中考数学专题训练 函数基础训练题
新初中数学函数基础知识专项训练解析附答案(1)

新初中数学函数基础知识专项训练解析附答案(1)一、选择题 1.在函数3y x =-中,自变量x 的取值范围是( )A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L ),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )A .以相同速度行驶相同路程,甲车消耗汽油最多B .以10km/h 的速度行驶时,消耗1升汽油,甲车最少行驶5千米C .以低于80km/h 的速度行驶时,行驶相同路程,丙车消耗汽油最少D .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A 错误. 以10km/h 的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B 错误. 以低于80km/h 的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C 错误. 以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确. 故选D .【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.6.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是()A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.7.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】 解:由题意得,12×2πR×l =8π, 则R =8lπ, 故选A .【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.8.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x ≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.12.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.13.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.14.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A的解答过程可得结论;D.根据题意列式计算即可得出点M的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.15.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.16.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.17.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画( )A.B.C.D.【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】:秒频率保持不变,排除选项A和D,再根据最后10秒冲解:根据题意可知,中间2050刺,频率是增加的,排除选项B,因此,选项C正确.故选:C.【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.18.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.。
新初中数学函数基础知识专项训练解析含答案

新初中数学函数基础知识专项训练解析含答案一、选择题1.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F运动到点M处时,三角形△BEF的周长y最小,且AM>MC.过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:故选B.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.2.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.3.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF =3 ; 直线l 向右平移直到点F 过点B 时,y =3;当直线l 过点C 时,x =a +2,y =0 ∴菱形的边长为a +2﹣a =2 ∴当点E 与点D 重合时,由勾股定理得a 2+2(3)=4∴a =1 ∴菱形的高为3∴菱形的面积为23.故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,4.如图1,在扇形OAB 中,60O ∠=︒,点P 从点O 出发,沿O A B →→以1/cm s 的速度匀速运动到点B ,图2是点P 运动过程中,OBP V 的面积()2y cm随时间()x s 变化的图象,则a ,b 的值分别为( ) 图1图2A .4,43π B .4,443π+ C .222π3 D .222223π 【答案】B【解析】【分析】结合函数图像中的(a ,3OB=OA=a ,S △AOB =3a 的值,再利用弧长公式进而求得b 的值即可.【详解】解:由图像可知,当点P 到达点A 时,OB=OA=a ,S △AOB =43过点A 作AD ⊥OB 交OB 于点D ,则∠AOD=90°,∴在Rt△AOD中,sin∠AOD=AD AO,∵∠AOB=60°,∴sin60°=3 AD ADAO a==,∴AD=32a,∵S△AOB=43,∴13432a a⨯⨯=,∴a=4(舍负),∴弧AB的长为:60441803ππ⨯⨯=,∴443bπ=+.故选:B.【点睛】本题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形结合思想的应用.5.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A.B.C .D .【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选C .6.在函数3y x =-x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v 【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .【点睛】本题考查了二次根式的性质:二次根式的被开方数是非负数.7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.( )A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A.【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.8.如图,2020D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.11.如图,矩形ABCD的周长是28cm,且AB比BC长2cm.若点P从点A出发,以1/cm s的速度沿A D C→→方向匀速运动,同时点Q从点A出发,以2/cm s的速度沿A B C→→方向匀速运动,当一个点到达点C时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.12.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.13.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.14.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A【解析】【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2,∴等边三角形ABC3∴等边三角形ABC3由图2可知,x=1时△EFG的面积y最小,此时AE=AG=CG=CF=BG=BE,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为3, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.15.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ;②前半个小时,货车的平均速度是40 km/h ;③8∶00时,货车已行驶的路程是60 km ;④最后40 km 货车行驶的平均速度是100 km/h ;⑤货车到达乙地的时间是8∶24,其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤【答案】D【解析】【分析】 根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.16.按如图所示的运算程序,能使输出k的值为1的是()A.x=1,y=2 B.x=2,y=1 C.x=2,y=0 D.x=1,y=3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.17.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元,则y与x之间的函数关系式为()A.y=-12x B.y=12x C.y=-2x D.y=2x【答案】D【解析】依题意有:y=2x,故选D.19.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.20.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.。
中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
(中考试题)初中数学专题训练-函数

函数一.选择题(共20小题)1.(2014•射阳县校级模拟)若点P(a,a﹣b)在第四象限,则点Q(b,﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2012•翁源县校级模拟)函数的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠﹣3C.x≥﹣1 D.x≥﹣1且x≠﹣33.(2017春•姜堰区校级月考)如图,在物理实验课上,小明用弹簧秤将铁块A 从完全置身水槽外,到匀速向下放入盛有水的水槽中,直至铁块完全浸入水面下的一定深度,则图能反映弹簧秤的读数y(单位:N)与铁块下降的高度x(单位:cm)之间的函数关系的大致图象是()A.B .C.D.4.(2012•山西模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()初中数学A.摩托车比汽车晚到1h B.A,B两地的路程为20kmC.摩托车的速度为45km/h D.汽车的速度为60km/h 5.(2011•大同校级模拟)有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为()升.A.15B.16C.17D.18 6.(2016•阳泉模拟)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与的函数关系的图象大致是()A.B.C.D.8.(2016春•新洲区期末)若一次函数y=(1﹣m)x|m|﹣1+3的函数值y随x的增大而增大,则m的取值为()A.2B.1C.﹣2D.﹣1 9.(2014•泗县校级模拟)函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣1D.m>﹣110.(2014•永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.(2012春•翠屏区校级期中)直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3B.2C.﹣2D.﹣312.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+2 13.(2014•白云区校级模拟)根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为()x﹣21y3pA.3B.1C.﹣2D.﹣614.一次函数y=kx+b(b>0)与反比例函数y=在同一直角坐标系下的大致图象为()A.B.C.D.15.(2014•泗县校级模拟)若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定16.(2014•泗县校级模拟)如图,A为反比例函数图象上一点,AB⊥x轴于=3,则k的值为()点B,若S△AOBA.3B.6C.D.无法确定17.(2014•鼓楼区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1 18.(2014•磐石市校级模拟)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是()A.B.C.D.19.(2014•溧水县校级模拟)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣4;(2)若y<0,则x的取值范围为0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.0B.1C.2D.320.对二次函数进行配方,其结果及顶点坐标是()A.B.C.D.二.填空题(共20小题)21.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限22.(2015秋•灯塔市期末)坐标平面内的点与是一一对应的.23.(2017秋•昌平区校级期中)从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t(分)之间的函数关系式是.24.(2014•新泰市校级模拟)函数y=中,自变量x的取值范围是;函数中,自变量x的取值范围是.25.(2012秋•合肥期末)根据图中所示的程序计算变量y的值,若输入自变量x 的值为,则输出的结果是.26.(2016春•西和县校级月考)用描点法画函数图象的一般步骤是、、.27.(2014•无棣县校级模拟)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.则y 与x 的关系式为,当重叠部分的面积是正方形面积的一半时,三角形移动时间是.28.(2015秋•深圳校级期中)函数的三种表示方式分别是.29.(2017•和平区校级模拟)当m=时,函数y=(m +3)x 2m +1+4x ﹣5(x≠0)是一次函数.30.(2014•泗县校级模拟)已知函数y=2x ﹣3,当x 时,y ≥0;当x时,y <5.31.一次函数y=kx +b 的图象与性质k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第象限第象限第象限第象限性质y 随x 的增大而y 随x 的增大而y 随x 的增大而y 随x 的增大而32.(2014•射阳县校级模拟)如图,点A (﹣3,4)在一次函数y=﹣3x ﹣5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为.33.(2014秋•路北区期末)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于.34.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.35.(2008春•通城县期中)反比例函数y=的图象经过点(﹣,5)和(a,﹣3),则a=.36.(2014•泗县校级模拟)已知y﹣2与x成反比例,当x=3时,y=1,则y与x 的函数关系式为.37.二次函数y=2x2﹣4x+5的对称轴方程是x=;当x=时,y有最小值是.38.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,1)的下方.下列结论:①a﹣b+c=0,②0<b<﹣a,③a+c>0,④a﹣b+1>0,其中正确结论的个数是个.39.(2014•射阳县校级模拟)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)40.(2014•大石桥市校级模拟)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为.三.解答题(共10小题)41.已知点M(3a+8,﹣1﹣a),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在一、三象限角平分线上;(3)点M在第四象限,并且a为最小自然数;(4)N点坐标为(﹣3,6),并且直线MN∥y轴.42.在平面直角坐标系中,已知点A(﹣3,4),点B(﹣1,﹣2),点C(1,2),O是坐标原点.(1)求△AOB的面积;(2)求△ABC的面积.43.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.44.已知一次函数y=(m+2)x+2﹣n,求:(1)y随x的增大而增大,m的取值范围;(2)函数的图象与y轴的交点在x轴的下方时,m,n的取值范围;(3)m,n为何值时图象与坐标轴交于原点;(4)函数的图象经过第一、二、三象限,m,n的取值范围.45.(2016•阳泉模拟)已知方程x2+mx+n=0的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.46.(2014•浙江模拟)如图,直线AB与x轴交于点A(1,0),与y轴交于点B (0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S=2,求点C的坐标.△OBC47.(2016•阳泉模拟)如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k ≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.48.如图所示,直线y=2x+3与双曲线y=相交于A,B两点,与轴交于点C,且△OCA的面积为1.5.(1)求双曲线y=的解析式;(2)若点D,B关于原点对称,一动点P沿着x轴运动,则|PA﹣PD|是否有最大值?如果有,请确定点P的位置;如果没有,请说明理由.49.(2014•溧水县校级模拟)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求m的值;(2)根据上表求y>0时的x的取值范围;(3)若A(p,y1),B(p+1,y2)两点都在该函数图象上,且p<1,试比较y1与y2大小.50.如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过y=ax2+bx+c(a≠0)点A.(1)求c的值;(2)若a=﹣1,且抛物线与矩形有且只有三个交点,A,D,E,求△ADE的面积S的最大值.第11页(共11页)。
人教版中考数学《函数》专项练习题(含答案)

人教版中考数学《函数》专项练习题(含答案)一、单选题1.若方程组y mx n y kx b =+⎧⎨=+⎩的解为x 2y 1=⎧⎨=⎩,则一次函数y mx n =+图象和y kx b =+图象的交点坐标是( )A .()21,B .()12,C .()21-,D .()21--,2.将抛物线y =x 2-2x +3向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为( )A .y =(x +1)2+5B .y =(x -4)2+4C .y =(x +2)2+4D .y =(x -3)2+53.如图,点A 是反比例函数()20=>y x x 的图象上任意-点,//AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作平行四边形ABCD ,其中C ,D 在x 轴上,则平行四边形ABCD 的面积为( )A .5B .4C .3D .2 4.函数()211my m x +=+是二次函数,则m 的值是( ) A .±1B .1C .-1D .以上都不对5.如图,二次函数y =ax 2+bx +c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1、x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .5a +b +2c >0C .2a +b <0D .4ac +8a >b 26.下列各曲线中,反映了变量y 是x 的函数的是( )A .B .C .D .7.抛物线23y x =先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( )A .23(1)1y x =++B .23(1)1y x =+-C .23(1)1y x =-+D .23(1)1y x =-- 8.已知反比例函数y=3x-,下列结论不正确的是( ) A .图象必经过点(﹣1,3) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则﹣3≤y<0 9.对于二次函数()22110()y ax a x a a =--+-≠,有下列结论:①其图象与x 轴一定相交;②若0a <,函数在1x >时,y 随x 的增大而减小;③无论a 取何非零实数,抛物线的顶点始终在同一条直线上;④无论a 取何非零实数,函数图象都经过同一个点,其中正确结论个数是( )A .1个B .2个C .3个D .4个10.若对于任意非零实数a ,抛物线22y ax ax a =+-总不经过点200316P x x --(,),则符合条件的点P ( )A .有无穷多个B .有且只有1个C .有且只有2个D .至少有3个11.(2006•临沂)如图,点A 是反比例函数图象的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,则此函数的表达式为( )A .B .C .D .12.已知二次函数y 1=mx 2+4mx ﹣5m (m ≠0),一次函数y 2=2x ﹣2,有下列结论: ①当x >﹣2时,y 随x 的增大而减小;②二次函数y 1=mx 2+4mx ﹣5m (m ≠0)的图象与x 轴交点的坐标为(﹣5,0)和(1,0); ③当m =1时,y 1≤y 2;④在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 2≤y 1均成立,则m 13=. 其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题13.如图,平行四边形ABCD 中,AB =2cm ,BC =2cm ,∠ABC =45°,点P 从点B 出发,以1cm /s 的速度沿折线BC →CD →DA 运动,到达点A 为止,设运动时间为t (s ),△ABP 的面积为S (cm 2),则S 与t 的函数表达式为_______________.14.已知点()1,1A a a -+在x 轴上,则a 等于________.15.抛物线y=2(x -4)2+1的顶点坐标为_______________.16.根据函数y=的图象判断,当x<-2时,y 的取值范围是___,当y>-1时,x 的取值范围是_____17.若一次函数y ax b =+(0a ≠)的图象经过()3,2和()3,1--两点,则方程1ax b +=-的解为______.18.点P 既在反比例函数y =-3x(x >0)的图象上,又在一次函数y =-x -2的图象上,则P 点的坐标是_______________.19.若点A(1,-2)、B(-2,a)在同一个反比例函数的图象上,则a 的值为_______.20.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.三、解答题21.根据所学一次函数的经历和经验,下面我们一起来探究函数:|21|1y x =+-的图像和性质.(1)请写出函数解析式: ①当12x <-时,____________; ②当21x ≥-时,___________; (2)请在所给的平面直角坐标系中画出该函数的图像;(3)若函数2(0)y kx k =+≠与|21|1y x =+-的图像有且只有一个交点,请直接写出k 的取值范围是________.22.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y 关于x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?23.(2018·河师大附中模拟)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?24.在矩形ABCD 中,AB=2cm ,BC=3cm ,点P 沿B→A→D 运动,运动到点D 时停止运动,点P 运动的同时,另一点Q 从B→C 运动,速度是点P 的一半,当点P 停止运动时,点Q 也停止运动.设点P 运动的路程为xcm ,其中设12,BDP DCQ y S y S ∆∆==,可可根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究,下面是可可的探究过程,请补充完整.(1)如图是画出的函数1y 与x 的函数图象,观察图象.当x=1时,1y =_____;并写出函数的一条性质:________________________________________.(2)请帮助可可写出2y 与x 的函数关系式(不用写出取值范围)__________________.(3)请按照列表、描点、连线的步骤在同一直角坐标系中,画出函数2y 的图象.(4)结合画出函数图象,解决问题:当BDP DCQ S S ∆∆=时,点P 运动的路程x=_______.25.已知直线l1:y=kx+b经过点A(12,2)和点B(2,5).(1)求直线l1的表达式;(2)求直线l1与坐标轴的交点坐标.26.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+(b﹣4)2=0(1)求a,b的值;(2)在y轴上是否存在一点M,使△COM的面积=12△ABC的面积,求出点M的坐标.27.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?28.四个容量相等的容器形状如图1所示,用同一流量的水管分别向这四个容器注水,所需时间都相同,如图2所示的是容器水位(h)与时间(t)的关系的图象.请把适当的图象序号与相应容器形状的字母代号用线段相连接.29.在平面直角坐标系xOy中,函数ayx=(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围参考答案1.A2.D3.A4.B5.B6.D7.A8.B9.C10.C11.D12.C13.S=()((1022{12221(42)2242 2t ttt t≤≤<≤++<≤+-14.-115.(4,1)16.0<y<2 x>4 17.3x=-18.P(1,-3)19.120.(a ,b ).21.(1)①22y x =--,② 2y x =;(2)画图见解析;(3)2k ≥或2k ≤-.22.(1)0.032299y x =-+;(2)260.6克/立方米23.(1)甲种牲畜的单价为1100元,乙种牲畜的单价为2400元;(2)购买两种牛各25头时,费用最低.24.(1)32,当02x ≤≤时,1y 随x 的增大而增大;(2)2132y x =-;(3)见详解;(4)1.5cm 或4cm .25.(1)y =2x+1;(2)(0,1)和(﹣12,0) 26.(1)a =﹣2,b =4;(2)存在,M (0,6)或(0,﹣6)27.(1)z =﹣2x 2+136x ﹣1800;(2)25元或43元;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)648万元.29.(1)a=3,b=-2;(2) m ≥8或m ≤-2。
初三数学中考复习《一次函数的应用》专项训练(含答案)

初三数学中考复习 一次函数的应用 专项训练1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x 的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆) 45 28租金(元/辆) 400 250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆) 载客量(人) 租金(元)A型客车x 45x 400xB型客车13-x ____________ ______________ (2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)部分0.4超过30平方米部分0.9设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/吨)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x≥4) (2)因为y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x+12×8×(22-x)+900,即y =-16x +3012 (2)依题意得4x≥35×8×(22-x),∴x≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元 3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎪⎨⎪⎧b =192,2k +b =0,解得⎩⎪⎨⎪⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家 5. 解:(1)甲旅行社的总费用:y 甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社6. 解:(1)设y =kx +b(k≠0),则⎩⎪⎨⎪⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y=-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x≤1时,y =22+6=28;当x >1时,y =28+10(x-1)=10x +18.∴y=⎩⎪⎨⎪⎧28(0<x≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k =90,∴k=60,∴y=60x(0≤x≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k′x+b ,∵A(1.5,90),B(2.5,170)在AB上,∴⎩⎪⎨⎪⎧1.5k′+b =90,2.5k′+b =170,解得⎩⎪⎨⎪⎧k′=80,b =-30,∴y=80x -30(1.5≤x≤2.5) (3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=1200,60k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎪⎨⎪⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎪⎨⎪⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x≤20时,y =-20x +1200,当20<x≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y≤900,则5x +700≤900,x≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB∥CD,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h ) (2)当2≤t≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +105012. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t≤20),1000(20<t≤30),50t -500(30<t≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt +b ,则⎩⎪⎨⎪⎧25k +b =1000,b =250,解得,⎩⎪⎨⎪⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x-90(1≤x≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,B 种机器人比A 种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W 元,则有:W =400x +250(13-x)=150x +3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x -30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。
中考数学复习《函数》专项提升训练题-附答案

中考数学复习《函数》专项提升训练题-附答案学校: 班级: 姓名: 考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点 平面直角坐标系,正比例函数、一次函数、二次函数、反比例函数的图象、性质及应用,函数与方程、不等式的联系一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号 1 2 3 4 5 6 7 8 9 10 答案1.一次函数y=-3x+1的图象经过A .第二、第三、第四象限B .第一、第三、第四象限C .第一、第二、第三象限D .第一、第二、第四象限 2.抛物线y=-(x-1)2+3的顶点坐标是A .(1,3)B .(-1,3)C .(-1,-3)D .(1,-3)3.已知点M (-2,4)在反比例函数y=kx 的图象上,则下列各点一定在该函数图象上的是A .(-2,-4)B .(4,-2)C .(2,4)D .(4,2)4.如图,在平面直角坐标系中,直线y=2x+b 与直线y=-3x+6相交于点A ,则关于x , y 的二元一次方程组{y =2x +b,y =−3x +6的解是A .{x =2,y =0B .{x =1,y =3C .{x =−1,y =9D .{x =3,y =15.下列图象中,表示y 是x 的函数的有A .1个B .2个C .3个D .4个6.按如图所示的方式摆放餐桌和椅子,照这样的方式继续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,那么y 与x 之间的关系式为A .y=6xB .y=4x-2C .y=5x-1D .y=4x+27.下列说法正确的是A .在函数y=2x-3中, y 随x 的增大而减小B .直线y=-x+2经过第一、第二、第三象限C .在函数y=-2x (x<0)中, y 随x 的增大而增大D .二次函数y=3(x-4)2+5的图象向上平移6个单位长度后得到的函数解析式为y=3(x-10)2+58.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kpa)与气体体积V (m 3)成反比,其函数图象如图所示,则当气体体积为2 m 3时,气压为A .48 kpaB .96 kpaC .120 kpaD .24 kpa9.如图,用长为12 m 的篱笆围成一个一边靠墙(墙足够长)的矩形花园,则这个花园的最大面积是A .16 m 2B.12 m2C.18 m2D.以上都不对(b≠0)的图象如图所示,则一次函数y=cx-a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平10.已知反比例函数y=bx面直角坐标系中的图象可能是二、填空题(本大题共5个小题,每小题3分,共15分)11.在函数y=(k-2)x+3中, y随x的增大而减小,则k的取值范围为.12.在平面直角坐标系中,请写出直线y=2x-3上的一个点的坐标:.13.将抛物线y=3x2+2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.14.如果点A(-1,y1),B(2,y2),C(3,y3)都在反比例函数y=-6的图象上,那么y1,y2,y3按从小到大的顺序排列x为.(用“<”表示)15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则有以下5个结论:①a<0;①b=-2a;①b2-4ac<0;①当0<x<2时,y>0;①a-b+c>0.其中正确的结论有.(填序号即可)三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)已知y与x成正比例,且当x=1时,y=2,求当x=3时,y的值.(2)已知某一次函数的图象过点P(8,2)且与直线y=x+1平行,求一次函数的解析式.17.(本题8分)如图,直线AB与x轴,y轴的交点坐标分别为点A(3,0),点B(0,4),O是平面直角坐标系的原点.(1)作以O为圆心且与直线AB相切的☉O.(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)求直线AB的函数解析式.18.(本题7分)已知二次函数y=ax2+bx+c(其中a,b,c为常数,且a≠0)的变量x与变量y的部分对应值如下表:x…-4-3-10…y…m00-3…(1)求m的值.(2)求此二次函数的解析式及顶点坐标.19.(本题8分)如图,直线l1: y1=-2x+6与x轴, y轴分别交于点A,点B,直线l2过点C(-5,0),与直线l1交于点D(a,8),与y轴交于点E.(1)求直线l2的解析式.(2)求☉BDE的面积.20.(本题8分)如图,一次函数y=kx+b与反比例函数y=m的图象交于A(-2,1)、B(1,a)两点.x(1)分别求反比例函数与一次函数的解析式.(2)观察图象,直接写出当反比例函数值大于一次函数值时x的取值范围.21.(本题8分)某批发商以6元/千克的进价购进某种蔬菜,销往零售超市,批发商销售过程中发现,这种蔬菜的销售单价为10元/千克时,每天的销售量为300千克,如果调整价格,销售单价每涨1元,每天少卖出30千克.设销售价格为x元/千克,每天的销售量为y千克.(1)请直接写出y与x之间的函数关系式.(2)当每天的销售单价是多少时,该批发商销售这种蔬菜的利润为1440元?(3)端午节期间,批发商对这种蔬菜进行优惠促销,每购买1千克这种蔬菜,赠送成本为2元的端午节饰品,这种蔬菜的售价定为多少元时,该批发商每天的销售利润最大?最大利润是多少元?22.(本题13分)如图,点A在反比例函数y=k(x>0)的图象上,AB☉x轴于点B, AB的垂直平分线PD交反比例函x数的图象于点P.(1)若点A的坐标为(1, 8),则点P的坐标为.(2)若AP☉BP,点A的横坐标为m.①求k与m之间的关系式;①连接OA,OP,若☉AOP的面积为6,求k的值.23.(本题13分)如图,抛物线y=-x2+bx+c过点A(-1,0),点B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当☉PCB是以BC为底边的等腰三角形时,求点P的坐标.(3)在(2)的条件下,是否存在点M为抛物线第一象限上的点,使得S☉BCM=S☉BCP?若存在,直接写出点M的横坐标;若不存在,请说明理由.参考答案1.【答案】D2.【答案】A3.【答案】B4.【答案】B5.【答案】C6.【答案】D7.【答案】C8.【答案】A9.【答案】C10.【答案】D提示:①反比例函数y=b x(b≠0)的图象在第一和第三象限内①b>0.>0,①二次函数开口向下,对称轴在y轴右侧,故A,B选项全不符合.若a<0,则-b2a<0,①二次函数开口向上,对称轴在y轴左侧,故只有C,D两选项可能符合题意,由C,D两图象若a>0,则-b2a知,c<0.又①a>0,则-a<0,当c<0, a>0时,一次函数y=cx-a的图象经过第二、第三、第四象限,只有D选项符合题意.故选D.11.【答案】k<212.【答案】(1,-1)(答案不唯一)13.【答案】y=3(x+2)2-114【答案】.y2<y3<y115.【答案】①①①提示:①抛物线开口向下①a<0①①正确.=1①抛物线的对称轴为x=-b2a①b=-2a①①正确.①抛物线与x轴有两个交点①Δ=b2-4ac>0①①错误.由抛物线的对称性知抛物线与x轴正半轴的交点横坐标大于2①抛物线开口向下①当0<x<2时,y>0①①正确.①当x=-1时,y<0①a-b+c<0.①①错误.故答案为①①①.16.【答案】(1)解:设y=kx,把x=1, y=2,代入得k=2故此函数的解析式为y=2x , ................................................................................................................................... 3分 ①当x=3时, y=2×3=6. ........................................................................................................................................... 5分 (2)解:设一次函数的解析式为y=x+b 将P (8,2)代入解析式可得8+b=2 ①b=-6①y=x-6. ................................................................................................................................................................. 5分 17.【答案】解:(1)如图,☉O 即为所求. ............................................................................................................. 4分(2)设直线AB 的函数解析式为y=kx+b.由已知条件可得{b =4,3k +b =0, ................................................................................................................................ 6分解得{k =−43,b =4,①直线AB 的函数解析式是y=-43x+4. ................................................................................................................... 8分 18.【答案】解.(1)由表格可知,当x=-1和当x=-3时的函数值相同 ①二次函数的对称轴为直线x=-1+(-3)2=-2 ①当x=-4和当x=0时的函数值相同①m=-3. .................................................................................................................................................................... 3分 (2)把(-3,0),(-1,0),(0,-3)代入二次函数y=ax 2+bx+c 中 得{9a-3b +c =0,a-b +c =0,c =−3,解得{a =−1,b =−4,c =−3,①二次函数的解析式为y=-x 2-4x-3=-(x+2)2+1, .................................................................................................... 6分 ①二次函数的顶点坐标为(-2,1). ............................................................................................................................ 7分 19.【答案】解:(1)①直线l 1过点D (a ,8) ①8=-2a+6,①a=-1 ①D (-1,8).设直线l 2的解析式为y=kx+b (k ≠0).①直线l 2过点C (-5,0),点D (-1,8)①{-5k +b =0,-k +b =8,解得{k =2,b =10,①直线l 2的解析式为y=2x+10. ........................................................................................................................... 4分(2)在y=-2x+6中,令x=0,则y=6①B (0,6)在y=2x+10中,令x=0,则y=10①E (0,10)①BE=10-6=4①☉BDE 的面积为12×4×1=2. .................................................................................................................................. 8分20.【答案】解:(1)将点A (-2,1)代入y=m x 得m=-2×1=-2则反比例函数的解析式为y=-2x . ............................................................................................................................ 2分 将点B (1,a )代入y=-2x 得a=-21=-2,即B (1,-2)将点A (-2,1), B (1,-2)代入y=kx+b 得{-2k +b =1,k +b =−2,解得{k =−1,b =−1,则一次函数的解析式为y=-x-1. ............................................................................................................................ 4分(2)当反比例函数值大于一次函数值时,x 的取值范围是-2<x<0或x>1. ......................................................... 8分21.【答案】解:(1)y=300-(x-10)×30=-30x+600. .............................................................................................. 2分(2)设批发商销售这种蔬菜每天的利润为W 元.①利润=销售量×(销售单价-进价)①W=(-30x+600)(x-6).当W=1440时,(-30x+600)(x-6)=1440整理方程得x 2-26x+168=0解得x 1=14,x 2=12. ................................................................................................................................................... 4分 答:当每天的销售单价是14元/千克或12元/千克时,该批发商销售这种蔬菜的利润为1440元. ................. 5分(3)设该批发商每天获得的利润W 1元.①端午节期间,批发商对这种蔬菜进行优惠促销,每购买1千克这种蔬菜,赠送成本为2元的端午节饰品 ①每千克的利润为(x-6-2)元①W 1=(-30x+600)(x-6-2)=-30(x-14)2+1080. .................................................................................................................................................. 6分 ①-30<0①抛物线开口向下①当x=14时,W 1有最大值,W 1最大=1080.答:这种蔬菜的售价定为14元时,每天可获得最大利润,最大利润为1080元. .................................................. 8分22.【答案】解:(1)(2,4). ..................................................................................................................................... 2分(2)①①点A 的横坐标为m①A (m ,k m )①OB=m , AB=k m .①DP 是AB 的垂直平分线, AP ☉BP①PD=12AB=k 2m ①P (m+k 2m ,k 2m ), ......................................................................................................................................................... 6分 ①k=k 2m (m+k 2m )整理得k=2m 2故k 与m 之间的关系式为k=2m 2. ........................................................................................................................ 9分 ①作PE ☉x 轴于点E ,图略,由①可知反比例函数的解析式为y=2m 2x①A (m ,2m ), P (2m ,m ).①S ☉AOP =S ☉AOB +S 梯形ABEP -S ☉POE =S 梯形ABEP =6①12(2m+m )(2m-m )=6,解得m 2=4①k=2m 2=8. ............................................................................................................................................................ 13分23.【答案】解:(1)根据题意,得{0=−(−1)2-b+c,0=−32+3b +c,解得{b =2,c =3, ①抛物线的解析式为y=-x 2+2x+3. ........................................................................................................................ 4分(2)如图,连接OP ,由(1)得y=-x 2+2x+3①点C (0,3),且点B (3,0)①OC=OB=3.①☉PCB 是以BC 为底边的等腰三角形①PC=PB.①OP=OP①☉COP ☉☉BOP①☉COP=☉BOP=12×90°=45°................................................................................................................................. 6分 设抛物线的对称轴与x 轴交于点H ,则☉OHP=90°①☉OPH=☉POH=45°①OH=PH.①抛物线的对称轴为直线x=-22×(−1)=1①OH=1①PH=1①点P 的坐标为(1,1). ............................................................................................................................................. 8分(3)存在. ................................................................................................................................................................... 9分 点M 的横坐标为3+√52或3−√52. .............................................................................................................................. 13分 提示:如图,过点M 作ME ☉y 轴,交BC 于点E ,交x 轴于点F .设M (m ,-m 2+2m+3),则F (m ,0)设直线BC 的解析式为y=kx+n ,依题意得{0=3k +n,3=n,解得{k =−1,n =3,①直线BC 的解析式为y=-x+3.当x=m 时,y=-m+3①点E 的坐标为(m ,-m+3).①点M 在第一象限内,且在直线BC 的上方 ①ME=-m 2+2m+3-(-m+3)=-m 2+3m S ☉BCM =S ☉MEC +S ☉MEB =12ME ·OF+12ME ·FB=12ME ·OB=32(-m 2+3m ).①S ☉BCP =12×3×3-12×1×3-12×1×3=32又①S ☉BCM =S ☉BCP①32(-m 2+3m )=32解得m 1=3+√52, m 2=3−√52.综上所述,点M 的横坐标为3+√52或3−√52.。
最新初中数学函数基础知识专项训练解析附答案

最新初中数学函数基础知识专项训练解析附答案 一、选择题 1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之
沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
A. B.
C. D.
【答案】D 【解析】 解:如右图,
连接OP,由于OP是Rt△AOB斜边上的中线, 所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
故选D.
2.如图,在边长为3的菱形ABCD中,点P从A点出发,沿A→B→C→D运动,速度为每
秒3个单位;点Q同时从A点出发,沿A→D运动,速度为每秒1个单位,则APQ的面积S关于时间t的函数图象大致为( ) A. B. C. D.
【答案】D 【解析】 【分析】 根据动点的运动过程分三种情况进行讨论解答即可. 【详解】 解:根据题意可知: 3APt,AQt,
当03t时,
2133sinsin22SttAtA
0sin1A 此函数图象是开口向上的抛物线;
当36t时, 133sinsin22StAtA
此时函数图象是过一、三象限的一次函数;
当69t时,
2139(93)sin()sin222SttAttA.
此时函数图象是开口向下的抛物线.
所以符号题意的图象大致为D. 故选:D. 【点睛】 本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.
3.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形
ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
A.3 B.3 C.23 D.33 【答案】C 【解析】 【分析】 将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积. 【详解】 解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF=3 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yxO
B(8,2)A(-2,4)
中考数学专题训练 函数基础训练题1 1. 函数y=x31的自变量x的取值范围是 ;函数y=1x的自变量x的取值范围
是 ;抛物线yx3122()的顶点坐标是____________; 2. 抛物线y=3x2-1的顶点坐标为 对称轴是 ; 3. 设有反比例函数ykx1,(,)xy11、(,)xy22为其图象上的两点,若xx120时,yy12,则k的取值范围是___________; 4. 如果函数xxxf15)(,那么)12(f________. 5. 已知实数m满足m2-m-2=0,当m=_______,函数y=xm+m+1x+m+1的图象与x轴无交点; 6. 函数31xxy的定义域是___________.若直线y=2x+b过点2,1,则b= ; 7. 如果反比例函数的图象经过点)3,2(A,那么这个函数的解析式为___________. 8. 已知m为方程x2+x-6=0的根,那么对于一次函数y=mx+m:①图象一定经过一、二、三象限;②图象一定经过二、三、四象限;③图象一定经过二、三象限;④图象一定经过点-l,0;⑤y一定随着x的增大而增大;⑤y一定随着x的增大而减小;以上六个判断中,正确结论的序号是 多填、少填均不得分 9. 有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与X轴两个交点的横坐标都是整数;丙:与Y轴交点的纵坐标也都是整数,且以这三个交点为顶点的三角形面积为3;请你写出满足上述全部特点的一个二次函数解析式: ; 10. 已知二次函数021acbxaxy与一次函数02kmkxy的图象相交于点A-2,4,B8,2如图所示,则能使1y>2y成立的x的取值范围是 . 11. 在平面直角坐标系中,点P-2,1在 A、第一象限 B、第二象限 C、第三象限 D、第四象限 12. 二次函数y=x2-2x+3的最小值为 A、4 B、2 C、1 D、-1 13. 要使根式3x有意义,则x的取值范围是 Ax≤3 Bx≠3 Cx>3 Dx≥3 14. 二次函数 y=x2+10x-5的最小值为 A-35 B-30C-5 D20 15. 已知甲,乙两弹簧的长度ycm与所挂物体质量xkg之间的函数解析式分别为y=k1x+a1和y=k2x+a2, 图象如右,设所挂物体质量均为2kg时,甲弹簧长为y1 ,乙弹簧长为y2则y1与y2的大小关系为 Ayl> y2 By1=y2 Cy1< y2 D不能确定 16. 函数y=41x中自变量x的取值范围是 A.x4 B. 4X C. x>-4 D. 4x 17. 点P-1,3关于y轴对称的点是 A. -1,-3 B. 1,-3 C. 1,3 D. -3,1 18. 函数y=21-x中,自变量x的取值范围是 A. x>2 B. x<2 C. x≠2 D. x≠-2 19. 抛物线y=x2-2x-1的顶点坐标是 A.1,-1 B.-1,2 C.-1,-2 D.1,-2
20. 抛物线632xxy的对称轴是直线
23)(xA 23)(xB 3)(xC 3)(xD
21. 给出下列函数:1y=2x; 2y=-2x+1; 3y=x2x>0 4y=x2x<-1其中,y随x的增大而减小的函数是 A、1、2. B、1、3. C、2、4. D 、2、3、4 22. 如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 23. A 2.5米 B 2米 C 1.5米 D 1米
24. 当K<0时,反比例函数y=xk和一次函数y=kx+2的图象在致是图中的
25. 已知正比例函数xmy12的图象上两点A1x,1y,B2x,2y,当1x <2x时,有y1>y2那么m的取
值范围是 A、m<1/2 B、m>1/2 C、m>2 D、m<0 26. 已知圆柱的侧
ox
yox
yox
yoy
xABCD面积是100лcm2,若圆柱底面半径为rcm2,高线长为hcm,则h关于r的函数的图象大致是 27. 下列函数关系中,可以看作二次函数02acbxaxy模型的是 A在一定的距离内汽车的行驶速度与行驶时间关系 B我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系 C竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系不计空气阻力 D圆的周长与圆的半径之间的关系 28. 又又又向高层建筑屋顶的水箱注水,水对水箱底部的压强p与水深h的函数关系的图象是水箱能容纳的水的最大高度为H; 29. 在直角坐标系中,点A的坐标为2+a,3-a,当a>3时,点A在 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 30. 已知y=x+a,当x=-1,0,1,2,3时对应的y值的平均数为5,则a的值是 A518B519C4D521 31. 抛物线cbxaxy2与x轴交于A,B两点,Q2,k是该抛物线上一点,且AQ⊥BQ,则ak的值等于 A-1B-2C2D3 32. 张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系 : 33. 反比例函数y=xk3的图象在二、四象限,那么K的取值范围是 ≤3 B. k 3 C. k>3 D. k<-3 34. 已知直线bkxy经过点A0,6,且平行于直线xy2.1 求k、b的值;2 如果这条直线经过点Pm,2,求m的值;3 写出表示直线OP的函数解析式; 4 求由直线bkxy,直线OP与x轴围成的图形的面积.
35. 已知反比例函数ymx3和一次函数ykx1的图象都经过点Pmm(,)3;1P的坐标和这个一次函数的解析式;2若点May(,)1和点Nay(,)12都在这个一次函数的图象上,试通过计算或利用一次函数的性质,说明y1大于y2;
36. 汽车有油箱中有余油量Q升与它行驶的时间t小时之间是一次函数关系,该汽车外出时,刚开始行驶时 油箱中有油60升,行驶了4小时后发现已耗油20升;1求:油箱中的余油Q与行驶时间t之间的函数关系式2分2求:这个实际问题中时间t的取值范围,并在右下角的直角坐标系中作出该函数图象2分3如果汽车每小时行驶40千米,那么汽车行驶多远必须加油
37. 已知抛物线y=ax2+bx+c经过A-1,0、B3,0、C0,3三点, (1) 求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线; (2) 若点x0,y0在抛物线上,且0≤x0≤4,试写出y0的取值范围; (3) 设平行于y轴的直线x=t交线段BM于点P点P能与点M重合,不能与点B重合交x轴于点Q,四边形AQPC的面积为S; ① 求S关于t的函数关系式以及自变量t的取值范围; ② 求S取得最大值时,点P的坐标; ③ 设四边形OBMC 的面积S/,判断是否存在点P,使得S=S/ ④ ,若存在,求出点P的坐标;若不存在,请说明理由; 38. 中华人民共和国个人所得税规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税年得额;此项税款按下表累进计算: 全月应纳税所得额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10% 超过2000元至5000元的部分 15% …… …… 纳税款=应纳税额所得额对应的税率 按此规定解下列问题:1设某甲的月工资、薪金所得为x元130041. 如图,已知平面直角坐标系中三点A4,0,0,4,Px,0x<0,作PC⊥PB交过点A的直线l于点C4,y;1求y关于x的函数解析式;2当x取最大整数时,求BC与PA的交点Q坐标;
42. 如图已知一交函数y=-2x+6的图象与x轴交于点A,与y轴交于点C;二次函数y=ax2+bx+ca≠0的图象过A、C两点,并且与x轴交于另一点BB在负半轴上;1当S△ABC=4S△B0C时,求抛物线y=ax2+bx+c的解析式和此函数顶点坐标;2以OA的长为直径作⊙M,试判定⊙M与直线AC的位置关系,并说明理由;
43. 已知一次函数mxy43的图象分别交x轴、y轴于A、B两点,且与反比例函数xy24的图象在第一象限交于点C4,n,CD⊥x轴于D;1求m、n的值,并在给定的直角坐标系中作出一次函数的图象; 2如果点P、Q分别从A、C两点同时出发,以相同的速度沿线段AD、CA向D、A运动,设AP=k;①k为何值时,以A、P、Q为顶点的三角形与△AOB相似②k为何值时,△APQ的面积取得最大值并求出这个最大值; 44. 某企业有员工300人,生产∠种产品,平均每人每年可创造利润m万元m 为大于零的常数;为减员增效,决定从中调配x人去生产新开发的B种产品,根据评估,调配后,继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润万元; (1) 调配后,企业生产∠种产品的年利润为____________万元,企业生产B种产品的年利润为_________________万元用含x和m的代数式表示;若设调配后企业全年总利润为y万元,则y关于x的函数解析式为____________. (2) 若要求调配后,企业生产A种产品的年利润不小于调配前企业年利润的54,生产B种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案 请设计出来,并指出其中哪种方案全年总利润最大必要时,运算过程可保留3个有效数字; (3) 企业决定将2中的年最大总利润设m=2继续投资开发新产品;现有6种产品可供选择不得重复投资同一种产品各产品所需资金及所获年利润如下表: 如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品请写出两种投资方案; 45. 分已知:如图,一次函数的图象经过第一、二、三象限,且与反比例函数的图象交于A、B两点,与Y轴交于点C,与X轴交于点D,OB=10,tg∠DOB=1/3;1求此反比例函数的解析式;2设点A的横坐标为m,ΔABO的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;3当ΔOCD的面积等于S/2时,试判断过A、B两点的抛物线在X轴上截得的线段长能否等于3,如果能,求出此时抛物线的解析式;如果不能,请说明理由; 46. 已知二次函数.22aaxxy1证明:不论a取何值,抛物线.22aaxxy的顶点Q总
在x轴的下方;2设抛物线.22aaxxy与y轴交于点C,如果过点C且平行于x轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:△QCD能否是等边三角形若能,请求出相应的二次函数解析式;若不能,请说明理由;3在第2题的已知条件下,又设抛物线与x轴的交点