2023-2023年中考数学试题及答案中考题考题考卷真题试题试卷北师大版

合集下载

北师大版数学九年级上册特殊的平行四边形(含中考真题解析)

北师大版数学九年级上册特殊的平行四边形(含中考真题解析)

特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考1.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE 是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(南充)如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】试题分析:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为3cm,∴BE=22AB AE-=1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=22AB OA-=3(cm),∴BD=2OB=23cm,∴AC:BD=1:3.故选D.考点:菱形的性质.7.(安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.8.(十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=53,且∠ECF=45°,则CF的长为()A.102B.53C5103D1053【答案】A.考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.201421)(B.201521)(C.201533)(D.201433)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】93.【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB=22AB OA=33,∴BD=63,∵EH=12BD,EF=12AC,∴EH=33,EF=3,∴矩形EFGH的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质.11.(凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).的交点,∴点P的坐标为方程组3(13)1y xy x⎧=⎪⎨⎪=-⎩的解,解方程组得:3323xy⎧=⎪⎨=⎪⎩,所以点P的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(03),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG ≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.1.(宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.2C.3D. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.3B. 3 3C.3D93【答案】B.【解析】试题分析:∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC,AE=CF,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B.考点:1.矩形的性质;2.菱形的性质.4.(广西来宾市)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形【答案】B.考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质.5.(贵州铜仁市)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=26,则MF的长是()A15B15C.1 D.15【答案】D.考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.【解析】试题分析:∵AE=13AB,∴BE=2AE.由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE 与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E ﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B.考点:正方形的判定.7.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是.34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】3【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE ⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x,则3-3,3-x,在RT△OEH中,EH2+OE2=OH2,即(3-3)2+x2=3-x)2,解得3,∴⊙O的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质.9.(山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是.5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12BC.同理,AF=CF=12AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE 与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】试题分析:(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值;(2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型.14.(河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B 作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。

2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)

 2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)

2023中考数学考试试卷试题中考数学初中学业水平考试 初三真题及答案解析(含答案和解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是( )A. 2−B.13C. 0D.【答案】A 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2. 故选:A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A. 51.6410−⨯B. 61.6410−⨯C. 716.410−⨯D.50.16410−⨯【答案】B 【解析】 【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n ,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000164=1.64×10-6, 故选:B .【点睛】本题考查用科学记数法表示较小数的方法,写成a×10n 的形式是关键. 3.下列运算正确的是( )A. 236a a a ⋅=B. 33a a a ÷=C. ()325a a =D.()2242a b a b =【答案】D 【解析】 【分析】根据幂的运算法则逐一计算可得.【详解】解: A 、235a a a ⋅=,此选项错误; B 、32a a a ÷=,此选项错误; C 、()326a a =,此选项错误;D 、()2242a ba b =,此选项正确;故选:D .【点睛】本题主要考查幂的运算,解题的关键是掌握幂的运算法则. 4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案. 【详解】组合体从上往下看是横着放的三个正方形. 故选C .【点睛】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.5.不等式213x −≤的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】 【分析】先求出不等式的解集,再在数轴上表示出来即可. 【详解】解:移项得,2x≤3+1, 合并同类项得,2x≤4, 系数化为1得,x≤2, 在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键. 6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s ):则这10只手表的平均日走时误差(单位:s )是( ) A. 0 B. 0.6C. 0.8D. 1.1【答案】D 【解析】 【分析】根据加权平均数的概念,列出算式,即可求解. 【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s ) 故选D .【点睛】本题主要考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键. 7.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A. tan a b α+B. sin a b α+C. tan ba α+D.sin b a α+【答案】A 【解析】 【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形, ∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b , tan ∠ACF=AFCF∴AF=tan tan CF ACF b α∠=, AB=AF+BF=tan a b α+, 故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.8.如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π−B.12π−C.12π−D.122π−【答案】B 【解析】 【分析】连接OC ,易证CDO CEO ≅△△,进一步可得出四边形CDOE 为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB 的面积,最后根据阴影部分的面积等于扇形AOB 的面积剪去正方形CDOE 的面积就可得出答案. 【详解】连接OC 点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴== =11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOBSππ⨯扇形==12CDOE AOB S S S π∴−−阴影正方形扇形故选B .【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.9.如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A. 18︒B. 20︒C. 24︒D. 28︒【答案】C 【解析】 【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案. 【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB. ∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°. ∴∠'AB B =∠C+∠CA 'B =2x°. ∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒, ∴x+2x+108=180. 解得x=24.∴C '∠的度数为24°. 故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质. 10.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意求出反比例函数解析式,设出点C 坐标6,a a ⎛⎫⎪⎝⎭,得到点B 纵坐标,利用相似三角形性质,用a 表示求出OA ,再利用平行四边形OABC 的面积是152构造方程求a 即可. 【详解】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形OABC 是平行四边形 ∴易得CH=AF∵点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ∴236k =⨯= 即反比例函数解析式为6y x= ∴设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭∵DEBF∴ODE OBF △△∴DE OEBF OF=∴236OF a=∴6392a OF a⨯== ∴9OA OF AF OF HC a a =−=−=−,点B 坐标为96,a a ⎛⎫⎪⎝⎭∵平行四边形OABC 的面积是152∴96152a a a ⎛⎫−⋅=⎪⎝⎭ 解得122,2a a ==−(舍去) ∴点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B【点睛】本题是反比例函数与几何图形的综合问题,涉及到相似三角形的的性质、反比例函数的性质,解答关键是根据题意构造方程求解. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)计算:﹣2﹣1= ﹣3 .【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可. 【解答】解:﹣2﹣1 =﹣3 故答案为:﹣3 12.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案. 【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ⊥CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt △OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种, 则两次摸出的球都是红球的概率为; 故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4×k=2+2+k,∴k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE⊥AC于E,根据等腰三角形的性质得到∠OAC=∠OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE⊥AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.(10分)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。

北师大版九年级中考数学模拟考试试题(含答案)(山东地区)

北师大版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。

(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。

2023北京北师大附中初三(上)期中数学(含答案)

2023北京北师大附中初三(上)期中数学(含答案)

2023北京北师大附中初三(上)期中数 学2023.11数学教学班: 姓名: 学号: 考生须知:1、本试卷有三道大题,共7页。

考试时长120分钟,满分100 分。

2、考生务必将答案填写在机读卡和答题纸上,在试卷上作答无效。

3、考试结束后,考生应将机读卡和答题纸交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项均只有一个. 1.二次函数()223y x =−+的顶点坐标是( ) A.()2,3−B.()2,3C.()2,3−−D.()2,3−2.将抛物线212y x =向左平移1个单位长度,得到的抛物线是( ) A.2112y x =− B.2112y x =+ C.()2112y x =− D.()2112y x =+3.用配方法解方程2230x x +−=,下列变形正确的是( )A.()212x +=−B.()212x +=C.()214x +=−D.()214x +=4.若点()2,a −,()3,b 都在二次函数()211y x =−−的图象上,则a 与b 的大小关系是( ) A.a b < B.a b = C.a b > D.不确定 5.如图,线段AB 是O 的直径,弦CD AB ⊥,20CAB ∠=︒,则AOD ∠等于( )A.120°B.140°C.150°D.160°6.某区为发展教育事业,加强了对教育经费的投入,2021年投入3000万元,预计2023年投入5000万元、设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.()2300015000x+=B.230005000x =C.()2300015000x +=D.()230001%5000x +=7.某同学将如图所示的三条水平直线1m ,2m ,3m 的其中一条记为x 轴(向右为正方向),三条竖直直线4m ,5m ,6m 的其中一条记为y 轴(向上为正方向),并在此坐标平面内画出了二次函数()2210y ax ax a =−+<的图象,那么她所选择的x 轴和y 轴分别为直线( )A.1m ,4mB.2m ,5mC.3m ,6mD.2m ,4m8.已知抛物线21y x =−,直线:l x a =,将抛物线在直线l 左侧的部分沿x 轴翻折,其余部分保持不变,组成图形G . 如果对于任意的实数n ,都存在实数m ,使得点(),P m n 在G 上,则a 的取值范围是( )A.a ≤≤B.a ≤a ≥C.a ≤D.a ≥第二部分 非选择题二、填空题(共16分,每题2分)9.已知关于x 的一元二次方程2210x x a ++−=有一个实数根为0,则a 的值为 .10.一个二次函数满足过点(0,1),且开口向上,该二次函数可以为 . 11.如图,O 的直径为10,AB 为弦,OC AB ⊥,垂足为C ,若3OC =,则弦AB 的长为 .12.如图,AB 是O 的直径,CD 是O 的弦,如果36ACD ∠=︒,那么BAD ∠= .13.已知抛物线2y x mx =−与x 轴的一个交点的横坐标大于1且小于2,则m 的取值范围是 . 14.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A −,()1,1B ,则关于x 的方程2ax bx c =+的解为 .15.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:①二次函数2y ax bx c =++可改写为()212y a x =−−的形式;②二次函数2y ax bx c =++的图象开口向下;③关于x 的一元二次方程21.5ax bx c ++=−的两个根为0或2;④若0y >,则3x >.其中所有正确的结论为 .16.某旅店的客房有两人间和三人间两种,两人间每间200元,三人间每间250元,某学校50人的研学团到该旅店住宿,租住了若干客房,其中男生27人,女生23人,若要求男女不能混住,且所有租住房间必须住满.(1)要想使花费最少,需要 间两人间;(2)现旅店对两人间打八折优惠,且仅剩15间两人间,此时要想花费最少,需要 间三人间.三、解答题(共68分,第17题8分,第18-19题每题4分,第20-22题每题5分,第23-24题每题6分,第25题5分,第26题6分,第27-28题每题7分)17.解方程:(1)()20x x +=;(2)2230x x −−=.18.如图,在平面直角坐标系xOy 中,ABC △的三个顶点分别为()3,4A −,()5,1B −,()1,2C −.(1)画出ABC △关于原点对称的111A B C △,并写出点1A 的坐标;(2)画出ABC △绕原点逆时针旋转90°后的222A B C △,并写出点2C 的坐标. 19.已知二次函数2:43C y x x =−+.(1)将243y x x =−+化成()2y a x h k =−+的形式;(2)在右图中画出二次函数C 的图象;(3)当03x ≤≤时,利用图象直接写出y 的取值范围; (4)当3y <时,利用图象直接写出x 的取值范围. 20.已知关于x 的一元二次方程()22120x m x m +++−=.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解. 21.如图,AB 为O 的直径,弦CD AB ⊥于点E ,连接AC ,BC .(1)求证:CAB BCD ∠=∠; (2)若4AB =,2BC =,求CD 的长.22.下面是小东设计的“过圆外一点作圆的切线”的尺规作图过程. 已知:如图,O 及O 外一点P . 求作:过点P 的O 的切线.作法:①连接OP ,分别以点O 、点P 为圆心,大于12OP 的长为半径作弧,两弧交于点M 、点N ,作直线MN 交OP 于点T :②以点T 为圆心,TP 的长为半径作圆,交O 于点A 、点B ;③作直线P A ,PB .所以直线P A ,PB 就是所求作的O 的切线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹): (2)完成下面的证明. 证明:连接OA .OP 是T 的直径,OAP ∴∠= °( )(填推理的依据).OA AP ∴⊥.又OA 为O 的半径,直线P A 是O 的切线( )(填推理的依据).同理可证,直线PB 也是O 的切线.23.如图,已知抛物线2y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于C 点,顶点为D ,其中()1,0A ,()0,3C .直线y mx n =+经过B ,C 两点.(1)求直线BC 和抛物线的解析式;(2)在抛物线对称轴上找一点M ,使MA MC +最小,直接写出点M 的坐标; (3)连接BD ,CD ,求BCD △的面积.24.如图,在Rt ABC △,90ACB ∠=︒,点D 在BC 边上,以CD 为直径的O 与直线AB 相切于点E ,连接OA ,OA OB =.(1)求证:30ABC ∠=︒;(2)连接AD ,若AD =,求O 的半径.25.野兔跳跃时的空中运动路线可以看作是抛物线的一部分. (1)建立如图所示的平面直角坐标系.对某只野兔一次跳跃中水平距离x (单位:m )与竖直高度y (单位:m )进行测量,得到以下数据:①野兔本次跳跃的最大竖直高度为 m ; ②求满足条件的抛物线的解析式.(2)在满足(1)的条件下,在野兔起跳点前方1.8m 处有宽为0.8m 的小溪,则野兔此次跳跃 (填“能”或“不能”)跃过小溪.26.已知关于x 的二次函数224a y x ax =++,点()1,M m −,()5,N n 在二次函数图象上.(1)①若m n =,求二次函数的对称轴; ②若4a <−,比较m ,n 的大小,并说明理由.(2)当1a x a ≤≤+时,函数的最小值为9,求a 的值.27.在Rt ABC △中,90C ∠=︒,()045B αα∠=︒<<︒,P 是线段BC 上的动点(不与点B ,C 重合),将线段PC 绕点P 顺时针旋转2α得到线段PD .图1 图2(1)如图1,当30α=︒,且点D 在线段AB 上时,求证PD BP =;(2)如图2,点D 在Rt ABC △内部,过点D 作AD 的垂线,与直线BC 交于点Q . ①请根据题意,将图形补充完整; ②判断PQ 与PB 的数量关系,并证明. 28.已知C 的半径为r ,点P 是与圆心C 不重合的点,点P 关于C 的反演点的定义如下:若点'P 在射线CP 上,满足2'CP CP r ⋅=,则称点'P 是点P 关于C 的反演点. 图1为点P 及其关于C 的反演点'P 的示意图.图1 图2 图3在平面直角坐标系xOy 中,O 的半径为6,O 与x 轴的正半轴交于点A .(1)如图2,45AOB ∠=︒,18OB =. 若点'A ,'B 分别是点A ,B 关于O 的反演点. 则点'A 的坐标是 ,点'B 的坐标是 ;(2)已知点Q 在x 轴下方,且29OQ ≤≤,直线3y x m =−+上存在点Q 关于O 的反演点'Q ,求m 的取值范围;(3)如图3,已知直线:6l y =−,点K 是直线l 上的动点,点'K 是点K 关于O 的反演点. 请直接写出线段'AK 的长度k 的取值范围.参考答案一、选择题(共16分,每题2分)题每题5分,第23-24题每题6分,第25题5分,第26题6分,第27-28题每题7分)17.解:(1)10x =,22x =−. (2)1a =,2b =−,3c =−2416b ac ∴=−=△.1,2222b x a −±==, 11x ∴=−,23x =.18.解:(1)111A B C △为所作, 点1A 的坐标为()3,4−; (2)222A B C △为所作, 点2C 的坐标为()2,1−−;19.解:(1)抛物线解析式为()221y x =−−. (2)如图所示.(2)13y −≤≤. (3)04x <<.20.解:(1)()()22214249m m m =+−⨯−=+△.20m ≥, 2490m ∴=+>△.∴无论m 取何值,方程总有两个不相等的实数根.(2)由题意可知,当0m =时,249m =+△的值最小. 将0m =代入()22120x m x m +++−=,得220x x +−=.解方程可得12x =−,21x =. 21.解法一:(1)直径AB CD ⊥,BC BD ∴=,CAB BCD ∴∠=∠.(2)AB 为O 的直径,90ACB ∴∠=︒.又4AB =,2BC =,∴在Rt ACB △中,AC ==CE AB ⊥于点E ,1122AC BC AB CE ∴⋅=⋅,CE ∴=直径AB CD ⊥,2CD CE ∴==解法二:(1)AB 为O 的直径,90ACB ∴∠=︒.90BCD ACE ∴∠+∠=︒.又CD AB ⊥,90CEA ∴∠=︒.90CAB ACE ∴∠+∠=︒.CAB BCD ∴∠=∠.(2)连接OC .直径4AB =,2BC =,2OB OC BC ∴===,BOC ∴△为等边三角形.CE OB ⊥于点E ,90CEB ∴∠=︒,112BE OB ==.∴在Rt BEC △中,CE ==.直径AB CD ⊥,2CD CE ∴==22.解:(1)如图所示(2)证明:连接OA .OP 是T 的直径,90OAP ∴∠=︒(直径所对的圆周角是直角).OA AP ∴⊥.又OA 为O 的半径,∴直线P A 是O 的切线(经过半径外端且垂直于这条半径的直线是圆的切线).同理可证,直线PB 也是O 的切线.23.解:(1)将点()1,0A ,()0,3C 代入2y x bx c =−++,得10,3,b c c −++=⎧⎨=⎩ 解这个方程组,得2,3.b c =−⎧⎨=⎩ ∴抛物线的解析式为223y x x =−−+.∴抛物线的对称轴为直线1x =−.∴抛物线与x 轴交于A ,B 两点,点()1,0A ,()3,0B ∴−.可求直线BC 解析式为3y x =+.(2)点M 的坐标为()1,2−(3)213BCD DMB DMC S S S =+=+=△△△.24.解:(1)连接OE .直线AB 与O 相切于点E ,OE AB ∴⊥.90ACB ∠=︒,OAE OAC ∴∠=∠.OA OB =,B OAE OAC ∴∠=∠=∠.90B OAE OAC ∠+∠+∠=︒,30B ∴∠=︒.(2)设O 的半径为r ,则2CD r =.90ACB ∠=︒,30OAC B ∠=∠=︒,22AO OC r ∴==.AC ∴==.∴在Rt ACD △中,222AC CD AD +=,即)()2222r +=,解得:r =25.解:(1)①0.98.②由题意可知,抛物线的顶点为(1.4,0.98).∴设抛物线解析式为()21.40.98y a x =−+. ∴当0x =时,0y =,()200 1.40.98a ∴=−+,解得0.5a =−. ∴抛物线的解析式为()20.5 1.40.98y x =−−+.(2)能.26.解:(1)点()1,M m −,()5,N n 在二次函数图象上,且m n =, 1522x −+∴==. (2)4a <−,∴抛物线的对称轴22a x =−>. ()1522a a ∴−−−>−−, m n ∴>.(3)①当12a a +<−,即23a <−时, 当1x a =+时,函数取得最小值9.2192a a ⎛⎫∴++= ⎪⎝⎭,解得43a =,83a =−. 23a <−,83a ∴=−. ②当2a a >−,即0a >时, 当x a =时,函数取得最小值9. 292a a ⎛⎫∴+= ⎪⎝⎭,解得2a =,2a =−. 0a >,2a ∴=.③当12a a a ≤−≤+时,函数的最小值为0,不符合题意. 综上所述:83a =−或2a =.27.解:(1)260CPD B PDB α∠==︒=∠+∠,30B α∠==︒, PDB B ∴∠=∠.BP DP ∴=.(2)①如图所示.②QP BP =.证明:连接AQ ,取AQ 中点M ,连接MC ,MD .90ACQ ∠=︒,AD QD ⊥,12MC MD AQ ∴==. 又CP DP =,MP MP =,()CMP DMP SSS ∴△≌△.12CPM DPM CPD B α∠=∠=∠==∠, MP AB ∴∥,AM QM =,QP BP ∴=.28.解:(1)()6,0;. (2)由题意可知'36OQ OQ ⋅=,29OQ ≤≤,4'18OO ∴≤≤,且Q 在x 轴下方.因此'Q 形成的区域为在x 轴下方的一个半圆环区域(不包含x 轴).考虑3y x m =−+过()18,0E 和与圆相切(切点为C )两个临界情形, 连接OC .y x m =+与x 轴,y 轴所成的锐角分别为30°,60°, 即图中30AEO ∠=︒,60ODC ∠=︒,90OCD ∠=︒. 又18OE OC ==,OA ∴=,CD =,OD =. 33y x m =−+要与阴影区域有交点,∴综合图形可知,m −≤<(3)33k ≤≤。

中考数学试卷真题2023全国

中考数学试卷真题2023全国

中考数学试卷真题2023全国Ⅰ. 选择题1.(必做题)分解质因数,化简计算√6 + √6×√10 - √102.已知 a∶b = 2∶3,b∶c = 3∶4,c∶d = 1∶5,求 a∶c∶d3.如图,矩形 ABCD 的长边 AB = 8cm,短边 AD = 6cm,将矩形沿着其中一条副对角线剪下两个全等三角形 EAD 和 FAE,如图所示,割去部分回形纸制成的圆柱体立体图形如右图所示。

若副对角线 EF = 2.4cm,截得的圆柱体的高为多少?精确到百分位。

Ⅱ. 解答题1.某地日照时间的调查表如下:(表格略)(1)求每个城市日出到日落的时段(小时和分钟)。

(2)根据上述调查表得出的数据,计算该地一年中的日照总时长。

2.如图,平行四边形 ABCD 的边长分别为 AB = 8cm,BC = 6cm,点 E、F、G、H 分别为 CD 的中点、BC 的中点、AB 的中点、AD 的中点。

连接 EF、FG、GH,求证:三角形 EFG 的面积是平行四边形ABCD 面积的 1/5。

3.实数 a、b 满足条件:a + b = 15,a^2 + b^2 = 113,求 a、b 的值。

Ⅲ. 应用题1.某班学生的身高(cm)如下所示:135, 142, 137,140, 139, 138,139, 144, 136,141, 137, 138,144, 136, 136(1)计算学生身高的最大值和最小值。

(2)计算学生身高的中位数。

(3)将数据从小到大排列,计算学生身高的四分位数。

注意:计算四分位数时,如果一个数和小数部分之和正好等于整数部分,保留这个数,其余向下取整。

2.一个凹透镜的焦距为20cm,已知一束平行光线照射到该透镜上,经过折射后放大了 2 倍,求左右的移位量。

3.如图,已知下图中两圆心之间的距离为 8cm,点 P、Q 分别在两圆上。

若 PQ 的长为 4cm,求弧 PAB 的长。

【题目来源】2023年全国卷·中考数学真题【答案解析】上述为2023全国中考数学试卷真题。

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________(满分150分时间120分钟)一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中立体图形的俯视图是( )2.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE、DF的反向延长线交于主光轴MN上一点P.若∠ABE=160°,∠CDF=150°,则∠EPF的度数是()A.20°B.30°C.50°D.70°3."燕山雪花大如席,片片吹落轩辕台."这是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A.3×10﹣5B.3x10-4C.0.3x10-4D.0.3x10-54.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°5.下列校徽的图案是轴对称图形的是()6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.春节期间,琪琪和乐乐分别从A,B,C三部春节档片中随机选择一部观看,则琪琪和乐乐选择的影片相同的概率为()A.12B.13C.16D.19 8.小明在化简分式3nm -2n +2m -n2n -m的过程中,因为其中一个步骤的错误,导致化简结果是错误的,小明开始出现错误的那一步编号是( )A.①B.②C.③D.④9.如图,在平行四边形ABCD 中,BC=2AB=8,连接BD ,分别以点B 、D 为国心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H 、点H 恰为BC 的中点,连接AH ,则AH 的长为( )A.4√3B.6C.7D.4√510.二次函数y=ax 2+bx+c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:且当x=-12时,与其对应的函数值y>0,有下列结论:①abc<0;②m=n;③-2和3是关于x 的方程ax 2+bx+c=t 的两个根;④a<83,其中正确结论的个数是( )A.1B.2C.3D.4二.填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式:xy -y 2= .12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向平行四边形ABCD 内部投掷飞镖,飞镖恰好落在阴影区域的概率为 。

2023年北师大版九年级上册数学第五章综合测试试卷及答案

2023年北师大版九年级上册数学第五章综合测试试卷及答案
-8-
第五章综合练习
8.如图是一个几何体的三视图,其中主视图与左 视图完全一样,则这个几何体的表面积是( C ) A.80-2π B.80 C.80+4π D.80+6π
-9-
第五章综合练习
9.如图,一人在两盏等高的路灯之间走动,GB为 人AB在路灯EF照射下的影子,BH为人在路灯CD 照射下的影子.当人从点C走向点E时,两端影子 之和GH的变化趋势是( D ) A.先变长后变短 B.先变短后变长 C.先变短后变长再变短 D.不变
-10-
第五章综合练习
10.如图是由若干个大小相同的小正方体组成的几 何体的左视图和俯视图,则它的主视图不可能是 ( B)
-11-
第五章综合练习
二、填空题(本大题共4小题,每小题5分,满分20分) 11.阳光下广告牌的影子属于 平行 投影.(填“中 心”或“平行”)
-12-
第五章综合练习
12.一个几何体的三视图如图所示,则该几何体的 体积为 π .

-18-
第五章综合练习
18.由几个相同的棱长为1的小立方块搭成的几何体的俯视 图如图所示,方格中的数字表示该位置上小立方块的个数.
(1)请在方格纸中分别画出这个几何体的主视图和左视图; (2)根据三视图,请你求出这个组合几何体的表面积(包括 底面积).
-19-
第五章综合练习
解:(1)图略. (2)几何体的表面积为3+4+5+3+4+5=24.
-13-
第五章综合练习
13.如图,小军、小珠之间的距离为2.7 m,他们 在同一盏路灯下的影长分别为1.8 m,1.5 m,已知 小军、小珠的身高分别为1.8 m,1.5 m,则路灯的 高为 3 m.
-14-
第五章综合练习

北师大版九年级数学中考复习试题及答案全套

北师大版九年级数学中考复习试题及答案全套

北师大版九年级数学中考复习试题及答案全套(共9套)《数与式》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题2分,共24分)1.下列各数:π3,sin 30°,-3,4,其中无理数的个数有( B )A .1个B .2个C .3个D .4个2.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度范围是 ( C )A .17℃~20℃B .20℃~23℃C .17℃~23℃D .17℃~24℃3.下列运算中,正确的是( D ) A .a 2+a 2=2a 4 B .(a -b )2=a 2-b 2 C .(-x 6)·(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 3 4.中国的“天眼”绝对是我们中国人的骄傲,它可以一眼看穿130亿光年以外,换句话来说就是它可以接收到130亿光年之外的电磁信号,几乎已经可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿位)正确的表示是( B )A .1.3×1010B .1.30×1010C .0.13×1011D .130×1085.设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7D .86.如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab ÷ab=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③7.若最简二次根式3a -12a +5b 与a -2b +8是同类二次根式,则a 、b 的值为( A )A .a =1,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =18.整数n 满足n <26<n +1,则n 的值为( A ) A .4 B .5 C .6D .79.实数a 、b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )A .2a +bB .-2a +bC .bD .2a -b10.如图1,把一个长为2m ,宽为2n (m >n )的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图2那样拼成一个正方形,则中间空的部分的面积是( C )A .2mB .(m +n )2C .(m -n )2D .m 2-n 211.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24;第四组:26,28,30,32,34,36,38,40……则现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 10=(2,3),则A 2020=( B )A .(31,63)B .(32,18)C .(33,16)D .(34,2)12.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3、…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2020B 2020C 2020D 2020的边长是( D )A .⎝⎛⎭⎫122019B .⎝⎛⎭⎫122020C .⎝⎛⎭⎫332020D .⎝⎛⎭⎫332019二、填空题(每小题2分,共16分) 13.若分式x +1x -1有意义,则x 的取值范围为__x ≥-1且x ≠1__. 14.计算:2(2-3)+6=__2__.15.将多项式m 2n -2mn +n 分解因式的结果是__n (m -1)2__. 16.若y =x -4+4-x 2-2,则(x +y )y =__14__.17.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a 用代数式表示为13+12n ,实数b 用代数式表示为12n -13,则a -b 的值为__23__.18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…,则第2020次输出的结果为__3__.19.若x 2-3x +1=0,则x 2x 4+x 2+1的值为__18__.20.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n +….图1 图2图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n -2C n -1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是=2⎣⎡⎦⎤1+34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -1+⎝⎛⎭⎫34n +…__.三、解答题(共60分) 21.(8分)计算: (1)⎝⎛⎭⎫46-412+38÷22; 解:(1)原式=(46-22+62)÷22=(46+42)÷22=23+2. (2)⎝⎛⎭⎫-12-2-|3-2|+(2-1.414)0-3tan 30°-(-2)2.解:原式=4-(2-3)+1-3×33-2=4-2+3+1-3-2=1. 22.(5分)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.23.(5分)已知实数a 、b 、c 满足|a +6|+b -2+(c -3)2=0,求-abc 的值. 解:∵|a +6|+b -2+(c -3)2=0,∴a +6=0,b -2=0,c -3=0,∴a =-6,b =2,c =3,∴-abc =-(-6)×2×3=36=6.24.(5 分)化简:⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷⎝⎛⎭⎫1-4x . 解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2÷x -4x =x 2-4-(x 2-x )x (x -2)2·x x -4=x -4x (x -2)2·x x -4=1x 2-4x +4. 25.(5分)先化简,再求值:a 4-b 4a 2-2ab +b 2×b -aa 2+b 2,其中a =2019,b =2020.[:学科网] 解:原式=(a 2+b 2)(a +b )(a -b )(a -b )2·-(a -b )a 2+b 2=-(a +b )=-a -b .当a =2019,b =2020时,原式=-2019-2020=-4039.26.(5分)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根. 解:原式=a -2a 2-1÷(a +1)(a -1)-(2a -1)a +1=a -2a 2-1÷a 2-2a a +1=1a 2-a .∵a 是方程x 2-x =6的根,∴a 2-a =6,∴原式=16.27.(6分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝⎛⎭⎫5b 2a -2b -a -2b -1a ,其中a 、b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2. 解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a -2b )(a +2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a =(a -3b )2a (a -2b )·a -2b(3b -a )(3b +a )-1a =-(a -3b )a ()3b +a -1a =-(a -3b )a (3b +a )-3b +a a (3b +a )=-2a a (3b +a )=-2a +3b .解⎩⎪⎨⎪⎧ a +b =4,a -b =2,得⎩⎪⎨⎪⎧a =3,b =1.∴当a =3,b =1时,原式=-23+3×1=-13.28.(6分)先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中整数x 满足-2<x ≤2. 解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2×x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,x (x -1)≠0,x +1≠0,即x ≠-1、0、1.又∵-2<x ≤2,且x 为整数,∴x =2.将x =2代入x 2x -1中,得原式=222-1=4. 29.(7分)如果一个正整数能表示为两个连续奇数的平方差,那么我们称这个正整数为“和谐数”,如8=32-12,16=52-32,24=72-52,因此,8,16,24这三个数都是“和谐数”.(1)在32,75,80这三个数中,是和谐数的是__32,80__;(2)若200为和谐数,即200可以写成两个连续奇数的平方差,则这两个连续奇数的和为__100__;(3)小鑫通过观察发现以上求出的“和谐数”均为8的倍数,设两个连续奇数为2n -1和2n +1(其中n 取正整数),请你通过运算验证“和谐数是8的倍数”这个结论是否正确.证明:∵(2n +1)2-(2n -1)2=4n 2+4n +1-(4n 2-4n +1)=4n 2+4n +1-4n 2+4n -1=8n ,∴“和谐数是8的倍数”这个结论是正确的.30.(8分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1; 第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1; 第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1; 第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a 6=__261+3×26+2×(26)2__=__126+1-127+1__; (2)用含n 的代数式表示第n 个等式:a n =__2n1+3×2+2×(2)__=__12+1-12++1;(3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果);(4)计算:a 1+a 2+…+a n . 解:原式=12+1-122+1+122+1-123+1+…+12n+1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).《函数的图象与性质》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分) 1.函数y =x +2x -3的自变量的取值范围是( C ) A .x ≠3B .x ≥-2C .x ≥-2且x ≠3D .x ≥32.一辆复兴号高铁从青州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,复兴号到达下一个高铁站停下,乘客上、下车后,复兴号又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出这辆复兴号高铁在这段时间内的速度变化情况的是( D )3.已知二次函数y =-(x -h)2+4(h 为常数),在自变量x 的值满足1≤x ≤4的情况下,与其对应的函数值y 的最大值为0,则h 的值为( A )A .-1和6B .2和6C .-1和3D .2和34.若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( C ) A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2)5.一次函数y =kx -k 与反比例函数y =kx在同一直角坐标系内的图象大致是( C )6.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S阴影=1,则S 1+S 2=( D )A .3B .4C .5D .67.抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新抛物线的顶点坐标为( A )A .(4,-1)B .(0,-3)C .(-2,-3)D .(-2,-1)8.设A (-2,y 1)、B (1,y 2)、C (2,y 3)是抛物线y =-(x +1)2+m 上的三点,则y 1、y 2、y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 39.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( C )A .③④B .②③C .①④D .①②③10.如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx(k ≠0)中k 的值的变化情况是( C )A .一直增大B .一直减小C .先增大后减小D .先减小后增大二、填空题(每小题3分,共18分)11.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则k ·b 的值是__2或-7__.12.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n =__9__.13.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是__m >1__.14.如图,直线x =2与反比例函数y =2x 和y =-1x 的图象分别交于A 、B 两点,若点P是y 轴上任意一点,则△P AB 的面积是__1.5__15.如图,点A 在双曲线y =6x 上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 周长为16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m ,则这个门洞的高度为__9.1__m.(精确到0.1 m)三、解答题(共52分)17.(6分)已知一次函数的图象与x 轴、y 轴分别交于点A (-2,0)、B (0,3).(1)求这个一次函数的解析式;(2)过点B 的另外一条直线l 与x 轴交于点C (c,0),若点A 、B 、C 构成面积不大于6的三角形,求c 的取值范围.解:(1)设一次函数解析式为y =kx +b ,把A (-2,0)、B (0,3)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =3,解得⎩⎪⎨⎪⎧k =32,b =3,所以一次函数解析式为y =32x +3.(2)根据题意得12·3·|c +2|≤6,即|c +2|≤4,所以-6≤c ≤2且c ≠-2.18.(6分)在平面直角坐标系中,已知点A (4,0),点B (0,3),点P 从点A 出发,以每秒1个单位的速度在x 轴上向右平移,点Q 从B 点出发,以每秒2个单位的速度沿直线y =3向右平移,又P 、Q 两点同时出发,设运动时间为t 秒.(1)当t 为何值时,四边形OBPQ 的面积为8; (2)连接AQ ,当△APQ 是直角三角形时,求Q 的坐标.解:(1)设运动时间为t 秒,BQ =2t ,OP =4+t ,则S =12(3t +4)×3=8,解得t =49.(2)当∠QAP =90°时,Q (4,3);当∠QP A =90°时,Q (8,3);当∠AQP =90°时,不存在Q 点的坐标,故Q 点坐标为(4,3)、(8,3).19.(6分)如图1所示,在A 、B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1、y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A 、B 两地相距__420__千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3)客、货两车何时相遇?解:(2)由图可知货车的速度为60÷2=30(千米/时),货车到达A 地一共需要2+360÷30=14(小时).设y 2=kx +b ,代入点(2,0)、(14,360),得⎩⎪⎨⎪⎧ 2k +b =0,14k +b =360,解得⎩⎪⎨⎪⎧k =30,b =-60,所以y 2=30x -60.(3)设y 1=mx +n ,代入点(6,0)、(0,360),得⎩⎪⎨⎪⎧ 6m +n =0,n =360,解得⎩⎪⎨⎪⎧m =-60,n =360,所以y 1=-60x +360.由y 1=y 2,得-60x +360=30x -60,解得x =143.故客、货两车经过143小时相遇.20.(6分)已知某市2017年企业用水量x (吨)与该月应缴的水费y (元)之间的函数关系如图.(1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量; (3)为贯彻省委发展战略,鼓励企业节约用水,该市自2019年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2018年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2019年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y 关于x 的函数关系式y =kx +b .∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧ 50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100,∴y 关于x 的函数关系式是y =6x -100.(2)由图可知,当y =620时,x >50,∴6x -100=620,解得x =120.故该企业2018年10月份的用水量为120吨.(3)由题意得6x -100+x20(x -80)=600,化简,得x 2+40x -14 000=0,解得x 1=100,x 2=-140(不合题意,舍去).故这个企业2019年3月份的用水量是100吨.21.(6分)如图,已知抛物线y =ax 2+32x +c (a ≠0)与y 轴交于A (0,4),与x 轴交于B 、C两点,点C 坐标为(8,0),连接AB 、AC .(1)求抛物线的解析式;(2)判断△ABC 的形状,并说明理由.解:(1)∵抛物线y =ax 2+32x +c 与y 轴交于A (0,4),与x 轴交于B 、C 两点,点C 坐标为(8,0),∴⎩⎪⎨⎪⎧c =4,64a +12+c =0,解得⎩⎪⎨⎪⎧a =-14,c =4,∴抛物线的解析式为y =-14x 2+32x +4.(2)△ABC 为直角三角形,理由如下:当y =0时,即-14x 2+32x +4=0,解得x 1=8,x 2=-2,∴点B 的坐标为(-2,0).在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20.在Rt △ACO 中,AC 2=CO 2+AO 2=82+42=80.∵BC =OB +OC =2+8=10,∴在△ABC 中,AB 2+AC 2=20+80=102=BC 2,∴△ABC 是直角三角形.22.(7分)如图,已知A ⎝⎛⎭⎫-4,12,B (-1,2)是一次函数y =kx +b 与反比例函数y =mx (m ≠0,m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC 、PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.解:(1)当-4<x <-1时,一次函数图象在反比例函数图象上方,故一次函数的值大于反比例函数的值.(2)设一次函数的解析式为y =kx +b .∵y =kx +b 的图象过点⎝⎛⎭⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,故一次函数的解析式为y =12x +52.反比例函数y =mx图象过点(-1,2),则m =-1×2=-2.(3)连接PC 、PD ,设P ⎝⎛⎭⎫x ,12x +52.由△PCA 和△PDB 面积相等,得12×12×(x +4)=12×|-1|×⎝⎛⎭⎫2-12x -52,解得x =-52,则y =12x +52=54,∴点P 的坐标是⎝⎛⎭⎫-52,54. 23.(7分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?解:(1)当x =20时,y =-10x +500=-10×20+500=300,300×(12-10)=600,即政府这个月为他承担的总差价为600元.(2)依题意,得w =(x -10)(-10x +500)=-10x 2+600x -5000=-10×(x -30)2+4000.∵a =-10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意,得-10x 2+600x -5000=3000,解得x 1=20,x 2=40.∵a =-10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.又∵x ≤25,∴当20≤x ≤25时,w ≥3000.设政府每个月为他承担的总差价为p 元,则p =(12-10)×(-10x +500)=-20x +1000.∵k =-20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.24.(8分)如图,已知抛物线y =-14x 2-12x +2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A 、B 、E 、F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)令y =0,得-14x 2-12x +2=0,∴x 2+2x -8=0,解得x =-4或2,∴点A 坐标为(2,0),点B 坐标为(-4,0).令x =0,得y =2,∴点C 坐标为(0,2).(2)①AB 为平行四边形的边时,∵AB =EF =6,对称轴x =-1,∴点E 的横坐标为-7或5,∴点E 坐标为⎝⎛⎭⎫-7,-274或⎝⎛⎭⎫5,-274,此时点F ⎝⎛⎭⎫-1,-274,∴以A 、B 、E 、F 为顶点的平行四边形的面积为6×274=812;②当点E 在抛物线顶点时,点E ⎝⎛⎭⎫-1,94,设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时以A 、B 、E 、F 为顶点的平行四边形的面积为12×6×92=272.(3)如图所示,①当C 为顶点时,CM 1=CA ,CM 2=CA ,作M 1N ⊥OC 于点N .在Rt △CM 1N 中,CN =CM 21-M 1N 2=7,∴点M 1坐标为(-1,2+7),点M 2坐标为(-1,2-7);②当M 3为顶点时,∵直线AC 解析式为y =-x +2,线段AC 的垂直平分线为y =x ,∴点M 3坐标为(-1,-1);③以点A 为顶点的等腰三角形不存在.综上所述,点M 坐标为(-1,-1)或(-1,2+7)或(-1,2-7).《方程(组)与不等式(组)》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知实数a 、b ,若a >b ,则下列结论错误的是( D ) A .a -7>b -7 B .6+a >b +6 C .a 5>b 5D .-3a >-3b2.已知x =2是方程2x +m -4=0的解,则m 的值为( C ) A .8 B .-8 C .0D .23.不等式组⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( A )4.已知⎩⎪⎨⎪⎧ x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D )A .1B .2C .3D .45.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( C )A .4B .5C .6D .76.关于x 的方程m 2x 2-8mx +12=0至少有一个正整数解,且m 是整数,则满足条件的m 的值的个数是( B )A .5个B .4个C .3个D .2个7.为加快环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( A )A .400x =300x -30B .400x -30=300xC .400x +30=300xD .400x =300x +308.大学生嘉嘉假期去图书馆做志愿者服务,并与图书馆达成如下协议:做满30天,图书馆将支付给他一套名著和生活费600元,但他在做到20天时,由于学校有临时任务,只能终止服务,图书馆只付出一套名著和300元,设这套名著的价格为x 元,则下面所列方程正确的是( B )A .x +60020=x +30030B .x +60030=x +30020C .x -60030=x -30020D .x -60020=x -300309.若解分式方程x -1x +4=mx +4时产生增根,则m =( D )A .1B .0C .-4D .-510.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( B )A .29人B .30人C .31人D .32人二、填空题(每小题3分,共18分)11.如果不等式(a -3)x <b 的解集是x <ba -3,那么a 的取值范围是__a >3__.12.方程x x -2 = 12-x的根x =__-1__.13.对于实数a 、b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4]__3或-3__. 14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为__78__cm.15.若方程x 2+2x -13=0的两根分别为m 、n ,则mn (m +n )=__26__.16.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为__80__元.三、解答题(共52分) 17.(6分)解方程(组):(1)⎩⎪⎨⎪⎧x -y =4, ①3x +y =16; ②解:(1)①+②,得4x =20,即x =5.将x =5代入①,得y =1,故⎩⎪⎨⎪⎧x =5,y =1.(2)(x -5)(x +4)=10;解:去括号、移项、整理,得x 2-x -30=0,解得x 1=-5,x 2=6. (3)1x -2-3=x -12-x. 解:去分母,得1-3(x -2)=-(x -1),整理,得-2x +6=0,解得x =3.经检验,x =3是原分式方程的根.18.(4分)解不等式组:⎩⎪⎨⎪⎧3x >x -6,x -12≤x +16,并把它的解集在数轴(如图)上表示出来.解:⎩⎨⎧3x >x -6,①x -12≤x +16,②由①,得x >-3.由②,得x ≤2.∴原不等式组的解集为-3<x ≤2.19.(6分)已知关于x 的方程2x 2+kx -1=0 (1)求证:方程有两个不相等的实数根;(2)若方程的一根是-1,求另外一个根及k 的值.(1)证明:b 2-4ac =k 2+8>0,即方程2x 2+kx -1=0有两个不相等的实数根.(2)解:把x =-1代入原方程,得2-k -1=0,所以k =1,即原方程为2x 2+x -1=0,解得x 1=-1,x 2=12,即另外一根为12.20.(6分)百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接五一劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?解:设每件童装应降价x 元.由题意,得(100-60-x )(20+2x )=1200,解得x 1=10,x 2=20.∵尽量减少库存,∴x =20,∴100-20=80(元),故每件童装应定价为80元.21.(7分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问:每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元.根据题意,得600x -60054x =30,解得x =4.经检验,x =4是原分式方程的解,故第一次每支铅笔的进价是4元.(2)设售价为y 元.根据题意,列不等式为6004×(y -4)+6004×54×(y -5)≥420,解得y ≥6.故每支售价至少是6元.22.(7分)阅读材料:我们知道:若几个非负数相加得零,则这些数必同时为零. 例如:①若(a -1)2+(b +5)2=0,则(a -1)2=0,(b +5)2=0,∴a =1,b =-5. ②若m 2-4m +n 2+6n +13=0,求m 、n 的值.解:∵m 2-4m +n 2+6n +13=(m 2-4m +4)+(n 2+6n +9)=0(将13拆成4和9,等式左边就出现了两个完全平方式),∴(m -2)2+(n +3)2=0, ∴(m -2)2=0,(n +3)2=0, ∴m =2,n =-3.根据你的观察,探究下面的问题:(1)已知x 2+2xy +2y 2-6y +9=0,求x y 的值;(2)已知a 、b (a ≠b )是等腰三角形的边长,且满足2a 2+b 2-8a -6b +17=0,求三角形的周长.解:(1)∵x 2+2xy +2y 2-6y +9=x 2+2xy +y 2+y 2-6y +9=(x +y )2+(y -3)2=0,∴x +y =0,y -3=0,∴y =3,x =-y =-3,∴x y =(-3)3=-27.(2)∵2a 2+b 2-8a -6b +17=2a 2-8a +8+b 2-6b +9=2(a 2-4a +4)+(b 2-6b +9)=2(a -2)2+(b -3)2=0,∴a -2=0,b -3=0,∴a =2,b =3.∴当a 为腰时,周长为7;当b 为腰时,周长为8.∴三角形的周长为7或8.23.(8分)如果方程x 2+px +q =0的两个根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0 (n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +ba的值;(3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)设x 2+mx +n =0 (n ≠0)的两根为x 1、x 2.∴x 1+x 2=-m ,x 1·x 2=n .∴1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1n .∴所求一元二次方程为x 2+m n x +1n=0,即nx 2+mx +1=0. (2)①当a ≠b 时,由题意知a 、b 是一元二次方程x 2-15x -5=0的两根,∴a +b =15,ab =-5.∴a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47.②当a =b 时,a b +ba =1+1=2.综上,a b +ba=-47或2.(3)∵a +b +c =0,abc =16,∴a +b =-c ,ab =16c .∴a 、b 是方程x 2+cx +16c =0的两根,∴Δ=c 2-4×16c≥0.∵c >0,∴c 3≥64,∴c ≥4,∴c 的最小值为4.24.(8分)某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元;新建4个地上停车位和2个地下停车位共需1.4万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案,哪一种方案的投资最少?并求出最少投资金额.解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元.由题意,得⎩⎪⎨⎪⎧ 2x +3y =1.7,4x +2y =1.4,解得⎩⎪⎨⎪⎧x =0.1,y =0.5.故新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元.(2)设新建m 个地上停车位,由题意,得14<0.1m+0.5(60-m )≤15,解得37.5≤m <40,因为m 为整数,所以m =38或39,对应的60-m =22或21,故一共有2种建造方案.(3)当m =38时,投资0.1×38+0.5×22=14.8(万元),当m =39时,投资0.1×39+0.5×21=14.4(万元),故当地上建39个车位,地下建21个车位时,投资最少,金额为14.4万元.《图形及其变化》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的有(C)A.1个B.2个C.3个D.4个2.如图是某几何体的三视图,该几何体是(B)A.圆锥B.圆柱C.棱柱D.正方体3.一个正方体的每个面上都写有一个汉字,如图,在该正方体中,和“超”相对的字是(C)A.沉B.信C.自D.着4.如图是由4个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是(C)5.如图,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为(C)A.16 cm B.18 cmC.20 cm D.22 cm6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( C )A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)7.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为( C )A .(3,1)B .(3,3)C .(4,4)D .(4,1)8.如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧分别交AB 、BC 于点E 、F ,再分别以点E 、F 为圆心、以大于12EF 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( B )A .65°B .75°C .80°D .85°9.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( B )A .35B .45C .23D .3210.如图,△AOB 为等腰三角形,AO =AB ,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A ′在x 轴上,则点O ′的坐标为( C )A .⎝⎛⎭⎫203,103B .⎝⎛⎭⎫163,435 C .⎝⎛⎭⎫203,435D .⎝⎛⎭⎫163,43二、填空题(每小题3分,共18分)11.在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是__(-2,3)__.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为__12__.13.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为__245__.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF =__5__.15.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E的对应点为F,则∠EAF的度数是__60°__.16.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2020的直角顶点的坐标为__(8076,0)__.三、解答题(共52分)17.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为__(2,7)__,点C的坐标为__(6,5)__;(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),则平移后点M1的坐标为__(a-7,b)__;(3)以原点O为位似中心,将△ABC缩小,使变换后的△A2B2C2与△ABC对应边的比为1∶2,请在网格内画出一个△A2B2C2,则点A2的坐标为__(1,3.5)__.18.(6分)如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出对角线AC的垂直平分线,分别交AD、BC于E、F;(保留作图痕迹,不写作法)(2)在(1)作出的图形中,连接CE、AF,若AB=4,BC=8,且AB⊥AC,求四边形AECF 的周长.解:(1)如图所示:(2)根据作图,易知四边形AECF 是菱形,∴AF =FC ,∴∠F AC =∠FCA .∵AB ⊥AC ,∴∠BAC =90°,∴∠BAF +∠F AC =90°,∠B +∠FCA =90°,∴∠B =∠BAF ,∴AF =BF ,∴BF =FC .∴四边形AECF 的周长=4FC =2BC =16.19.(6分)如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =0.8 m ,窗高CD =1.2 m ,并测得OE =0.8 m ,OF =3 m ,求围墙AB 的高度.解:延长OD .∵DO ⊥BF ,∴∠DOE =90°.∵OD =0.8 m ,OE =0.8 m ,∴∠DEB =45°.∵AB ⊥BF ,∴∠BAE =45°,∴AB =BE ,设AB =EB =x m .∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF ,∴AB BF =CO OF ,即x x +(3-0.8)=1.2+0.83,解得x =4.4.经检验,x =4.4是原方程的解.故围墙AB 的高度是4.4 m.20.(6分)如图,菱形OABC 的顶点A 的坐标为(2,0),∠COA =60°,将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF .(1)直接写出点F 的坐标;(2)求线段OB 的长及图中阴影部分的面积.解:(1)(-2,0).(2)连接OE 、OB 、AC ,OB 与AC 相交于点H .∵菱形OABC 中,OA =2,∠COA =60°,∴∠BOC =∠BOA =30°,OB ⊥AC ,∴OB =2OH =2OA ·cos ∠BOA =2×2×32=23,CH =AH =OA ·sin ∠BOA =2×12=1.∵将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF ,∴∠BOE=120°.S 阴影=S 扇形OBE -2S △OBC =120π×(23)2360-2×12×23×1=4π-2 3.21.(7分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求A 与A 1,B 与B 1,C 与C 1相对应)(2)作出△ABC 绕点C 顺时针方向旋转90°后得到的△A 2B 2C ;(3)在(2)的条件下直接写出点B 旋转到B 2所经过的路径的长.(结果保留π)解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 如图所示. (3)根据勾股定理,BC =12+42=17,所以点B 旋转到B 2所经过的路径的长=π217.22.(7分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且AD =1.将△OAD 绕着点O 逆时针旋转得到△OCE .(1)求证:OE ⊥OD ;(2)在x 轴上找一点P ,使得PD +PE 的值最小,求出点P 的坐标.(1)证明:∵将△OAD 绕着点O 逆时针旋转得到△OCE ,∴∠AOD =∠COE .∵四边形OABC 是正方形,∴∠AOC =90°,∴∠AOD +∠COD =∠COE +∠COD =90°,即∠DOE =90°,∴OE ⊥OD .(2)解:∵OA =3,AD =1,∴D (3,1).作点D 关于x 轴对称的点F ,连接EF 交x 轴于点P ,此时,PD +PE 的值最小.∵D (3,1),∴F (3,-1).∵将△OAD 绕着点O 逆时针旋转90°得到△OCE ,∴E (-1,3).设直线EF 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧ 3=-k +b ,-1=3k +b ,∴⎩⎪⎨⎪⎧k =-1,b =2,∴直线EF 的解析式为y =-x +2.当y =0时,x =2,∴P (2,0).23.(7分)如图,一伞状图形,已知∠AOB =120°,点P 是∠AOB 平分线上一点,且OP =2,∠MPN =60°,PM 与OB 交与点F ,PN 与OA 交于点E .(1)如图1,当PN 与PO 重合时,探索PE 、PF 的数量关系;(2)如图2,将∠MPN 在(1)的情形下绕点P 逆时针旋转α(0<α<60°),继续探索PE 、PF 的数量关系,并求四边形OEPF 的面积.解:(1)∵∠AOB =120°,OP 平分∠AOB ,∴∠POF =60°.∵∠MPN =60°,∴△PEF 是等边三角形,∴PE =PF .(2)过点P 作PQ ⊥OA ,PH ⊥OB .∵OP 平分∠AOB ,∴PQ =PH ,∠PQO =∠PHO =90°.∵∠AOB =120°,∴∠QPH =60°=∠MPN ,∴∠QPE +∠EPH =∠FPH +∠EPH ,∴∠QPE =∠HPF .在△QPE 和△HPF 中,⎩⎪⎨⎪⎧∠EQP =∠FHP ,PQ =PH ,∠QPE =∠HPF ,∴△QPE ≌△HPF ,∴PE =PF ,S 四边形OEPF =S 四边形OQPH .∵PQ⊥O A ,PH ⊥OB ,OP 平分∠AOB ,∴∠QPO =30°,∴OQ =1,QP =3,∴S △OPQ =32,∴S 四边形OEPF =2S △OPQ =3.24.(7分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由;(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长;(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,使线段DG 与线段BE 相交,交点为H ,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB.延长EB交DG于点H.在△ADG中,∵∠AGD+∠ADG =90°,∴∠AEB+∠ADG=90°,∴∠DHE=90°,∴DG⊥BE.(2)∵AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG =∠BAE,∴△ADG≌△ABE(SAS),∴DG=BE.过点A作AM⊥DG交DG于点M,则∠AMD=∠AMG =90°.∵BD为正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∵∠MDA=45°,AD=2,∴DM=AM= 2.在Rt△AMG中,根据勾股定理,得GM=AG2-AM2=6,∴DG=DM+GM=2+6,∴BE=DG=2+ 6.(3)△GHE和△BHD面积之和的最大值为6.理由如下:∵对于△GHE,点H在以EG为直径的圆上,∴当点H与点A重合时,△GHE的面积最大.∵对于△BHD,点H在以BD为直径的圆上,∴当点H与点A重合时,△BHD的面积最大,∴△GHE和△BHD面积之和的最大值为2+4=6.《三角形》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列长度的三条线段,可以组成三角形的是(B)A.10、5、4B.3、4、2C.1、11、8D.5、3、82.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是(C)A.10B.9C.8D.63.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是(D)A.∠C=∠D B.∠BAC=∠ABDC.BC=AD D.AC=BD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说明:本试卷共4页,23小题,满分120分。考试用时90分钟。
注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字
笔填写准考证号、姓名

试室号、座位号,再用2B铅笔把试室号、座位号的对应数字涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应答案选项涂
黑,如需改

动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡
各题目指定

区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的
答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交
回。5.本试卷不用装订,考完后统一交县招生办(中招办)封存。

bb4ac―b参考公式:抛物线y=ax+bx+c(a≠0)的对称轴是直线x=―,
顶点坐标是(― ,)。

2a2a4a
方差S2=[(x―-x12)+(x―-x22)+…+(x―-x12)]
n
一、选择题:每小题3分,共15分。每小题给出四个答案,其中只有一个
是正确的。

1.―(―)0=()
A.―2B.2C.1D.―12.下列图形中是轴对称图形的是()
A.B.C.D.
3.同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽
查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的
()A.总体B.个体C.样本D.以上都不对4.如图,在折纸活动中,小
明制作了一张⊿ABC纸片,点D、E分别是边AB、AC上,将⊿ABC沿着DE
折叠压平,A与A’重合,若∠A=75°,则∠1+∠2=()

A.150°B.210°C.105°D.75°
5.在同一直角坐标系下,直线y=x+1与双曲线y=的交点的个数为()
xA.0个B.1个C.2个D.不能确定
二、填空题:每小题3分,共24分。
6.使式子m-2有意义的最小整数m是
7. 若代数式-4x6y与x2ny是同类项,则常数n的值为
8.梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数
据用科学计数法可表示为千瓦。

9.正六边形的内角和为度。
10.为参加2023年“梅州市实践毕业生升学体育考试”,小峰同学进
行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,
8.5,8.8,8.5,9.2、这组数据的:①众数是;②中位数是;③方差是。

11.春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正
方形木板在地面上形成的投影是可能是
(写出符合题意的两个图形即可)新课标第一网12.如图,
∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=1,则EF=

13.如图,连接在一起的两个正方形的边长都为1cm,一个微型机器
人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动。①第一次到
达G点时移动了 cm;②当微型机器人移动了2023cm时,它停在 点。 三、
解答题

1-
14.(7分)计算:-3-12+2sin60°+(1
x+3>0
15.(7分)解不等式组:?,并判断-1、2这两个数是否为该不等式
组的解。

2(x-1)+3≥3x
16.(7分)为实施校园文化公园化战略,提升校园文化品位,在
“回赠母校一颗树”活动中,我市中学准备在校园内空地上种植桂花树、
香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部
分学生,并将调查结果整理后制成了如下统计图:

请人根据统计图提供的信息,解答以下问题:(直接填写答案)(1)
该中学一共随机调查了人;

(2)条形统计图中的m=,n=;
(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树
的概率是。17.(7分)如图,在边长为1的正方形组成的网格中,⊿AOB
的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3)。⊿AOB绕点
O逆时针旋转90°后得到⊿A1OB1、(直接填写答案)

(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;
(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为。
18.(8分)

4x+2
解方程:2+=-1
x-11-x19.(8分)如图,AC是⊙O的直径,弦BD交AC于点E。
(1)求证:⊿ADE∽⊿BCE;

(2)如果AD2=AE●AC,求证:CD=CB
20.(8分)一辆警车在高速公路的A处加满油,以每小时60千米的
速度匀速行驶。已知警车一次加满油后,油箱内的余油量y(升)与行驶时
间x(小时)的函数关系的图象如图所示的直线l上的一部分。

题20图
题21图
(1)求直线l的函数关系式;
(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,
那么警车可以行驶到离A处的最远距离是多少?

21.(8分)如图,已知⊿ABC,按如下步骤作图:①分别以A、C为
圆心,以大于AC的长

相关文档
最新文档