),条形统计图补充为:(3)1800×30%=540,所以估计全校最喜爱“校长信箱”栏目的学生有540人;(4)画树状图为:共有12种等可能的结果数,其中所抽取的两人都最喜爱“校长信箱”栏目的结果数为6,所以所抽取的两人都最喜爱“校长信箱”栏目的概率==.【总结归纳】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD 分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【知识考点】平行四边形的性质.【思路分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【总结归纳】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22.(12分)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED 交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.【知识考点】切线的判定;等腰三角形的性质.【思路分析】(1)根据等腰三角形的性质得到∠B=∠ACB,∠OCE=∠E,推出∠ACO=90°,根据切线的判定定理即可得到结论;(2)根据已知条件得到∠CFO=30°,解直角三角形得到DF==,EF=3OE=4,即可得到结论.【解答过程】(1)证明:连接CO,如图:∵AB=AC,∴∠B=∠ACB,∵OC=OE,∴∠OCE=∠E,∵DE⊥AB,∴∠BDE=90°,∴∠B+∠E=90°,∴∠ACB+∠OCE=90°,∴∠ACO=90°,∴AC⊥OC,∴AC是⊙O的切线;(2)解:∵∠E=30°,∴∠OCE=30°,∴∠FCE=120°,∴∠CFO=30°,∴∠AFD=∠CFO=30°,∴DF==,∵BD=5,∴DE=5,∵OF=2OC,∴EF=3OE=4,∴OE=,即⊙O的半径=.【总结归纳】本题考查了切线的判定,直角三角形的性质,等腰三角形的性质,熟练掌握切线的判定定理是解题的关键.五、解答题(12分)23.(12分)某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=利润成本×100%)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?【知识考点】二次函数的应用;一元一次不等式组的应用.【思路分析】(1)根据待定系数法可求y与x之间的函数关系式;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值.【解答过程】解:(1)设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(70,160),(80,140)这两点,∴,解得.∴函数关系式是:y=﹣2x+300(60≤x≤99)(2)当销售单价定为x元时,公司每天获得利润最大为W元,依题意得W=(x﹣60)(﹣2x+300)=﹣2(x2﹣210x+9000)=﹣2(x﹣105)2+4050(60≤x≤99),∴当x=99时,W有最大值3978.当销售单价定为99元时,公司每天获得利润最大,最大利润为3978元.【总结归纳】此题考查二次函数的实际运用,掌握销售问题中的基本数量关系得出函数解析式是解决问题的关键.六、解答题(12分)24.(12分)如图,某巡逻艇计划以40海里/时的速度从A处向正东方向的D处航行,出发1.5小时到达B处时,突然接到C处的求救信号,于是巡逻艇立刻以60海里/时的速度向北偏东30°方向的C处航行,到达C处后,测得A处位于C处的南偏西60°方向,解救后巡逻艇又沿南偏东45°方向航行到D处.(1)求巡逻艇从B处到C处用的时间.(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).≈≈)2.45【知识考点】解直角三角形的应用-方向角问题.【思路分析】(1)求出BC的长,即路程,则时间=,代入计算;(2)原计划的路程为:AD的长,实际的路程为:AB+BC+CD,相减即可.【解答过程】解:(1)如图所示,AB=1.5×40=60,∵BE∥CF,∴∠BCF=∠EBC=30°,在Rt△AFC中,∵∠ACF=60°,∴∠A=90°﹣60°=30°,设BF=x,则BC=2x,CF=x,tan∠A=,∴BE=tan30°•AB=×60=20,∵BE∥CF,∴,∴20(60+x)=60×x,解得:x=30,∴BC=2x=60,t==1,答:巡逻艇从B处到C处用的时间为1小时;(2)∵∠FCD=45°,∠CFD=90°,∴△CFD是等腰直角三角形,∴FC=FD=x=30,∴CD=FC=30,则AB+BC+CD﹣(AB+BF+FD),=BC+CD﹣BF﹣FD,=60+30﹣30﹣30,=30+30﹣30,=30×(1+2.45﹣1.73),≈52,答:巡逻艇实际比原计划多航行了52海里.【总结归纳】本题是解直角三角形的应用,考查了方向角问题;这在解直角三角形中是一个难点,要知道已知和所求的方向角的位置:一般是以第一个方向为始边向另一个方向旋转相应度数;在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.七、解答题(12分)25.(12分)已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是PB=2CM;(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图③,若52ACBC,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.【知识考点】几何变换综合题.【思路分析】(1)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质再用中位线即可;(2)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质,再用中位线即可;(3)同(1)(2)的方法作出辅助线,利用平行线中的基本图形“A”得出比例式,用勾股定理求出x,最后用三角形的面积公式即可.【解答过程】解:(1)如图1,。

辽宁省本溪市第八中学中考数学试卷(含解析)

辽宁省本溪市第八中学中考数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣7,5,0,﹣3这四个数中,最大的数是()A.﹣7 B.5 C.0 D.﹣32.在下列四个银行标志中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a14÷a2=a74.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.一组数据23、20、20、21、26,这组数据的中位数和众数分别是()A.21,20 B.22,20 C.21,26 D.22,266.下列成语所描述的事件是确定性事件的是()A.守株待兔B.水中捞月C.百发百中D.雨后彩虹7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<08.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.9.如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y 轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣1010.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a二.填空题(共8小题,满分24分,每小题3分)11.将00000用科学记数法表示为.12.把多项式9x﹣x3分解因式的结果为.13.把一张对边互相平行的纸条(AC′∥BD′)折成如图所示,EF是折痕,若折痕EF与一边的夹角∠EFB=32°,则∠AEG=.14.某班共有6名学生,其中4名是男生,2名是女生,任意抽一名学生去参加一项活动,其中是女生的概率为.15.已知x=﹣1是一元二次方程ax2﹣bx+6=0的一个根,则a+b的值为16.不等式组的解集是.17.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC 上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.18.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是.三.解答题(共2小题,满分22分)19.(10分)先化简,再求代数式的值,其中a=3﹣1,b=(﹣2)0 20.(12分)我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)四.解答题(共2小题,满分24分,每小题12分)21.(12分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(12分)如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C 的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E 在BD的中点处.(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五.解答题(共1小题,满分12分,每小题12分)23.(12分)根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?六.解答题(共1小题,满分12分,每小题12分)24.(12分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.七.解答题(共1小题,满分12分,每小题12分)25.(12分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.八.解答题(共1小题,满分14分,每小题14分)26.(14分)如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA 交y轴于点M,QA交y轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结论.辽宁省本溪市第八中学中考数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣7<﹣3<0<5,即在﹣7,5,0,﹣3这四个数中,最大的数是:5.故选:B.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.【分析】根据轴对称和中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,观察可知,第一个既是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.所以既是轴对称图形又是中心对称图形的有2个.故选:B.【点评】此题主要考查了中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【分析】根据幂的运算法则与单项式乘单项式的运算法则逐一计算即可判断.【解答】解:A.a3与a4不能合并,此选项错误;B.2a3•a4=2a7,此选项正确;C.(2a4)3=8a12,此选项错误;D.a14÷a2=a12,此选项错误;故选:B.【点评】本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式与幂的运算法则.4.【分析】根据俯视图的定义和空间想象,得出图形即可.【解答】解:俯视图从左到右分别是,1,个正方形,如图所示:.故选:C.【点评】此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.5.【分析】根据众数和中位数的定义分别找出出现次数最多的数和从小到大排列最中间的数即可.【解答】解:把这组数据从小到大排列为:20,20,21,23,26,最中间的数是21,则这组数据的中位数是21,20出现了2次,出现的次数最多,则众数是20;故选:A.【点评】此题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.【分析】根据确定事件就是一定发生或一定不发生的事件,即发生的概率是1或0的事件依次判定即可得出答案.【解答】解:A、守株待兔,是随机事件,不合题意;B、水中捞月,是不可能事件,符合题意;C、百发百中,是随机事件,不合题意;D、雨后彩虹,是随机事件,不合题意;故选:B.【点评】本题主要考查了不可能事件、随机事件的概念,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.7.【分析】根据一次函数的图象图象经过第一、三、四象限解答即可,【解答】解:因为k>0时,直线必经过一、三象限,b<0时,直线与y轴负半轴相交,可得:图象经过第一、三、四象限时,k>0,b<0;故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.【分析】设每个宫灯x元,每个纱灯y元,根据“购买1个宫灯和1个纱灯共需75元,购买6个宫灯和10个纱灯共需690元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=5,再根据反比例函数的比例系数k的几何意义得到|k|=5,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=5,而S△OAB=|k|,∴|k|=5,∵k<0,∴k=﹣10.故选:D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.【分析】本题根据动点之间相对位置,讨论形成图形的变化趋势即可,适于采用筛选法.【解答】解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.【点评】本题考查双动点条件下的图形面积问题,分析时要关注动点在经过临界点时,相关图形的变化规律.二.填空题(共8小题,满分24分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:00000用科学记数法表示为:2.018×108,故答案为:2.018×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】原式提取﹣x,再利用平方差公式分解即可.【解答】解:原式=﹣x(x2﹣9)=﹣x(x+3)(x﹣3),故答案为:﹣x(x+3)(x﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】先根据图形折叠的性质求出∠C′EF=∠CEF,再根据平行线的性质得出∠CEF的度数,由补角的定义即可得出结论.【解答】解:∵∠CEF由∠C′EF折叠而成,∴∠CEF=∠C′EF,∵AC′∥BD′,∠EFB=32°,∴∠C′EF=∠EFB=32°,∴∠AEG=180°﹣32°﹣32°=116°.故答案为:116°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生,其中女生有2人,∴任意抽一名学生去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【分析】直接把x=﹣1代入方程ax2﹣bx+6=0中即可得到a+b的值.【解答】解:把x=﹣1代入方程ax2﹣bx+6=0得a+b+6=0,所以a+b=﹣6.故答案为﹣6.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:解不等式x﹣1>1,得:x>2,解不等式3+2x≥4x﹣3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴,解得,∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故答案为:0<k<2.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.三.解答题(共2小题,满分22分)19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由负整数指数幂和零指数幂得出a、b的值,继而代入计算可得.【解答】解:原式====,a=,b=(﹣2)0=1,把a=,b=1代入得:原式==﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.20.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)王老师采取的调查方式是抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.故答案为:抽样调查.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD =CE=BC,根据勾股定理得到DE==6,于是得到结论.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点评】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.【分析】(1)根据已知条件得到∠C=90°,∠CBD=60°,∠CAE=45°,解直角三角形即可得到结论;(2)过E作EF⊥AB与F,在Rt△AEF中,求得EF,在Rt△BEF中,求得BF,于是得到结论.【解答】解:(1)由题意得,∠C=90°,∠CBD=60°,∠CAE=45°,∵CD=1000,∴BC==1000,∴BD=2BC=2000,∵E在BD的中点处,∴BE=BD=1000(米);(2)过E作EF⊥AB与F,在Rt△AEF中,EF=AF=BE•sin60°=1000×=500,在Rt△BEF中,BF=BE•cos60°=500,∴AB=AF﹣BF=500(﹣1)(米).【点评】此题考查直角三角形的问题,将已知条件和所求结论转化到同一个直角三角形中求解是解直角三角形的常规思路.五.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.【点评】考查二次函数的应用;得到甲乙两种商品的利润是解决本题的突破点;得到总利润的关系式是解决本题的关键.六.解答题(共1小题,满分12分,每小题12分)24.【分析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.【解答】解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OD⊥DE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.七.解答题(共1小题,满分12分,每小题12分)25.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF (如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN ∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.八.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)用待定系数法即能求出抛物线的解析式.(2)△TAD与△TBD有公共底边TD,面积相等即点A、点B到直线TD距离相等.根据T的位置关系分类讨论:在点A左侧时,根据“平行线间距离处处相等”可得AB∥TD,易得点T的纵坐标,代入解析式即求出横坐标;在点A右侧时,分别过A、B作TD的垂线段,构造全等三角形,证得TD与x轴交点为AB中点,求出TD解析式,再与抛物线解析式联立方程组求出T.(3)联立直线y=kx﹣k+2与抛物线解析式,整理得关于x的一元二次方程,根据韦达定理得到P、Q横坐标和和与积的式子(用k表示).设M(0,m)、N(0,n),求出直线AP、AQ的解析式(分别用m、n表示).分别联立直线AP、AQ与抛物线方程,求得P、Q的横坐标(分别用m、n表示),即得到关于m、n、k关系的式子,整理得mn=﹣1,即OM•ON=1,易证△BOM∽△NOB,进而求出∠MBN=90°【解答】解:(1)∵抛物线y=ax2+bx﹣2a经过点B(1,0)、C(0,)∴解得:∴抛物线的解析式为:y=x2+x﹣(2)当x=2时,n=×22+×2﹣=∴D(2,)①当点T在点A左侧时,如图1,∵S△TAD=S△TBD,且△TAD与△TBD有公共底边为TD∴AB∥TD,即TD∥x轴∴y T=y D=x2+x﹣=解得:x1=﹣3,x2=2(即点D横坐标,舍去)∴T(﹣3,)②当点T在点A右侧时,如图2,设DT与x轴交点为P,过A作AE⊥DT于E,过B作BF⊥DT于F∵S△TAD=S△TBD,且△TAD与△TBD有公共底边为TD∴AE=BF在△AEP与△BFP中,∴△AEP≌△BFP(AAS)∴AP=BP即P为AB中点由x2+x﹣=0 解得:x1=﹣2,x2=1∴A(﹣2,0)∴P(,0)设直线DP:y=kx+c解得:∴直线DT:y=解得:(即点D,舍去)∴T(,)综上所述,满足条件的点T的坐标为(﹣3,)与(,)(3)△BMN是直角三角形,证明如下:设x1为点P横坐标,x2为点Q的横坐标整理得:x2+(1﹣8k)x+8k﹣18=0∴x1+x2=8k﹣1,x1x2=8k﹣18设M(0,m),N(0,n)则OM=m,ON=﹣n∴直线AM解析式:y=,直线AN解析式:y=解得:∴P(1+4m,3m+)同理可得:Q(1+4n,3n+)∴整理得:mn=﹣1∴m•|n|=1 即OM•ON=1又OB=1,即OM•ON=OB2∴∴△BOM∽△NOB∴∠OBM=∠ONB∴∠MBN=∠OBM+∠OBN=∠ONB+∠OBN=90°∴△BMN是直角三角形【点评】本题考查了待定系数法求函数解析式,三角形面积,全等三角形的判定和性质,一元二次方程根与系数的关系,相似三角形的判定和性质.考查了分类讨论、数形结合思想,综合计算能力.第(2)题要结合图形找出T的特殊位置;第(3)题先判断∠MBN=90°,大胆设用多个未知量,利用联立直线和抛物线方程求交点坐标,再通过计算整理发型其中的规律.。

辽宁省本溪市数学中考一模试卷

辽宁省本溪市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·黔东南) ﹣2的相反数是()A . 2B . ﹣2C .D . ﹣2. (2分)(2016·丹东) 2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A . 6.76×106B . 6.76×105C . 67.6×105D . 0.676×1063. (2分)(2012·温州) 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A .B .C .D .4. (2分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是 ,则黄球的个数为().A . 16B . 12C . 8D . 45. (2分)(2017·张湾模拟) 下列计算中,正确的是()A . (a3)4=a7B . a4+a3=a7C . (﹣a)4 .(﹣a)3=a7D . a5÷a3=a26. (2分)如图,D,E分别△ABC的边AB,AC的中点,给出下列结论:①BC=2DE;②△ADE∽△ABC;③AD:AE=AB:AC;④S△ADE:S四边形BCED=1:3.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个7. (2分)(2018·平房模拟) 将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是()A .B .C .D .8. (2分) (2016七下·仁寿期中) 如图,宽为20cm的矩形图案是有10个完全一样的小长方形拼成,则其中一个小长方形的面积是()A . 40cmB . 52cmC . 64cmD . 72cm9. (2分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= ,则AD的长为()A . 2B .C .D . 110. (2分)(2018·无锡) 如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A . 4条B . 5条C . 6条D . 7条二、填空题 (共6题;共6分)11. (1分)(2017·潮南模拟) 因式分解:a2b﹣ab+ b=________.12. (1分)(2017·林州模拟) 函数的自变量x的取值范围是________.13. (1分)已知a+b=2,b≤2,y﹣a2﹣2a+2=0.则y的取值范围是________14. (1分)如图,在长方形ABCD中,AB=4cm,BC=5cm,在CD上取一点E,将△ADE折叠后点D恰好落在BC 边上的点F,则CE的长为________ cm.15. (1分)(2018·平顶山模拟) 如图,在Rt△ABC中,∠B=90°,∠C=30°,BC= ,以点B为圆心,AB为半径作弧交AC于点E,则图中阴影部分面积是________16. (1分) (2017八下·普陀期中) 如图,已知四边形ABCD是菱形,点E在边BC的延长线上,且CE=BC,那么图中与相等的向量有:________三、解答题 (共8题;共96分)17. (10分)解方程:=1.18. (10分) (2020八上·历下期末) 如图,网格中小正方形的边长为1,(0,4).(1)在图中标出点,使点到点,,,的距离都相等;(2)连接,,,此时是________三角形;(3)四边形的面积是________.19. (15分) (2016八上·开江期末) 某学校为了增强学生体质,决定开设以下体育课外活动项目:A、篮球,B、乒乓球,C、羽毛球,D、足球.为了解学生最喜欢哪一种活动项目,随机从2400名学生中抽取部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图(2)补充完整;(3)试估计该校2400名学生中参加篮球和羽毛球的学生人数共有多少人?20. (10分) (2017九上·亳州期末) 鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?21. (10分)(2017·三亚模拟) 为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60()海里,在B处测得C在北偏东45°的方向上,A处测得C在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120()海里.(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险?(参考数据: =1.41, =1.73, =2.45)22. (11分)(2019·张掖模拟) 如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交BC于点E,∠DCA 的平分线CF交AD于F.(1)求证:四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.23. (15分)(2017·顺义模拟) 在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)24. (15分) (2020七上·大冶期末) 已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q 出发的时间为t,当<t<时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共96分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、。

2016年本溪市初中毕业练习(二)2016届九年级数学试卷(解析版)

2016年本溪市初中毕业练习(二)九年级数学试卷一、选择题,每小题3分,共24分1.下列计算正确的是()A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b22.如图是一个几何体的俯视图,则该几何体可能是()A. B.C.D.3.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.314.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x15.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.6.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形A.y=x B.y=﹣C.y=(x﹣1)2+2 D.y=﹣(x﹣1)2+28.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A .B .C .D .二、填空条,每小题3分,共24分9.5的平方根是______.10.地球到火星的最近距离约为5500万千米,用科学记数法表示约是______米.11.代数式+有意义时,x 的取值范围是______.12.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是______.13.多项式a 3﹣2a 2b +ab 2分解因式为______.14.在△ABC 中,∠A=120°,AB=4,AC=2,则sinB 的值是______.15.已知关于x 的方程k 2x 2﹣2(k +1)x +1=0有实数根,则k 的取值范围是______. 16.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为______.三、解答题17.先化简,再求值:(x+3﹣),其中x=﹣.18.某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按另外的标准收费,甲说:“我乘出租车走了5千米,付了10元”;乙说:“我乘出租车走了8千米,付了16元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)假如你的身上只有20元,那么你乘出租车不能超过多少千米?19.甲、乙两校选派相同人数的学生参加市初中历史知识竞赛,统计结果,发现学生成绩分别为7分、8分、9分、10分(满分10分),依据统计数据绘制了如下尚不完整的统计图表(2)请将图2的统计图和乙校成绩统计表补充完整;(3)成绩最好的男同学王东、李亮.女同学张梅、萧红被选中参加电视辩论,辩论前抽签决定每两人为一组,请你用树状图和列表法表示所有可能的分组结果,并计算两名男同学恰好在同一组的概率.20.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.21.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?22.数学实践活动小组实地测量山峰与山下广场的相对高度AB,器测量步骤如下:(1)在测点C处安置测倾器,测得此时山顶A的仰角为30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上石塔顶部E的仰角为45°;(3)已知测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;若石塔的高度为12米,请根据测量数据求出山峰与山下广场的相对高度AB.(≈1.732,,结果保留整数)23.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.24.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)25.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是______,=______.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0)二次函数y=ax2+bx的图象经过D,C两点(1)求该二次函数的表达式;(2)F,G分别为对称轴、x轴上的动点,首尾顺次连接D,E,G,F构成四边形DEGF,求四边形DEGF周长的最小值;(3)抛物线的对称轴上是否存在点P,使△ODP为等腰三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.2016年本溪市初中毕业练习(二)九年级数学试卷参考答案与试题解析一、选择题,每小题3分,共24分1.下列计算正确的是()A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识求解即可求得答案.【解答】解:A、(2a2)4=16a8,故A选项错误;B、a3+a,不是同类项不能计算,故B选项错误;C、a2÷a=a,故C选项正确;D、(a﹣b)2=a2+b2﹣2ab,故D选项错误.故选:C.2.如图是一个几何体的俯视图,则该几何体可能是()A. B.C.D.【考点】由三视图判断几何体.【分析】由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【解答】解:图是两个圆,一大一小,小的包含在大圆里面.A、球的俯视图是一个圆,故选项错误;B、俯视图是两个圆,一大一小,小的包含在大圆里面,此选项正确;C、圆锥的俯视图是一个圆及这个圆的圆心,此选项错误;D、圆柱的俯视图是一个圆,故选项错误.故选:B.3.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.31【考点】众数.【分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.【解答】解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.4.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选D.5.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.6.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D 选项错误;综上所述,符合题意是D选项;故选:D.A.y=x B.y=﹣C.y=(x﹣1)2+2 D.y=﹣(x﹣1)2+2【考点】待定系数法求二次函数解析式;待定系数法求正比例函数解析式;待定系数法求反比例函数解析式.【分析】根据表中数据得到抛物线过点(0,)和(2,),则利用抛物线的对称性得抛物线的对称轴为直线x=1,而x=1时,y=2,则抛物线的顶点坐标为(1,2),于是设顶点式y=a(x﹣1)2﹣2,然后把(﹣1,﹣1)代入求出a的值即可.【解答】解:∵抛物线过点(0,)和(2,),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,2)设抛物线解析式为y=a(x﹣1)2+2,把(﹣1,﹣1)代入得4a+2=﹣1,解得a=﹣,∴抛物线解析式为y=﹣(x﹣1)2+2.故选D.8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A .B .C .D .【考点】动点问题的函数图象.【分析】当点N 在AD 上时,易得S △AMN 的关系式;当点N 在CD 上时,高不变,但底边在增大,所以S △AMN 的面积关系式为一个一次函数;当N 在BC 上时,表示出S △AMN 的关系式,根据开口方向判断出相应的图象即可.【解答】解:当点N 在AD 上时,即0≤x ≤1,S △AMN =×x ×3x=x 2,点N 在CD 上时,即1≤x ≤2,S △AMN =×x ×3=x ,y 随x 的增大而增大,所以排除A 、D ;当N 在BC 上时,即2≤x ≤3,S △AMN =×x ×(9﹣3x )=﹣x 2+x ,开口方向向下. 故选:B .二、填空条,每小题3分,共24分9.5的平方根是 ± . 【考点】平方根. 【分析】直接根据平方根的定义解答即可.【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.10.地球到火星的最近距离约为5500万千米,用科学记数法表示约是 5.5×1010 米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将5500万用科学记数法表示为:5.5×1010.故答案为:5.5×1010.11.代数式+有意义时,x 的取值范围是 x ≥﹣且x ≠0 .【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,1+2x ≥0,x ≠0,解得,x ≥﹣且x ≠0,故答案为:x ≥﹣且x ≠0.12.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与转盘所转到的两个数字之积为奇数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,转盘所转到的两个数字之积为奇数的有2种情况,∴转盘所转到的两个数字之积为奇数的概率是:=.故答案为:.13.多项式a3﹣2a2b+ab2分解因式为a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为:a(a﹣b)214.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是.【考点】解直角三角形.【分析】根据题意画出图形,如图所示,作CD垂直于BA,交BA延长线于点D,在直角三角形ACD中,利用邻补角定义求出∠CAD=60°,进而确定出∠ACD=30°,利用30度角所对的直角边等于斜边的一半求出AD的长,利用勾股定理求出CD的长,由AD+DB求出DB的长,在直角三角形BCD中,利用勾股定理求出BC的长,利用锐角三角函数定义即可求出sinB的值.【解答】解:根据题意画出图形,如图所示,过C作CD⊥BA,交BA延长线于点D,∵∠BAC=120°,∴∠CAD=60°,在Rt△ACD中,∠ACD=30°,AC=2,∴AD=AC=1,根据勾股定理得:CD==,在Rt △BCD 中,CD=,BD=BA +AD=4+1=5, 根据勾股定理得:BC==,则sinB===.故答案为:.15.已知关于x 的方程k 2x 2﹣2(k +1)x +1=0有实数根,则k 的取值范围是 k ≥﹣ . 【考点】根的判别式.【分析】由于关于x 的方程k 2x 2﹣2(k +1)x +1=0有实数根,①当k=0时,方程为一元一次方程,此时一定有实数根;②当k ≠0时,方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此即可求出k 的取值范围.【解答】解:当k=0时,原方程可化为﹣2x +1=0,此方程有实数根;当k ≠0时,由题意得:[﹣2(k +1)]2﹣4k 2≥0,解得:k ≥﹣,综上,k 的取值范围是k ≥﹣,故答案为:k ≥﹣.16.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为 .【考点】反比例函数系数k 的几何意义.【分析】根据反比例函数图象上点的坐标特征和三角形面积公式得到Rt △P 1B 1P 2的面积=×a ×(﹣),Rt △P 2B 2P 3的面积=×a ×(﹣),Rt △P 3B 3P 4的面积=×a ×(﹣),由此得出△P n ﹣1B n ﹣1P n 的面积=×a ×[﹣],化简即可. 【解答】解:设OA 1=A 1A 2=A 2A 3=…=A n ﹣2A n ﹣1=a ,∵x=a 时,y=,∴P 1的坐标为(a ,),∵x=2a 时,y=2×,∴P 2的坐标为(2a ,),∴Rt △P 1B 1P 2的面积=×a ×(﹣),Rt △P 2B 2P 3的面积=×a ×(﹣),Rt △P 3B 3P 4的面积=×a ×(﹣), …,∴△P n ﹣1B n ﹣1P n 的面积=×a ×[﹣]=×1×(﹣)=.故答案为:.三、解答题17.先化简,再求值:(x +3﹣),其中x=﹣. 【考点】分式的化简求值.【分析】首先对括号内的式子进行通分相加,把除法转化为乘法,然后进行乘法计算即可化简,然后代入数值计算即可.【解答】解:原式=÷=÷=•=,当x=﹣时,原式==.18.某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按另外的标准收费,甲说:“我乘出租车走了5千米,付了10元”;乙说:“我乘出租车走了8千米,付了16元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)假如你的身上只有20元,那么你乘出租车不能超过多少千米?【考点】二元一次方程组的应用.【分析】(1)设这种出租车的起步价是x元,超过3千米后,每千米的车费是y元,依据“乘出租车走了5千米,付了10元“、“乘出租车走了8千米,付了16元”列出方程组并解答;(2)设乘出租车不超过z千米,根据总费用不超过20元列出不等式并解答.【解答】解:(1)设这种出租车的起步价是x元,超过3千米后,每千米的车费是y元,依题意得:,解这个方程组得.答:这种出租车的起步价是6元,超过3千米后,每千米的车费是2元;(2)设乘出租车不超过z千米,则6+2(z﹣3)≤20,解得z≤10.答:乘出租车不超过10千米.19.甲、乙两校选派相同人数的学生参加市初中历史知识竞赛,统计结果,发现学生成绩分别为7分、8分、9分、10分(满分10分),依据统计数据绘制了如下尚不完整的统计图表()在图中,分所在扇形的圆心角等于144度;(2)请将图2的统计图和乙校成绩统计表补充完整;(3)成绩最好的男同学王东、李亮.女同学张梅、萧红被选中参加电视辩论,辩论前抽签决定每两人为一组,请你用树状图和列表法表示所有可能的分组结果,并计算两名男同学恰好在同一组的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)直接根据扇形统计图的已知条件求解即可求得答案;(2)首先求得总人数,继而可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名男同学恰好在同一组的情况,再利用概率公式求解即可求得答案.【解答】解:(1)由扇形统计图可得:”7分”所在扇形的圆心角为:360°﹣90°﹣72°﹣54°=144°. 故答案为:144;(2)∵10分的5人,占×100%=25%,∴每个学校派出的人数为:5÷25%=20(人),∴甲校8分的人数为:20﹣8﹣4﹣5=3(人),9201108=1∵共有12种等可能的结果,两名男同学恰好在同一组的有4种情况,∴两名男同学恰好在同一组的概率为: =.20.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.21.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【考点】分式方程的应用.【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:=,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.22.数学实践活动小组实地测量山峰与山下广场的相对高度AB,器测量步骤如下:(1)在测点C处安置测倾器,测得此时山顶A的仰角为30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上石塔顶部E的仰角为45°;(3)已知测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;若石塔的高度为12米,请根据测量数据求出山峰与山下广场的相对高度AB.(≈1.732,,结果保留整数)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.【解答】解:设AH=x米,在RT△EHG中,∵∠EGH=45°,∴GH=EH=AE+AH=x+12,∵GF=CD=288米,∴HF=GH+GF=x+12+288=x+300,在Rt△AHF中,∵∠AFH=30°,∴AH=HF•tan∠AFH,即x=(x+300)•,解得x=150(+1).∴AB=AH+BH≈409.8+1.5≈411(米)答:山峰与山下广场的相对高度AB大约是411米.23.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若⊙O的半径为cm,弦BD的长为3cm,求CF的长.【考点】切线的判定.【分析】(1)连结OC,如图,由于∠A=∠OCA,则根据三角形外角性质得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根据平行线的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根据切线的判定定理得CF为⊙O的切线;(2)解:作OH⊥BD于H,如图,根据垂径定理得到BH=DH=BD=,在Rt△OBH中可利用勾股定理计算出OH=2,易得四边形OHEC为矩形,则CE=OH=2,HE=OC=,BE=1,然后证明△FBE∽△FOC,利用相似比可计算出CF.【解答】(1)证明:连结OC,如图,∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)解:作OH⊥BD于H,如图,则BH=DH=BD=,在Rt△OBH中,∵OB=,BH=,∴OH==2,易得四边形OHEC为矩形,∴CE=OH=2,HE=OC=,∴BE=NE﹣BH=1,∵BE∥OC,∴△FBE∽△FOC,∴=,即=,∴CF=.24.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)【考点】一次函数的应用.【分析】(1)设y与x之间的关系式为y=kx+b,运用待定系数法就可以求出其关系式,由该机器生产数量至少为10台,但不超过70台就可以确定自变量的取值范围;(2)根据每台的成本乘以生产数量等于总成本建立方程求出其解即可;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,运用待定系数法求出其解析式,再将z=25代入解析式求出a的值,就可以求出每台的利润,从而求出总利润.【解答】解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,成本y=﹣x+65=﹣×50+65=40(万元);总利润为:25(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.25.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是互相垂直,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.【考点】几何变换综合题.【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;(3)过点D作DH⊥BC于H,则DB=4﹣(6﹣2)=2﹣2,进而得出BH=﹣1,DH=3﹣,求出CH=BH,得出∠DCA=45°,进而得出答案.【解答】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴AC=2,∵点E,F分别是线段BC,AC的中点,∴=;故答案为:互相垂直;;(2)(1)中结论仍然成立.证明:如图2,∵点E,F分别是线段BC,AC的中点,∴EC=BC,FC=AC,∴==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴===,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4﹣(6﹣2)=2﹣2,∴BH=﹣1,DH=3﹣,又∵CH=2﹣(﹣1)=3﹣,∴CH=DH,∴∠HCD=45°,∴∠DCA=45°,∴α=180°﹣45°=135°.26.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0)二次函数y=ax2+bx的图象经过D,C两点(1)求该二次函数的表达式;(2)F,G分别为对称轴、x轴上的动点,首尾顺次连接D,E,G,F构成四边形DEGF,求四边形DEGF周长的最小值;(3)抛物线的对称轴上是否存在点P,使△ODP为等腰三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先利用∠AOC的平分线交AB于点D得到AO=AD,则D(4,4),然后利用待定系数法求抛物线解析式;(2)利用二次函数的性质得到抛物线的对称轴为直线x=,抛物线与AB的另一个交点为D′,点E关于x轴的对称点为E′,连结D′E′交x轴于G,交直线x=﹣于F,如图1,根据两点之间线段最短判断此时EG+FG+FD的值最小,于是判断四边形DEGF周长有最小值,再求出D′和E′点的坐标,然后利用两点间的距离公式求出D′E′和DE,从而得到四边形DEGF 周长的最小值;(3)直线x=交x轴于点H,交AB于N,如图2,利用勾股定理计算出OD=4,分类讨论:作DG⊥x轴于点G,连结AG交对称轴于点P1,如图2,易得四边形AOGD为正方形,则AG垂直平分OD,所以△P1OD为等腰三角形,易得直线AG的解析式为y=﹣x+4,求直线y=﹣x+4与对称轴的交点得到P1的坐标;以点D为圆心,DO为半径画弧交对称轴于点P2,P3,如图2,则DP2=DP3=4,利用勾股定理计算出P2N=,同理可得P3N=,则可得到P2和P3的坐标;以点O为圆心,OD为半径画弧交对称轴于点P4,P5,如图2,则OP4=OP5=4,利用勾股定理计算出P4H和P5H的长,于是可得到P4和P3的坐标.【解答】解:(1)∵A(0,4)、C(5,0),∴OA=4,OC=5,∵∠AOC的平分线交AB于点D,∴AO=AD,∴D(4,4),把D(4,4),C(5,0)代入y=ax2+bx得,解得,∴抛物线解析式为y=﹣x2+5x;(2)∵y=﹣x2+5x=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,抛物线与AB的另一个交点为D′,点E关于x轴的对称点为E′,连结D′E′交x轴于G,交直线x=﹣于F,如图1,∵FD=FD′,GE=GE′,∴EG+FG+FD=GE′+FG+FD′=D′E′,∴此时EG+FG+FD的值最小,此时四边形DEGF周长有最小值,当y=4时,﹣x2+5x=4,解得x1=1,x2=4,则D′(1,4),∵点E为BC的中点,∴E(5,2),∵点E′与点E关于x轴对称,∴E′(5,﹣2),∴D′E′==2,DE==,∴四边形DEGF周长的最小值=DE+D′E′=+;(3)存在.直线x=交x轴于点H,交AB于N,如图2,∵D(4,4),∴OD==4,作DG⊥x轴于点G,连结AG交对称轴于点P1,如图2,易得四边形AOGD为正方形,∴AG垂直平分OD,∴P1O=P1D,即△P1OD为等腰三角形,∵G(4,0),易得直线AG的解析式为y=﹣x+4,当x=时,y=﹣x+4=,则P1(,);以点D为圆心,DO为半径画弧交对称轴于点P2,P3,如图2,则DP2=DP3=4,在Rt△DP2N中,DN=4﹣=,∴P2N==,同理可得P3N=,∴P2(,4+),P3(,4﹣),以点O为圆心,OD为半径画弧交对称轴于点P4,P5,如图2,则OP4=OP5=4,在Rt△OP4H中,P4H==,同理可得P5H=,∴P4(,),P3(,﹣),综上所述,满足条件的P点坐标为(,)或(,4+)或(,4﹣),(,)或(,﹣).2016年9月28日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年辽宁省本溪市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是( )A .﹣2B .﹣C .2D .2.下列运算错误的是( )A .﹣m 2•m 3=﹣m 5B .﹣x 2+2x 2=x 2C .(﹣a 3b )2=a 6b 2D .﹣2x (x ﹣y )=﹣2x 2﹣2xy 3.下面几何体的俯视图是( )A .B .C .D .4.下列图形既是中心对称图形又是轴对称图形的是( )A .B .C .D .5.7名同学每周在校体育锻炼时间(单位:小时)分别为:7,5,8,6,9,7,8,这组数据的中位数是( )A .6B .7C .7.5D .86.有五张背面完全相同的卡片,正面分别写有,()0,,,2﹣2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是( )A .B .C .D .7.若a,且a 、b 是两个连续整数,则a+b 的值是( ) A .1 B .2 C .3 D .48.小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B. C.D.9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a﹣b=0 C.4a+2b+c<0 D.9a+3b+c=010.如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4 B.6 C.﹣4 D.﹣6二、填空题:本题共8小题,每小题3分,共24分.11.截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为.12.因式分解:3ax2+6ax+3a= .13.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S乙2=0.04,成绩比较稳定的是(填“甲”或“乙”).14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.16.如图,小华把同心圆纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上),已知大圆半径为30cm,小圆半径为20cm,则飞镖击中阴影区域的概率是.17.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.18.如图,面积为1的等腰直角△OA1A2,∠OA2A1=90°,且OA2为斜边在△OA1A2,外作等腰直角△OA2A3,以OA3为斜边在△OA2A3,外作等腰直角△OA3A4,以OA4为斜边在△OA3A4,外作等腰直角△OA4A5,…连接A1A3,A3A5,A5A7,…分别与OA2,OA4,OA6,…交于点B1,B2,B3,…按此规律继续下去,记△OB1A3的面积为S1,△OB2A5的面积为S2,△OB3A7的面积为S3,…△OB n A2n+1的面积为S n,则S n= (用含正整数n的式子表示).三、解答题:第19题10分,第20题12分,共22分.19.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.20.为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人,扇形统计图中m= ;(2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.四、解答题:第21题12分,第22题12分,共24分.21.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.22.如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.五、解答题:12分.23.某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?六、解答题:12分.24.如图,某巡逻艇计划以40海里/时的速度从A处向正东方向的D处航行,出发1.5小时到达B 处时,突然接到C处的求救信号,于是巡逻艇立刻以60海里/时的速度向北偏东30°方向的C处航行,到达C处后,测得A处位于C处的南偏西60°方向,解救后巡逻艇又沿南偏东45°方向航行到D处.(1)求巡逻艇从B处到C处用的时间.(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).(参考数据:)七、解答题:12分.25.已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是;(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图③,若,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.八、解答题:14分.26.如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.2016年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.﹣2 B.﹣ C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算错误的是()A.﹣m2•m3=﹣m5B.﹣x2+2x2=x2C.(﹣a3b)2=a6b2D.﹣2x(x﹣y)=﹣2x2﹣2xy【考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】计算出各个选项中式子的正确结果,然后对照,即可解答本题.【解答】解:∵﹣m2•m3=﹣m5,故选项A正确,∵﹣x2+2x2=x2,故选项B正确,∵(﹣a3b)2=a6b2,故选项C正确,∵﹣2x(x﹣y)=﹣2x2+2xy,故选项D错误,故选D.【点评】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.3.下面几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据几何体的俯视图是从物体上面看得到的图形解答即可.【解答】解:图中几何体的俯视图是B在的图形,故选:B.【点评】本题考查的是简单组合体的三视图,主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.4.下列图形既是中心对称图形又是轴对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故选项正确;B、是轴对称图形,不是中心对称图形,故选项错误;C、是轴对称图形,不是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选A.【点评】本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.5.7名同学每周在校体育锻炼时间(单位:小时)分别为:7,5,8,6,9,7,8,这组数据的中位数是()A.6 B.7 C.7.5 D.8【考点】中位数.【分析】求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:数据按从小到大排列后为5,6,7,7,8,8,9,∴这组数据的中位数是7.故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.6.有五张背面完全相同的卡片,正面分别写有,()0,,,2﹣2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是()A.B.C.D.【考点】概率公式;无理数;负整数指数幂.【分析】先将给出的五个数计算,发现只有一个无理数:,求出抽到正面的数字是无理数的概率是.【解答】解: =3,()0=1, =2,2﹣2=,,无理数为:,所以抽到无理数的概率为:,故选A.【点评】本题综合考查了无理数的定义、二次根式的化简、负整数指数幂及概率,虽然内容较多,但难度不大;做好本题要熟知以下几个公式:① =|a|,②a﹣p=(a≠0,p为整数).7.若a,且a、b是两个连续整数,则a+b的值是()A.1 B.2 C.3 D.4【考点】估算无理数的大小.【分析】根据的整数部分是2,可知0<﹣2<1,由此即可解决问题.【解答】解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选A.【点评】本题考查估算无理数大小,学会利用逼近法估算无理数大小是解题的关键,属于基础题中考常考题型.8.小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B. C.D.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的平均速度为x千米/时,则乘汽车的平均速度是3x千米/时,根据“骑自行车前往比乘汽车多用20分钟”可列方程.【解答】解:设骑自行车的平均速度为x千米/时,则乘汽车的平均速度是3x千米/时,根据题意,可列方程:﹣=,故选:D.【点评】本题主要考查根据实际问题列分式方程,由实际问题抽象出分式方程的关键是分析题意找出相等关系,注意单位统一.9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a﹣b=0 C.4a+2b+c<0 D.9a+3b+c=0【考点】二次函数图象与系数的关系.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可判断abc<0,根据对称轴为x=1可判断出2a+b=0,当x=2时,4a+2b+c>0,当x=3时,9a+3b+c=0【解答】解:∵抛物线的开口向下,则a<0,对称轴在y轴的右侧,∴b>0,图象与y轴交于正半轴上,∴c>0,∴abc<0,:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴2a+b=0,当x=2时,4a+2b+c>0,当x=3时,9a+3b+c=0,故选D.【点评】此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).10.如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4 B.6 C.﹣4 D.﹣6【考点】反比例函数系数k的几何意义.【分析】设点C的坐标为(m,),则点E(m,),A(m,),根据三角形的面积公式可得出S△AEC=﹣k=,由此即可求出k值.【解答】解:设点C的坐标为(m,),则点E(m,),A(m,),∵S△AEC=BD•AE=(m﹣m)•(﹣)=﹣k=,∴k=﹣4.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C的坐标,利用点C的横坐标表示出A、E点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.二、填空题:本题共8小题,每小题3分,共24分.11.截止到2016年6月,我国森林覆盖面积约为208000000公顷,将208000000用科学记数法表示为 2.08×108.【考点】科学记数法—表示较大的数.【专题】推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:208000000=2.08×108.故答案为:2.08×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.12.因式分解:3ax2+6ax+3a= 3a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2+6ax+3a,=3a(x2+2x+1),=3a(x+1)2.故答案为:3a(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S乙2=0.04,成绩比较稳定的是乙(填“甲”或“乙”).【考点】方差.【分析】根据方差的定义,方差越小数据越稳定即可求解.【解答】解:因为S甲2=0.1>S乙2=0.04,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1<y2.(填“>”、“=”或“<”)【考点】一次函数图象上点的坐标特征.【分析】由k=﹣2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x2,即可得出结论.【解答】解:∵一次函数y=﹣2x+5中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,解题的关键是根据k=﹣2<0得出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次项系数的正负得出该函数的增减性是关键.15.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为 1 .【考点】根的判别式.【分析】根据一元二次方程的定义和根的判别式的意义得到k≠0且b2﹣4ac>0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.【点评】本题考查的是根的判别式,在解答此题时要注意k≠0的条件.16.如图,小华把同心圆纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上),已知大圆半径为30cm,小圆半径为20cm,则飞镖击中阴影区域的概率是.【考点】几何概率.【分析】首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率.【解答】解:大圆面积:π×302=900π,小圆面积:π×202=400π,阴影部分面积:900π﹣400π=500π,飞镖击中阴影区域的概率: =,故答案为:.【点评】此题主要考查了概率,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为3或.【考点】相似三角形的性质.【分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答】解:∵△DCE∽△ABC,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴或即或解得,CE=3或CE=故答案为:3或.【点评】本题考查相似三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.18.如图,面积为1的等腰直角△OA1A2,∠OA2A1=90°,且OA2为斜边在△OA1A2,外作等腰直角△OA2A3,以OA3为斜边在△OA2A3,外作等腰直角△OA3A4,以OA4为斜边在△OA3A4,外作等腰直角△OA4A5,…连接A1A3,A3A5,A5A7,…分别与OA2,OA4,OA6,…交于点B1,B2,B3,…按此规律继续下去,记△OB1A3的面积为S1,△OB2A5的面积为S2,△OB3A7的面积为S3,…△OB n A2n+1的面积为S n,则S n=(用含正整数n的式子表示).【考点】等腰直角三角形.【专题】规律型.【分析】先根据等腰直角三角形的定义求出∠A1OA3=∠OA3A2=90°,得A2A3∥OA1,根据同底等高的两个三角形的面积相等得: =,所以=,同理得:A4A5∥A3O,同理得: =,根据已知的=1,求对应的直角边和斜边的长:OA2=A1A2=,A2A3=OA3=1,OA1=2,并利用平行相似证明△A2B1A3∽△OB1A1,列比例式可以求A2B1=,根据面积公式计算S1=,同理得:S2=×,从而得出规律:S n=S n﹣1=×.【解答】解:∵△OA1A2、△OA2A3是等腰直角三角形,∴∠A1OA2=∠A2OA3=45°,∴∠A1OA3=∠OA3A2=90°,∴A2A3∥OA1,∴=(同底等高),∴+=+,∴=,同理得:A4A5∥A3O,=,∵=1,∴OA2•A1A2=1,∵OA2=A1A2,∴OA2=A1A2=,∴A2A3=OA3=1,OA1=2,∵A2A3∥OA1,∴△A2B1A3∽△OB1A1,∴==,∵A2O=,∴A2B1=,∴S1===A1A2•A2B1=××=,同理得:OA4=A3A4==,A4A5=,∴△A4A5B2∽△OA3B2,∴===,∴A4B2==×=,∴S2===××=×,所以得出规律:S n=S n﹣1=×,故答案为:×.【点评】本题考查了等腰直角三角形的性质,勾股定理,相似三角形的性质和判定以及三角形面积的计算问题,比较复杂,书写时小下标较多,要认真书写,先根据等腰直角三角形的面积求各边的长,利用同底等高的三角形面积相等将所求的三角形进行转化,从而解决问题,并发现规律.三、解答题:第19题10分,第20题12分,共22分.19.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=3x+15,再根据分式有意义的条件把x=1代入计算即可.【解答】解:原式=•=•=3x+15,当x=1时,原式=3+15=18.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有200 人,扇形统计图中m= 30% ;(2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【专题】数形结合.【分析】(1)用A类人数除以它所占的百分比可得到调查的总人数,然后用B类人数除以总人数可得到m的值;(2)先计算出C类人数,然后补全条形统计图;(3)用1800乘以样本中B类人数所占的百分比即可;(4)画树状图展示12种等可能的结果数,再找出所抽取的两人都最喜爱“校长信箱”栏目的结果数,然后根据概率公式求解.【解答】解:(1)本次被调查的学生数为30÷15%=200(人),扇形统计图中m=×100%=30%;故答案为200,30%;(2)C类人数=200×25%=50(人),条形统计图补充为:(3)1800×30%=540,所以估计全校最喜爱“校长信箱”栏目的学生有540人;(4)画树状图为:共有12种等可能的结果数,其中所抽取的两人都最喜爱“校长信箱”栏目的结果数为6,所以所抽取的两人都最喜爱“校长信箱”栏目的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.四、解答题:第21题12分,第22题12分,共24分.21.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22.如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.【考点】切线的判定;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到∠B=∠ACB,∠OCE=∠E,推出∠ACO=90°,根据切线的判定定理即可得到结论;(2)根据已知条件得到∠CFO=30°,解直角三角形得到DF==,EF=3OE=4,即可得到结论.【解答】(1)证明:连接CO,如图:∵AB=AC,∴∠B=∠ACB,∵OC=OE,∴∠OCE=∠E,∵DE⊥AB,∴∠BDE=90°,∴∠B+∠E=90°,∴∠ACB+∠OCE=90°,∴∠ACO=90°,∴AC⊥OC,∴AC是⊙O的切线;(2)解:∵∠E=30°,∴∠OCE=30°,∴∠FCE=120°,∴∠CFO=30°,∴∠AFD=∠CFO=30°,∴DF==,∵BD=5,∴DE=5,∵OF=2OC,∴EF=3OE=4,∴OE=,即⊙O的半径=.【点评】本题考查了切线的判定,直角三角形的性质,等腰三角形的性质,熟练掌握切线的判定定理是解题的关键.五、解答题:12分.23.某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?【考点】二次函数的应用;一元一次不等式组的应用.【分析】(1)根据待定系数法可求y与x之间的函数关系式;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值.【解答】解:(1)设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(70,160),(80,140)这两点,∴,解得.∴函数关系式是:y=﹣2x+300(60≤x≤99)(2)当销售单价定为x元时,公司每天获得利润最大为W元,依题意得W=(x﹣60)(﹣2x+300)=﹣2(x2﹣210x+9000)=﹣2(x﹣105)2+4050(60≤x≤99),∴当x=99时,W有最大值3978.当销售单价定为99元时,公司每天获得利润最大,最大利润为3978元.【点评】此题考查二次函数的实际运用,掌握销售问题中的基本数量关系得出函数解析式是解决问题的关键.六、解答题:12分.24.如图,某巡逻艇计划以40海里/时的速度从A处向正东方向的D处航行,出发1.5小时到达B 处时,突然接到C处的求救信号,于是巡逻艇立刻以60海里/时的速度向北偏东30°方向的C处航行,到达C处后,测得A处位于C处的南偏西60°方向,解救后巡逻艇又沿南偏东45°方向航行到D处.(1)求巡逻艇从B处到C处用的时间.(2)求巡逻艇实际比原计划多航行了多少海里?(结果精确到1海里).(参考数据:)【考点】解直角三角形的应用-方向角问题.【分析】(1)求出BC的长,即路程,则时间=,代入计算;(2)原计划的路程为:AD的长,实际的路程为:AB+BC+CD,相减即可.【解答】解:(1)如图所示,AB=1.5×40=60,∵BE∥CF,∴∠BCF=∠EBC=30°,在Rt△AFC中,∵∠ACF=60°,∴∠A=90°﹣60°=30°,设BF=x,则BC=2x,CF=x,tan∠A=,∴BE=tan30°•AB=×60=20,∵BE∥CF,∴,∴20(60+x)=60×x,解得:x=30,∴BC=2x=60,t==1,答:巡逻艇从B处到C处用的时间为1小时;(2)∵∠FCD=45°,∠CFD=90°,∴△CFD是等腰直角三角形,∴FC=FD=x=30,∴CD=FC=30,则AB+BC+CD﹣(AB+BF+FD),=BC+CD﹣BF﹣FD,=60+30﹣30﹣30,=30+30﹣30,=30×(1+2.45﹣1.73),≈52,答:巡逻艇实际比原计划多航行了52海里.【点评】本题是解直角三角形的应用,考查了方向角问题;这在解直角三角形中是一个难点,要知道已知和所求的方向角的位置:一般是以第一个方向为始边向另一个方向旋转相应度数;在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.七、解答题:12分.25.已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB、CM的数量关系是PB=2CM ;(2)如图②,当AC=BC,点P在线段CB的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)如图③,若,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.【考点】几何变换综合题.【分析】(1)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质再用中位线即可;(2)作出△ABC绕点A顺时针旋转90°,利用旋转的性质,和等腰三角形的性质,再用中位线即可;(3)同(1)(2)的方法作出辅助线,利用平行线中的基本图形“A”得出比例式,用勾股定理求出x,最后用三角形的面积公式即可.【解答】解:(1)如图1,将△ABC绕点A顺时针旋转90°,得到△AB'C',∴B'Q=BP,AB'=AB,连接BB',∵AC⊥BC,∴点C在BB'上,且CB'=CB,依题意得,∠C'B'B=90°,∴CM∥B'C',而CB'=CB,∴2CM=B'Q,。

相关文档
最新文档