找规律题解汇总归类

合集下载

小学四年级奥数培训试题分类汇总

小学四年级奥数培训试题分类汇总

小学四年级奥数培训试题分类汇总第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,( ),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,( ),22,26(2)3,6,9,12,( ),18,21(3)33,28,23,( ),13,( ),3(4)55,49,43,( ),31,( ),19(5)3,6,12,( ),48,( ),192(6)2,6,18,( ),162,( )(7)128,64,32,( ),8,( ),2(8)19,3,17,3,15,3,( ),( ),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

1,2,4,7,( ),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。

由此可以推算7比括号里的数少4,括号里应填:7+4=11。

经验证,所填的数是正确的。

应填的数为:7+4=11或16-5=11。

练习2:先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,( ),31(2)1,4,9,16,25,( ),49,64(3)3,2,5,2,7,2,( ),( ),11,2(4)53,44,36,29,( ),18,( ),11,9,8(5)81,64,49,36,( ),16,( ),4,1,0(6)28,1,26,1,24,1,( ),( ),20,1(7)30,2,26,2,22,2,( ),( ),14,2(8)1,6,4,8,7,10,( ),( ),13,14【例题3】先找出规律,然后在括号里填上适当的数。

事业单位招聘公务员基础知识看图找规律题

事业单位招聘公务员基础知识看图找规律题
【巩固】根据前三个方格表中阴影部分的变化规律,填上第(10)个方格表中阴影部分的小正方形内的几个数之和。
【解析】由阴影部分在每一列都在一格一格下移的规律可得,每经过四次移动,阴影部分就会回到原来的位置,因为10÷4=2...2,所以,第(10)个图应该与第(2)个图相同,所以,第(10)个图为:
所以方格中几个数的和是:1+2+5+9=17.
【例 3】观察下面的图形,按规律在“?”处填上适当的图形.
【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.
【例 4】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:
所以,空缺的图形分别是:
【例 15】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?
【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C;8号位置放图案B;9号位置放图案A.
(2)图中的阴影部分,是在小正方形的对角线的左右两边交替出现的,因此空白处图中的阴影部分应在小正方形对角线的右边.

初中数学找规律题(有答案)

初中数学找规律题(有答案)

初中数学找规律题(有答案)“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律.找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n—1)b,其中a为数列的第一位数,b为增幅,(n—1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8。

(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,……。

(完整版)七年级数学找规律题

(完整版)七年级数学找规律题

(完整版)七年级数学找规律题归纳—猜想~~~找规律给出⼏个具体的、特殊的数、式或图形,要求找出其中的变化规律,从⽽猜想出⼀般性的结论. 解题的思路是实施特殊向⼀般的简化;具体⽅法和步骤是(1)通过对⼏个特例的分析,寻找规律并且归纳;(2)猜想符合规律的⼀般性结论;(3)验证或证明结论是否正确, 下⾯通过举例来说明这些问题.⼀、数字排列规律题1、观察下列各算式:1+3=4=2 的平⽅,1+3+5=9=3的平⽅,1+3+5+7=16=4的平⽅?按此规律(1)试猜想:1+3+5+7+?+2005+2007的值?(2)推⼴:1+3+5+7+9+ ?+(2n-1)+ (2n+1)的和是多少?2、下⾯数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下⾯横线上的数字。

1 123 5 8 _______ 214、有⼀串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、??聪明的你猜猜第100 个数是什么?5、有⼀串数字3 6 10 15 21 ___ 第6 个是什么数?6、观察下列⼀组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、?,那么第2005 个数是(). A.1 B.2 C.3 D.47、100 个数排成⼀⾏,其中任意三个相邻数中,中间⼀个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为 ___ 个.⼆、⼏何图形变化规律题1、观察下列球的排列规律(其中?是实⼼球,○是空⼼球):○○??○○○○○?○○??○○○○○?○○??○○○○○从第1 个球起到第2004个球⽌,共有实⼼球个.2、观察下列图形排列规律(其中△是三⾓形,□是正⽅形,○是圆),□○△□□○△□○△□□○△□┅┅,若第⼀个图形是正⽅形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下⾯的⼏个算式:1+2+1=4 ,1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=2,5 ?根据你所发现的规律,请你直接写出下⾯式⼦的结果:21+2+3+?+99+100+99+?+3+2+1= .13、1+2+3+?+100=?经过研究,这个问题的⼀般性结论是 1+2+3+?+ n 1n n 1 ,其中n是正整数 . 现在我们来研究⼀个类似的问题: 1×2+2×3+?n n 1=?观察下⾯三个特殊的等式11 2 1 2 3 0 1 23 12 3 2 3 4 1 2 33 13 4 3 4 5 2 3 431将这三个等式的两边相加,可以得到1×2+2×3+3×4= 13 4 5 203 读完这段材料,请你思考后回答:⑴22 3100 101⑵1 23 2 34nn 1 n2⑶1 232 34 nn 1 n24、已知:2 2 22 2,3 3323,4 4 2 4 5 42,552 254, 3388 15 15 24b 2 b 则a b ?若10102符合前⾯式⼦的规a a参考答案:⼀、1、(1)1004的平⽅( 2)n+1的平⽅2 、23 30 。

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。

一年级找规律题目大全

一年级找规律题目大全

一年级找规律题目大全一、数字规律类。

1. 1,3,5,7,(),()- 解析:这组数字是连续的奇数,后一个数比前一个数大2,所以括号里应填9和11。

2. 2,4,6,8,(),()- 解析:这组数字是连续的偶数,规律是后一个数比前一个数大2,所以括号里应填10和12。

3. 5,10,15,20,(),()- 解析:这组数字依次是5的1倍、2倍、3倍、4倍,规律是后一个数比前一个数大5,所以括号里应填25和30。

4. 1,4,7,10,(),()- 解析:观察这组数字,后一个数比前一个数大3,10 + 3=13,13+3 = 16,所以括号里应填13和16。

5. 3,6,9,12,(),()- 解析:这组数字是3的倍数,规律是后一个数比前一个数大3,12+3 = 15,15 + 3=18,所以括号里应填15和18。

6. 11,9,7,5,(),()- 解析:这组数字是依次递减的奇数,后一个数比前一个数小2,5 - 2=3,3 - 2 = 1,所以括号里应填3和1。

7. 10,8,6,4,(),()- 解析:这组数字是依次递减的偶数,后一个数比前一个数小2,4 - 2=2,2 - 2 = 0,所以括号里应填2和0。

8. 1,2,4,7,11,(),()- 解析:观察这组数字,相邻两个数的差在逐渐增加,2 - 1 = 1,4 - 2 = 2,7 - 4 = 3,11 - 7 = 4,那么下一个数与11的差应该是5,11+5 = 16,再下一个数与16的差是6,16+6 = 22,所以括号里应填16和22。

9. 20,18,16,14,(),()- 解析:这组数字是依次递减的偶数,后一个数比前一个数小2,14 - 2 = 12,12 - 2=10,所以括号里应填12和10。

10. 1,3,6,10,(),()- 解析:观察这组数字,相邻两个数的差依次为2、3、4,下一个数与10的差应该是5,10 + 5 = 15,再下一个数与15的差是6,15+6 = 21,所以括号里应填15和21。

初一数学上册找规律题型及真题练习题(含答案解析)

初一数学上册找规律题型及真题练习题(含答案解析)

初一数学上册找规律题型及真题练习题(含答案解析)【找规律题目的类型】★设计类(1)用图形反映规律★数字类(1)与数阵有关的问题(2)等差型数列规律(3)等比型数列规律(4)含平方型数列规律(5)其它数列规律列举(6)循环型数列★计算类(1)根据已知等式探究规律(2)探究算式的计算规律★图形类(1)与视图、展开图有关的问题(2)几何图形变化规律题真题演练一、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?答案:(1)1004的平方(2)n+1的平方二、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __答案:23 30。

数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。

三、请填出下面横线上的数字。

1 123 5 8 ____ 21答案:13。

数列后面一个数是前面相邻两个数的和。

四、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?答案:34 。

考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。

每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。

五、有一串数字 3 6 10 15 21___ 第6个是什么数?答案:28。

3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。

其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。

六、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A )A.1 B.2 C.3 D.4七、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为___个.答案:33八、观察排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个答案:602、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称)答案:圆九、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.答案:10000。

七年级数学找规律题

七年级数学找规律题

七年级数学找规律题归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.…规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找规律题的解题方法(绝密)题型分类:规律题一般分为以下几种类型:第一类是纯文字型题;第二类是数字型题;第三类是几何图形题;第四类是数字与图形结合型题;第五类是杂题型。

纯文字型题:例题:盒子里放了一只球,一位魔术师第一次从盒子里将这只球取出,变成4只球后放回盒子里;第二次从盒子里取出2只球,将每只球各变成4只球后,放进盒子里;……;第十次从盒子里取出10只球,将每只球各变成4只球的放回盒子里。

问:这时盒子里共有多少只球?分析:在此题中,变化的量有以下几个:①操作的次数,即取球的次数;②取出的球数;③每次取出球以后,盒中剩余的球数;④每次放回的球数⑤盒中每次增加的球数;⑥每次操作结束后盒子中的球数。

这每一个量都随着操作次数的变化而变化,正因如此,把每次操作的情况列成表格,在表格中的数据上寻找出数据的规律:操作次数 1 2 3 (10)取出球数 1 2 3 (10)盒中剩球数0 2 7 … A放回的球数 4 8 12 … B盒中增加球数 3 6 9 … C总球数 4 10 19 … D在上表中,若能把A、B、C、D这四处的数据找到,那么此题也就完成了解题。

从表中容易得到结果的是B为4N、C为3N。

因此对所要求的D的结果就显而易见了:每次变化后的球的数目分别为:1、1+3=4、10=1+3+6、1+3+6+9=19、1+3+6+9+12=31 ……1+3+6+9+12+15+18+21+24+27+30=166。

即D为166。

说明:解决此类问题时,应将每一过程产生的结果用表格把数据一一列出,再观察数据的变化,从变化的数据中寻找规律,从而得出结论。

例题:有10个朋友聚会,见面时如果每人和其余的每个人只握一次手,那么10个人共握手多少次?若N个朋友呢?分析:学生必须明白:1)每两个人握一次手;2)甲和乙握手的结果与乙和甲握手的结果只能看成是一种结果。

3)若设这10个人为A1、A2、A3、A4、A5、A6、A7、A8、A9、A10。

则A1与其它9个人握9次手;A2则与剩下的8个人握8次手;A3则与剩下的7个人握7次手;……,A9与A10握1次手。

因此,所有握手的次数就是9+8+7+6+5+4+3+2+1=45(次)。

说明:解决此类问题时,应将出现的各种结果按一定规律一一给出,从而整理出所有结果来。

例题:(2005年连云港)右图是一回形图,其回形通道的宽与OB的长均为1,回形线与射线OA交于点A1,A2,A3,…。

若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,……,依此类推。

则第10圈的长为。

解析:我们从简单的情形出发,从中发现规律,第1圈的长为1+1+2+2+1,第2圈的长为2+3+4+4+2,第三圈的长为3+5+6+6+3,第四圈的长为4+7+8+8+4,……归纳得到第10圈的长为10+19+20+20+10=79。

例题:(2011•广西)一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A.1011升 B.19升 C.110升 D.111升解析:答案是D。

例题:(2005年重庆市)已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度。

在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,……。

依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是。

解析:(-3,-4)。

例题:(2011山东滨州、2005河北)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了。

如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72,那么在计算6×7时,左、右手伸出的手指数应该分别为( )。

A.1,2B.1,3 .C.4,2D.4,3解析:答案是A 。

例题:(2005河北)法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面的运算就改用手势了。

下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国“小九九” 计算7×9,左、右手依次伸出手指的个数是( )A .2, 3B .3,3C .2,4D .3,4∵两手伸出的手指数的和为7,未伸出的手指数的积为2,∴8×9=72.(8×9=10×(3+4)+2×1=72)∵两手伸出的手指数的和为5,未伸出的手指数的积为6,∴7×8=56.(7×8=10×(2+3)+3×2=56)7×8=?右手左手8×9=?右手左手解析:答案是C 。

例题:(2011•娄底)如图,自行车的链条每节长为 2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为()A.150cmB.104.5cmC.102.8cmD.102cm解析:(1)根据已知可得两节链条的长度为:2.5×2﹣0.8,3节链条的长度为:2.5×3﹣0.8×2,以及60节链条的长度为:2.5×60﹣0.8×59,得出答案即可。

(2)根据图形可得出:两节链条的长度为:2.5×2﹣0.8,3节链条的长度为:2.5×3﹣0.8×2,4节链条的长度为:2.5×4﹣0.8×3,所以,60节链条的长度为:2.5×60﹣0.8×59=102.8,故选:C.点评:此题主要考查了图形的变化类,根据题意得出60节链条的长度与每节长度之间的关系是解决问题的关键.图形中图的规律型题:数表型题:(1)先看行的规律,然后,以列为单位用数列找规律方法找规律。

(2)看看有没有一个数是上面两数或下面两数的和或差。

数字型题:一、什么是数列?二、解题基本方法1、仔细观察所有数字。

一般找规律的题都和他的项数(就是他是第几个数有关),你就先一个一个看,一般找倍数或者和平方数有关。

我以前遇到的题什么1 3 8 15...或者2 5 10 17...还有什么1 3 7 15 31...这些看似都没什么关系,其实都是123456的平方,或者2的次方之类的,做多了就回有手感了,这是实话。

2、看相邻数之间的关系,就是每个数之间是有关联的,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

比如第二个数是第一个数的多少多少倍或者多少多少次方呀再加减多少多少的。

3、很多找规律的数都和2有关,尤其是2的几次方然后加减什么数。

4、空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的从两边同时推导找规律。

5、找数学规律的题目,都会涉及到一个或者几个变化的量。

所谓找规律,多数情况下,是指变量的变化规律。

所以,抓住了变量,就等于抓住了解决问题的关键。

6、看增幅(1)如增幅相等(即为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n- 2(2)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1.求出数列的第n-1位到第n位的增幅;2.求出第1位到第n位的总增幅;3.数列的第1位数加上总增幅即是第n位数。

例题:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1例题:A:2、9、28、65.....,增幅是7、19、37....,增幅的增幅是12、18 ,答案与3有关且是n的3次幂,即:n3+1。

B:2、4、8、16.......,增幅是2、4、8.. .....,答案与2的乘方有关,即:2n。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(3)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9、17增幅为1、2、4、8。

(4)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

三、基本技巧(一)标出序列号,看数字和自然数列的关系找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包含序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

如:数列1,4,9,16,...序列号1,2,3,4,....显然是a(n)=n2例题:观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是。

解析:解答该题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:数列:0,3,8,15,24,……。

序列号:1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n项是n2-1,第100项是1002-1。

例题:一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。

①2张桌子拼在一起可坐______人。

3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人。

相关文档
最新文档