人教版 八年级数学下册 19.2一次函数图像性质 培优班 练习卷(含答案)

合集下载

知识点详解人教版八年级数学下册第十九章-一次函数专题练习试题(含答案及详细解析)

知识点详解人教版八年级数学下册第十九章-一次函数专题练习试题(含答案及详细解析)

人教版八年级数学下册第十九章-一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=22、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.3、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+4、下列各图中,不能表示y是x的函数的是()A.B.C.D.5、一次函数的一般形式是(k,b是常数)()A.y=kx+b B.y=kx C.y=kx+b(k≠0)D.y=x6、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是()A.销量小于500件时,选择乙超市工资更高 B.想要获得3000元的工资,甲超市需要的销售量更少C.在甲超市每销售一件牛奶可得提成3元D.销售量为1500件时,甲超市比乙超市工资高出800元7、关于一次函数y=﹣2x+3,下列结论正确的是()A.图象与x轴的交点为(32,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)8、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定9、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0 B .x <0 C .x <﹣1 D .x >﹣110、如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .2,3x y =-⎧⎨=⎩B .3,2x y =⎧⎨=-⎩C .2,3x y =⎧⎨=⎩D .2,3x y =-⎧⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、直线y=2x-3与x轴的交点坐标是______,与y轴的交点坐标是______.4、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.5、直线y=-3x+12与x轴的交点坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的表达式;(2)求两直线与y轴围成的三角形的面积.2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、测得一弹簧的长度L(厘米)与悬挂物体的质量x(千克)有下面一组对应值:试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x千克的物体时的弹簧的长度L.(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?(4)若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过多少千克?4、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.5、如图,已知点A(-2,4),B(4,2),C(2,-1).(1)先画出△ABC,再作出△ABC关于x轴对称的图形△A1A1A1,则点A1的坐标为________;(2)P为x轴上一动点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹).---------参考答案-----------一、单选题1、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.2、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x ≤43时,y =60(x -45)+90(x -45)=150x -120; 当43<x ≤2是,y =60x ;由函数解析式的当x =43时,y =150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.3、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.4、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.5、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.6、D【解析】【分析】根据函数图象分别求得甲、乙两超市每月工资y (元)与员工销售量x (件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:111y k x b =+,乙的解析式为:222y k x b =+将()()0,1000,500,2500代入111y k x b =+,得11110005002500b k b =⎧⎨+=⎩ 解得1131000k b =⎧⎨=⎩ ∴131000y x =+将()()0,1500,500,2500代入222y k x b =+,得22215005002500b k b =⎧⎨+=⎩解得2221500k b =⎧⎨=⎩ ∴221500y x =+A.根据函数图像可知,当500x <时,12y y <,即选择乙超市工资更高,故该选项正确,符合题意;B.当13000y =时,20003x =,当23000y =时,15007502x ==,20007503<,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意; C.根据题意,甲超市的工资为131000y x =+,0x =时,1000y =,即底薪为1000元,当500x =时,2500y =,则()250010005003-÷=,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当1500x =时,11000315005500y =+⨯=,22150015004500y =⨯+=,55004500=1000-(元), 即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意; 故选D【点睛】本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键.7、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A 符合题意;利用一次函数图象与系数的关系,可判断出选项B 不符合题意;利用一次函数的性质,可判断出选项C 不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D 不符合题意.【详解】解:A .当y =0时,﹣2x +3=0,解得:x =32,∴一次函数y =﹣2x +3的图象与x 轴的交点为(32,0),选项A 符合题意;B .∵k =﹣2<0,b =3>0,∴一次函数y =﹣2x +3的图象经过第一、二、四象限,选项B 不符合题意;C .∵k =﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.8、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.【详解】解:∵一次函数y=-3x-1中,k=-3<0,∴y随x的增大而减小,∵-2<-1,∴y1>y2.故选:A.【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.9、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.10、A【解析】【分析】根据两个一次函数的交点坐标即可得.【详解】 解:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点(2,3)P -,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =-⎧⎨=⎩, 故选:A .【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键.二、填空题1、 3,02⎛⎫ ⎪⎝⎭ 94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、(32,0)##(1.5,0)(0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32=,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.4、x>1【解析】【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.【详解】解:由图可知:不等式kx >﹣x +3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x >1.故此不等式的解集为x >1.故答案为:x >1.【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.5、( 4,0)【解析】【分析】令y =0,求出x 的值即可得出结论.【详解】312y x =-+,∴当0y =时,0312x =-+,得4x =,即直线312y x =-+与x 轴的交点坐标为:( 4,0),故答案为( 4,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y =0三、解答题1、(1)A =34A ,A =2A −5;(2)A ΔAAA =10【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得△AOB的面积.【详解】∵A(4,3)∴OA=OB=√32+42=5,∴B(0,-5),设直线OA的解析式为y=kx,则4k=3,k=34,∴直线OA的解析式为A=34A,设直线AB的解析式为A=A′A+A,把A、B两点的坐标分别代入得:{4A ′+A=3A=−5,∴{A ′=2A=−5,∴直线AB的解析式为y=2x-5.(2)A△AAA=12×5×4=10.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.2、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:{10A+20A=32500 30A+40A=87500,解得:{A=2250A=500,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:2250(1+10%)A+500×80%(80﹣A)≤115000.解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.3、(1)A=0.5A+12;(2)17㎝;(3)12千克;(4)不能超过16千克【解析】【分析】(1)观察即可得规律:弹簧称所挂重物质量x与弹簧长度L之间是一次函数关系,然后由待定系数法求解即可;(2)将x=10代入解析式,求出L的值,即可求得答案;(3)将L=18代入求出即可;(4)根据题意列出不等式求解即可.【详解】解:(1) ∵弹簧称所挂重物质量x(kg)与弹簧长度L(cm)之间是一次函数关系,∴设L=kx+b,取点(0,12)与(1,12.5),则{A=12A+A=12.5,解得:{A=12A=0.5,故L与x之间的关系式为A=0.5A+12.(2)将A=10,代入A=0.5A+12,得A=0.5A+12=0.5×10+12=17(cm)∴所挂物体的质量为10千克时,弹簧的长度是17cm(3)将A=18,代入A=0.5A+12,得18=0.5A+12,解得A=12∴若测得弹簧的长度是18厘米,则所挂物体的质量为12千克.(4)∵弹簧的长度不超过20厘米,即L≤20,∴0.5A+12≤20,得A≤16∴若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过16千克. 【点睛】此题考查了一次函数的应用.解题的关键是根据题意求得一次函数的解析式.4、(1)PQ=5cm;(2)t=5;(3)S四边形APQB=30﹣5t+t2.3【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√AA2+AA2=√(5−A)2+(2A)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12AA⋅AA−12AA⋅AA=12×5×12−12×(5−A)×2A=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)作图见解析,(2,1);(2)作图见解析,(2,0).【解析】【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为△AAA;根据轴对称的性质找到A、B、C三点关于x轴的对应点A1、A1、A1,再顺次连接,即为△A1A1A1,最后写出A1的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接A1A,即A1A与x轴的交点为点P,再直接写出点P坐标即可.【详解】(1)△AAA和△A1A1A1如图所示,根据图可知A1(2,1).故答案为:(2,1).(2)∵AB长度不变,△AAA的周长=AA+AA+AA,∴只要AA+AA最小即可.如图,连结A1A交x轴于点P,∵两点之间线段最短,∴AA+AA=AA1+AA≥A1A,设A1A解析式为A=AA+A,过A1(-2,-4),B(4,2),代入得,{−4=−2A+A2=4A+A解得:{A=1A=−2,∴A1A的解析式为A=A−2,当A=0时,即0=A−2,解得:A=2.∴点P坐标为 (2,0).当点P坐标为(2,0)时,△AAA周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.。

人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)

人教版初中八年级数学下册第十九章《一次函数》经典测试题(含答案解析)(2)

一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不确定A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案.【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0, ∴12y y >,故选A .【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn >0,m ,n 同号,同正时y =mx +n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y =mx +n 过1,3,4象限或2,4,1象限.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km C解析:C【分析】 根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x += ∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定B解析:B【分析】 根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .18A解析:A【分析】 根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决.【详解】 解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<, ∵不等式组恰有4个整数解, ∴123a <≤, ∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限, ∴60a ->,∴6a <,∴36a <<,又∵a 为整数,∴a=4或5,∴满足条件的所有整数a 的和为4+5=9,故选:A .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.7.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.8.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩C解析:C 【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C.【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5B 解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交点的连线段长度等于22125+=,故本选项说法正确,不符合题意;故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.10.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题11.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______.6【分析】将点代入一次函数中得n-5m=3即可代入求值【详解】∵点在一次函数的图像上∴5m+3=n ∴n-5m=3∴=3+3=6故答案为:6【点睛】此题考查一次函数图象上点坐标特点已知式子的值求代数式解析:6【分析】将点)(,A m n 代入一次函数53y x =+中得n-5m=3,即可代入求值.【详解】∵点)(,A m n 在一次函数53y x =+的图像上,∴5m+3=n ,∴n-5m=3,∴53n m -+=3+3=6,故答案为:6.【点睛】此题考查一次函数图象上点坐标特点,已知式子的值求代数式的值,掌握函数图象上点坐标特点是解题的关键.12.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____. 3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.13.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx=+⎧⎨=⎩, ∴ax b mx +=,解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n ,∴2bm a =-,由ax b mx -=,得:b x m a=--, ∴2bx m a =-=--,∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.14.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.15.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.【分析】由题意可知当x=-2时一次函数与正比例函的函数值相同从而可得到方程的解【详解】解:一次函数图象与正比例函数图象交于点所以则则所以方程的解是故答案为:【点睛】本题考查一次函数与一次方程组的关系解析:2x =-【分析】由题意可知当x=-2时,一次函数5y x m =+与正比例函y kx =的函数值相同,从而可得到方程的解.【详解】解:一次函数5y x m =+图象与正比例函数y kx =图象交于点(2,4)-,所以5y x m y kx =+⎧⎨=⎩,则5x m kx +=,则5x kx m =-, 所以,方程5x kx m =-的解是2x =-,故答案为:2x =-.【点睛】本题考查一次函数与一次方程组的关系,一次函数的交点坐标就是它们的解析式组成的方程组的解.16.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.17.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152 【分析】 先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.18.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键.19.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解20.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩, 即1322y x =-,∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.24.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);3∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3.2解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3). ∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3). 【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.25.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.解析:(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线332y x =+中的0y =,则3302x +=, 解得:2x =-,∴由题意得:(2,0)A -,将(2,)B m 代入直线332y x =+中得3232m ⨯+=, 6m =,(2,6)B ∴,设直线BC 为:y kx b =+,∴代入(2,6),(3,0)B C 可得,2630k b k b +=⎧⎨+=⎩, 解得:618k b =-⎧⎨=⎩, ∴直线BC 的函数表达式为:618y x =-+.(2)设直线AB 交y 轴于点H ,则点H (0,3),过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,由AB 的表达式知,直线m 的表达式为32y x =直线n 的表达式为362y x =+ ∴32618y x y x ⎧=⎪⎨⎪=-+⎩,解得125,185x y ⎧=⎪⎪⎨⎪=⎪⎩故点D 的坐标为1218(,)553+62618y x y x ⎧=⎪⎨⎪=-+⎩,解得85,425x y ⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭ 故点D 的坐标为为1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE =∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴223,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.26.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟,答:兔子中间停下睡觉用了28.5分钟.【点睛】本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.27.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm .(3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)解析:(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.28.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;。

人教版八年级下册数学 19.2 一次函数(2) 同步习题(包含答案)

人教版八年级下册数学 19.2 一次函数(2) 同步习题(包含答案)

19.2 一次函数(2) 同步习题基础训练1.若k≠0,b<0,则y=kx+b的图象是()2.若式子+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()3.已知直线y=kx+b,若k+b=-5,kb=5,那么该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限知识点2直线y=kx+b的位置与系数k,b的关系4.若一次函数y=kx+b的图象经过第一、三、四象限,则k,b的取值范围是()A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<05.直线y=2x-4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(-4,0)D.(0,-4)6.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数解析式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)7.将函数y=3x的图象沿x轴向右平移2个单位长度后,所得图象对应的函数关系式是()A.y=3x+2B.y=3x-2C.y=3x+6D.y=3x-68.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度知识点3一次函数y=kx+b的性质9.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1y2(填“>”“=”或“<”).10.下列函数中,同时满足下面两个条件的是()①y随着x的增大而增大;②其图象与x轴的正半轴相交.A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+111.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限12.已知一次函数y=-x+3,当0≤x≤3时,函数y的最大值是()A.0B.3C.-3D.无法确定13.在平面直角坐标系中,点O为原点,直线y=kx+b交x轴于点A(-2,0),交y轴于点B.若△AOB的面积为8,则k的值为()A.1B.-4C.4D.4或-4提升训练14.已知关于x的一次函数y=(a+3)x+(b-2).(1)当a为何值时,y随x的增大而减小?(2)当a,b为何值时,函数图象与y轴的交点在x轴上方?(3)当a,b为何值时,函数图象经过第一、三、四象限?(4)当a,b为何值时,函数图象经过原点?(5)当a,b为何值时,该函数的图象与直线y=-3x平行?15.已知y-(m-3)(m是常数)与x成正比例,且x=6时,y=1;x=-4时,y=-4.(1)求y与x之间的函数解析式;(2)在直角坐标系中,画出(1)中所求函数的图象,并说出它的增减性;(3)求出(1)中所求函数的图象与两坐标轴围成的三角形面积.探究培优16.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.17.一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若(1)中的函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x 轴交于点C,求线段BC的长.参考答案1.【答案】B解:当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴,又k≠0,所以直线不平行于x轴,故选B.2.【答案】C解:先求出k的取值范围,再判断出1-k及k-1的符号,进而可得出结论.3. 【答案】A解:因为k+b=-5,kb=5,所以k<0,b<0.所以直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A解:因为将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,所以-2(x-a)-2=-2x+4,解得a=3.故将l1向右平移3个单位长度.9.【答案】<10.【答案】C11.【答案】D解:当x=0时,y=k,即点(0,k)在l上,故A选项正确;当x=-1时,y=-k+k=0,故B选项正确;当k>0时,y随x的增大而增大,故C选项正确;由于k的正负不确定,因此不能确定l经过第一、二、三象限,故D选项错误.故选D.12.【答案】B解:∵一次函数y=-x+3的函数值y随x的增大而减小,∴当x=0时,函数y有最大值,此时y=3.13.【答案】D解:因为直线y=kx+b交x轴于点A(-2,0),所以-2k+b=0.又因为其交y轴于点B,所以B(0,b).若△AOB的面积为8,则有×2×|b|=8,即b=±8,所以k=±4.故选D.易错总结:解决这类问题时,要把两种情况都考虑进去,并分两种情况分别求解.常因漏掉其中一种情况导致结果不全面,从而错选B或C.14.解:(1)由一次函数的性质可知,当a+3<0,即a<-3时,y随x的增大而减小.(2)由题意,得a+3≠0且b-2>0,解得a≠-3且b>2,即当a≠-3且b>2时,函数图象与y轴的交点在x轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a>-3且b<2,即当a>-3且b<2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a≠-3且b=2.所以当a≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b≠2.所以当a=-6且b≠2时,该函数图象与直线y=-3x平行.15.解:(1)∵y-(m-3)与x成正比例,∴可设y-(m-3)=kx,即y=kx+m-3.①把和分别代入①并整理得解这个方程组,得故所求函数解析式为y=x-2.(2)经过A(6,1)和B(-4,-4)画直线即是函数y=x-2的图象.如图所示,函数y随x的增大而增大.(3)因为函数解析式为y=x-2,结合图象(如图)可求得C(4,0),D(0,-2).所以函数的图象与两坐标轴围成的三角形面积为×4×2=4.16.解:(1)当x=0时,y=4,当y=0时,x=-2,则图象如图所示.(2)由上题可知A(-2,0),B(0,4).(3)S△AOB=×2×4=4.(4)x<-2.17.解:(1)由题意得m2-1=3,所以m=±2.又m-2≠0,即m≠2,所以m=-2,所以y=-4x+3.(2)由y=-4x+3可得B点坐标为.因为直线y=(n+2)x+n2-1经过点A(0,3),所以n2-1=3,所以n=±2.又n+2≠0,即n≠-2,所以n=2.所以y=4x+3.所以C点坐标为. 所以BC=-=.。

2022年人教版八年级数学下册第十九章-一次函数专题练习试卷(含答案详解)

2022年人教版八年级数学下册第十九章-一次函数专题练习试卷(含答案详解)

人教版八年级数学下册第十九章-一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是()A.销量小于500件时,选择乙超市工资更高 B.想要获得3000元的工资,甲超市需要的销售量更少C.在甲超市每销售一件牛奶可得提成3元D.销售量为1500件时,甲超市比乙超市工资高出800元2、关于函数y x,以下说法错误的是()A.图象经过原点B.图象经过第二、四象限C.图象经过点2)D.y的值随x的增大而增大3、一次函数y=2021x﹣2022的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.45、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是().A.-2 B.2C .4D .﹣46、若函数满足0a c +=,a c <,则函数y ax c =+的图象可能是( )A .B .C .D .7、如图,一次函数y =ax +b 的图象交x 轴于点(2,0),交y 轴与点(0,4),则下面说法正确的是( )A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =28、点A (3-,1y )、B (2,2y )都在直线2(1)3y a x =-++上,则1y 与2y 的关系是( )A .12y y ≤B .12y y =C .12y y <D .12y y >9、一次函数y =﹣3x ﹣4的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10、下列命题中,真命题是( )A .若一个三角形的三边长分别是a 、b 、c ,则有222+=a b cB .(6,0)是第一象限内的点C .所有的无限小数都是无理数D .正比例函数y kx =(0k ≠)的图象是一条经过原点(0,0)的直线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、先设出_____,再根据条件确定解析式中_____,从而得出函数解析式的方法,叫待定系数法.2、在平面直角坐标系中,A (﹣2,0),B (4,0),若直线y =x +b 上存在点P 满足45°≤∠APB ≤90°且PA =PB ,则常数b 的取值范围是______.3、直线y =2x-3与x 轴的交点坐标是______,与y 轴的交点坐标是______.4、点12021-(,)P 在正比例函数y kx =的图像上,则k =____.5、(1)每一个含有未知数x 和y 的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x ,y )都是这个二元一次方程的解.(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.三、解答题(5小题,每小题10分,共计50分)1、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费,每月用电不超过100度,按每度0.48元计算,每月用电超过100度,其中的100度仍按原标准收费,超过部分按每度0.50元计费.(1)设月用电x 度时,应交电费y 元,写出y 与x 的函数关系式,并写出自变量的取值范围.(2)小王家一月份用电130度,应交电费多少元?(3)小王家二月份交电费70元,求小王家二月份用了多少度电?2、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发s,甲提速前的速度是每秒米,m=,n=;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x 的取值范围.3、某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠.乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇.(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;(2)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?4、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.(1)小红、小华谁的速度快?(2)出发后几小时两人相遇?(3)A ,B 两地离学校分别有多远?5、已知一次函数的图象过点(-1,5),且与正比例函数y =-12x 的图象交于点(2,a ).求:(1)一次函数表达式;(2)这两个函数图象与x 轴所围成的三角形面积.---------参考答案-----------一、单选题1、D【解析】【分析】根据函数图象分别求得甲、乙两超市每月工资y (元)与员工销售量x (件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:111y k x b =+,乙的解析式为:222y k x b =+将()()0,1000,500,2500代入111y k x b =+,得 11110005002500b k b =⎧⎨+=⎩解得1131000k b =⎧⎨=⎩∴131000y x =+将()()0,1500,500,2500代入222y k x b =+,得22215005002500b k b =⎧⎨+=⎩解得2221500k b =⎧⎨=⎩ ∴221500y x =+A.根据函数图像可知,当500x <时,12y y <,即选择乙超市工资更高,故该选项正确,符合题意;B.当13000y =时,20003x =,当23000y =时,15007502x ==, 20007503<,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意; C.根据题意,甲超市的工资为131000y x =+,0x =时,1000y =,即底薪为1000元,当500x =时,2500y =,则()250010005003-÷=,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当1500x =时,11000315005500y =+⨯=,22150015004500y =⨯+=,55004500=1000-(元), 即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意; 故选D【点睛】本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键.2、D【解析】【分析】根据正比例函数的定义与性质判定即可.【详解】解:A、由解析式可得它是正比例函数,故函数图象经过原点,说法正确,不合题意;B、由k<0可得图象经过二、四象限,说法正确,不合题意;C、当x y=﹣2,图象经过点2),说法正确,不合题意;D、由k<0可得y的值随x的增大而减小,说法错误,符合题意;故选:D.【点睛】本题考查正比例函数的图像与性质,充分掌握正比例函数图象性质与系数之间的关系是解题关键.3、B【解析】【分析】根据一次函数y=2021x-2022中k、b的取值特点,判断函数图象经过第一、三、四象限.【详解】解:一次函数y=2021x-2022中,k=2021>0,∴一次函数经过第一、三象限,∵b=-2022<0,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限,∴一次函数图象不经过第二象限,故选:B .【点睛】本题考查了一次函数的性质,掌握一次函数k 、b 的特点与函数图象的关系是解题的关键.4、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.5、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.6、D【解析】【分析】<可得a<0,c>0,根据一次函数的图象与性质即可得解.由0a c+=可得a,c互为相反数,由a c【详解】解:∵0+=,a c∴a,c互为相反数,<,∵a c∴a<0,c>0,=+的图象经过一、二、四象限.∴函数y ax c故选D.【点睛】本题考查了一次函数图象与性质,相反数的性质.对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;当b>0时,图象与y轴正半轴有交点,当b=0时,图象经过原点,当b<0时,图象与y轴负半轴有交点.7、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、D【解析】【分析】根据k<0,得到y随x的增大而减小,即可求解.【详解】解:∵2(1)a -+<0,y 随着x 的增大而减小,32-<∴12y y >故选D【点睛】本题考查了一次函数的性质,掌握“0k <,y 随着x 的增大而减小”是解题的关键.9、A【解析】【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数不经过哪个象限.【详解】解答:解:∵一次函数y =﹣3x ﹣4,k =﹣3,b =﹣4,∴该函数经过第二、三、四象限,不经过第一象限,故选:A .【点睛】本题考查了一次函数的图象与性质,属于基础题型,熟练掌握一次函数的性质是解题的关键.10、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.【详解】解:A 、若一个三角形的三边长分别是a 、b 、c ,不一定有222+=a b c ,则原命题是假命题,故本选项不符合题意;B 、(6,0)是x 轴上的点,则原命题是假命题,故本选项不符合题意;C 、无限不循环小数都是无理数,D 、正比例函数y kx =(0k ≠)的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.二、填空题1、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可.【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:①解析式 ②未知的系数.【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念.2、2≤b 或﹣﹣4≤b ≤﹣4【解析】利用PA=PB可得点P在线段AB的垂直平分线上,分b>0或b<0两种情况讨论解答:求出当∠APB=90°和∠APB=45°时的b值,结合图象即可求得b的取值范围.【详解】解:∵A(﹣2,0),B(4,0),∴AB=6.∵PA=PB,∴点P在线段AB的垂直平分线上,设线段AB的垂直平分线交x轴于点C,,则点C(1,0),∴OC=1.①当b>0时,设直线y=x+b交x轴于点D,交y轴于点E,则D(﹣b,0),E(0,b).∴OD=b,OE=b.∴∠ODE=∠OED=45°,DC=OD+OC=b+1.当∠APB=90°时,如图,∴∠CPE=∠OED=45°.∴PC=DC=b+1,∵C为斜边AB的中点,AB=3.∴PC=12∴b+1=3.∴b=2.当∠APB=45°时,如图,过点A作AF⊥BP于点F,∵∠APB=45°,∴AF=PF.设AF=PF=x,则PA x,∵PA=PB,∴PB ,∴BF =PB ﹣PF =1)x .∵AF 2+BF 2=AB 2,∴2221)6x x ⎡⎤+=⎣⎦,∴x 2= ∵1122ABP S AB PC BP AF ∆=⋅=⋅,∴6(b +1x •x .∴b =.∵45°≤∠APB ≤90°,∴2≤b +2.②当b <0时,设直线y =x +b 交x 轴于点D ,交y 轴于点E ,则D (﹣b ,0),E (0,b ).∴OD =﹣b ,OE =﹣b .∴∠ODE =∠OED =45°,DC =OD +OC =﹣b ﹣1.当∠APB =90°时,如图,PC∥OE,∴∠CPE=∠OED=45°.∴PC=DC=﹣b﹣1,∵C为斜边AB的中点,AB=3.∴PC=12∴﹣b﹣1=3.∴b=﹣4.当∠APB=45°时,如图,过点A 作AF ⊥BP 于点F ,∵∠APB =45°,∴AF =PF .设AF =PF =x ,则PA x ,∵PA =PB ,∴PB ,∴BF =PB ﹣PF =1)x .∵AF 2+BF 2=AB 2,∴2221)6x x ⎡⎤+=⎣⎦,∴x 2= ∵1122ABP S AB PC BP AF ∆=⋅=⋅,∴6(﹣b ﹣1x •x .∴b=﹣4.∵45°≤∠APB≤90°,∴﹣b≤﹣4.综上,常数b的取值范围是:2≤b+2或﹣b≤﹣4.故答案是:2≤b或﹣b≤﹣4.【点睛】本题主要考查了一次函数的应用,垂直平分线的性质,勾股定理,准确计算是解题的关键.3、(32,0)##(1.5,0)(0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.4、-2021【解析】【分析】由12021P在正比例函数图像上,将利用正比例函数图像上的点的特征可得:2021=1k -(,)-⨯,解之即可得到k值.【详解】=的函数图像上,P在y kx-12021(,)∴-=⨯,20211k∴=-.2021k故答案为:-2021.【点睛】=是解题的本题主要是考查正比例函数上的点的特征,牢记函数图像上任何一点都满足函数关系式y kx关键.5、y=kx+b(k,b是常数,k≠0) 直线自变量多少交点坐标【解析】【分析】(1)根据一次函数与二元一次方程的关系解答即可;(2)根据一次函数与二元一次方程组的关系解答即可;【详解】(1)一般地,任何一个二元一次方程都可转化为一次函数的形式,∴每个二元一次方程都对应一个一次函数,也对应一条直线,故答案为:y=kx+b(k,b是常数,k≠0);直线(2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.∴答案为:自变量;多少;交点坐标【点睛】此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.三、解答题1、(1)y={0.48y(y≤100)0.50y−2(y>100);(2)63元;(3)144度【解析】【分析】(1)根据收费标准,列出分段函数即可解决问题;(2)x=130,代入y=0.50x-2即可;(3)因为70>63,所以把y=70代入y=0.50x-2,解方程即可.【详解】(1)由题意得:y={0.48y(0<y≤100)0.50y−2(y>100);(2)0.50×130-2=63(元),答:小王家一月份用电130度,应交电费63元.(3)∵70>63,∴0.50x-2=70,解得:x=144.答:小王家二月份交电费70元,求小王家二月份用了144度电.【点睛】本题考查了一次函数的应用,解题的关键是学会用用分段函数表示函数关系式,灵活运用所学知识解决问题.2、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x 的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是4030−10=2(m/s);∵甲出发一段时间后速度提高为原来的3倍,∴甲提速后速度为6m/s,故提速后甲行走所用时间为:400-406=60(s),∴m=30+60=90(s)∴n=400÷36090=400×90360=100(s);故答案为10;2;90;100;(2)设OA段对应的函数关系式为y=kx,∵A(90,360)在OA上,∴90k=360,解得k=4,∴y=4x.设BC段对应的函数关系式为y=k1x+b,∵B(30,40)、C(90,400)在BC上,∴{30y1+y=40 90y1+y=400,解得{y1=6y=−140,∴y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70.答:当x为70秒时,甲追上了乙.(3)由题意可得,|4y−[40+6(y−30)]|=30,解得x=55或x=85,即55≤x≤85时,甲、乙之间的距离不超过30米;当4x=400﹣30时,解得x=92.5,即92.5≤x≤100时,甲、乙之间的距离不超过30米;由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.3、(1)见解析;(2)组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多【解析】【分析】(1)根据甲旅行社的收费方案写出甲的函数关系;根据乙旅行社的收费方案,分x≤3和x>3两种情况写出函数关系式即可;(2)把x=20分别代入函数关系式计算,然后判断即可;根据所需费用一样列出方程,然后求解即可.【详解】解:(1)甲旅行社:y=300x,乙旅行社:x≤3时,y=350x,x>3时,y=350(x-3)=350x-1050;(2)当x=20时,甲:y=300×20=6000元,乙:y=350×20-1050=5950元;所以组织20人的旅行团时,选乙家旅行社比较合算;300x=350x-1050,解得x=21,答:组织20人的旅行团时,选乙家旅行社比较合算;当旅行团为21人时,选甲或乙旅行社所需费用一样多.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家旅行社的收费方法是解题的关键.4、(1)小华的速度快;(2)出发后14h 两人相遇;(3)A 地距学校200m ,B 地距学校500m【解析】【分析】(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;(2)观察横坐标,可得答案;(3)观察纵坐标,可得答案.【详解】解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),由横坐标看出都用了15min ,小红的速度是200÷15=403(m/min),小华的速度是500÷15=1003 (m/min), 1003>403,小华的速度快. (2)由横坐标看出,出发后14h 两人相遇.(3)由纵坐标看出A 地距学校700-500=200(m),B 地距学校700-200=500(m).【点睛】本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.5、(1)一次函数表达式为y =−2y +3.(2)这两个函数图象与x 轴所围成的三角形面积为34.【解析】【分析】(1)利用正比例函数求出交点坐标,再通过待定系数法求解出一次函数表达式.(2)求出一次函数与x 轴的交点坐标,以该三角形在x 轴上的边为底,交点坐标的纵坐标的绝对值为高,通过三角形面积公式即可求出答案.【详解】(1)解:设一次函数表达式为:y=yy+y,∵正比例函数y=-12x的图象经过点(2,a),∴y=−12×2=−1即该点坐标为(2,-1),∵由题意可知:一次函数的图象过点(-1,5)和(2,-1),∴{5=−y+y−1=2y+y,解得{y=−2y=3,∴一次函数表达式为y=−2y+3.(2)解:如图所示,设两个函数图像的交点为P,即P点坐标为(2,-1),一次函数与x轴的交点为A,∵A点是一次函数与x轴的交点坐标,∴0=−2y+3,解得y=32,即A点坐标为(32,0),∴yy=32,∵P点坐标为(2,-1),∴点P到x轴的距离为1,∴两个函数图象与x轴所围成的三角形面积为:yΔyyy=12×1×yy=34.【点睛】本题主要是考查了待定系数法求解一次函数表达式以及求解与坐标轴的面积,正确利用待定系数法求出一次函数表达式,合理确定坐标轴围成的三角形的底和高,这是解决本题的关键.。

人教版八年级下册数学第十九章 一次函数含答案(有答案)

人教版八年级下册数学第十九章 一次函数含答案(有答案)

人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

人教版八年级数学下册19.2.2一次函数同步测试(包含答案)

19.2.2 一次函数 班级: 姓名:一、单选题1.已知点A (1,y 1),B (-3,y 2)都在直线122y x =-+上,则( )A .y 1< y 2B .y 1= y 2C .y 1>y 2D .不能比较2.已知点(k ,b)为第二象限内的点,则一次函数y kx b =-+的图象大致是( ) A . B . C . D . 3.关于函数21y x =-+,下列结论正确的是( )A .图象必经过点()2,1-B .图象经过第一、二、三象限C .当12x >时,0y <D .y 随x 的增大而增大4.如图,将点P(-2,3)向右平移n 个单位后落在直线y=2x-1上的点P'处,则n 等于()A .4B .5C .6D .75.一次函数y=ax+b 与y=abx 在同一个平面直角坐标系中的图象不可能是( )A .B .C .D .6.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( ) A . B .C .D .7.将直线y =-x +a 的图象向下平移2个单位后经过点A (3,3),则a 的值为( ) A .-2 B .2 C .-4 D .88.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是( )A .12y x =-+ B .1y x =-+C .22y x =-+D .122y x =-9.将函数y 2x =的图象向下平移3个单位,则得到的图象相应的函数表达式为( ) A .y 2x 3=+B .y 2x 3=-C .y 2x 6=+D .y 2x 6=-二、填空题10.如图,正比例函数y=2x 的图象与一次函数y=-3x+k 的图象相交于点P(1,m),则两条直线与x 轴围成的三角形的面积为_______.11.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________.12.弹簧的长度ycm 与所挂物体的质量x(kg)的关系是一次函数,图像如图所示,则弹簧不挂物体时的长度是_______.13.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 14.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.15.若点P (-1,y 1)和点Q (-2,y 2)是一次函数y =13-x+b 的图象上的两点,则y 1,y 2的大小关系是___.三、解答题16.如图,在平面直角坐标系中,已知点()5,0A 和点()0,4B .(1)求直线AB 所对应的函数表达式;(2)设直线y x =与直线AB 相交于点C ,求AOC ∆的面积.17.如图,在平面直角坐标系xOy 中,过点(0,4)A 的直线1l 与直线2l :1y x =+相交于点(,2)B m . (1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与1l ,2l 的交点分别为M ,N ,当点M 位于点N 上方时,请直接写出n 的取值范围是 .一、单选题1.对于函数y =2x+1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大2.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 3.已知正比例函数y=kx(k≠0)的函数值y 随x 的增大而减小,则函数y=kx ﹣k 的图象大致是( )A .B .C .D . 4.已知点124,, 2()(),y y -都在直线21y x =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能确定5.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D . 6.已知一次函数y=mx+n ﹣2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >27.一次函数y kx b =+的图象经过第一、二、四象限,若点()2,A m ,()1,B n -在该一次函数的图象上,则m 、n 的大小关系是( )A .m n <B .m n =C .m n >D .无法判定8.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )A .打六折B .打七折C .打八折D .打九折9.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A .k>0,b>2B .k>0,b<2C .k<0,b>2D .k<0,b<2二、填空题 10.已知:如图,在平面直角坐标系xOy 中,一次函数y =34x+3的图象与x 轴和y 轴交于A 、B 两点将△AOB 绕点O 顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.11.已知:一次函数y kx b =+的图像在直角坐标系中如图所示,则kb ______0(填“>”,“<”或“=”)12.把直线112y x =--向y 轴正方向平移4个单位,得到的直线与x 轴的交点坐标为__________. 13.如果直线y=-2x+k 与两坐标轴围成的三角形面积是8,则k 的值为______.14.关于x 的一次函数y=3kx+k-1的图象无论k 怎样变化,总经过一个定点,这个定点的坐标是 .15.一次函数11:24l y x =-+与221:12l y x =--的图象如图所示,1l 交x 轴于点A ,现将直线2l 平移使得其经过点A ,则2l 经过平移后的直线与y 轴的交点坐标为________.16.一次函数23y x =-的图像经过的象限是___________.17.如果()2213m y m x -=-+是一次函数,则m 的值是________________.18.将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题19.已知一次函数2y kx k =+-的图象不经过第二象限.(1)求k 的取值范围;(2)当1k =时,判断点()1,3是否在该函数图象上.20.如图,直线y=kx+b 与x 轴、y 轴分别交于点A ,B ,且OA ,OB 的长(OA >OB )是方程x 2-10x+24=0的两个根,P (m ,n )是第一象限内直线y=kx+b 上的一个动点(点P 不与点A ,B 重合).(1)求直线AB 的解析式.(2)C 是x 轴上一点,且OC=2,求△ACP 的面积S 与m 之间的函数关系式;(3)在x 轴上是否有在点Q ,使以A ,B ,Q 为顶点的三角形是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.21.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B .(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x 轴交于D 点,求△BOD 的面积.参考答案1-5.ADCAD6-9.BDBB10.53 11.②12.10cm13.1y x =+14.1.515.y 1<y 216.(1)4y x 45=-+;(2)AOC 50S 9=V . 17.(1)直线1l 的表达式为24y x =-+;(2)1n <.1-5.CADAA6-9.DACB10.443y x =-+ 11.> 12.(6,0)13.42±.14.(-13,-1). 15.(0,1)16.一、三、四17.-1 ;18.y=-3x+5 19.(1)02k <≤;(2)点()1,3不在该一次函数的图像上.20.(1)y=-23x+4;(2)S=-83m+16或S=-43m+8(0<m <6);(3)存在,130)或130)或(-6,0)或(53,0) 21.(1)y =-x +3;(2)不在,理由略;(3)3。

人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)

人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)重要说明:1、本资料系本人多年教学经验的总结,力求每一道题目代表一种题型或一种思维,力求穷尽本章所有相关知识的培优,内容主要立足于课程标准,少部分奥赛内容,掌握此培优系列内容则中考无忧,同时具备参加重点高中学校的自主招生考试的能力。

2、本资料仅供优生(百分制下得分80分以上学生)使用,其余学生不得使用,每道题目后面附有详细解答及点评,学生至少做两遍资料方能理解其中真谛和得到能力提升。

3、本资料主要根据人教版教材编写,其它版本的教材都是在国家同一个课程标准下编写的,只是编排顺序不同,因此该内容也适用于其它版本的教材的对应章节。

4、编者简介:杨小云,男,1998年任教至今。

初中一线数学和物理教师,同时一直担任班主任,有丰富的教学经验和教学资源。

编有《人教版初中数学培优系列》和《人教版初中物理培优系列》,值得你收藏并推荐给好友。

一.选择题(共11小题)1.下列函数中,与y=|x|表示同一个函数的是()A.y=B.y=C.y=D.y=2.下图中,能表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的大致图象的是()A.B.C.D.3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或2 B.1或﹣2 C.﹣1或2 D.﹣1或﹣24.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是()A.(63,64)B.(63,32)C.(32,33)D.(31,32)5.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发,同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的函数关系的图象,则()A.明明的速度是80米/分B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇D.出发35分时两人相距2000米6.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个 B.3个 C.2个 D.1个7.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)8.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为()A.﹣4≤b≤﹣2 B.﹣6≤b≤2 C.﹣4≤b≤2 D.﹣8≤b≤﹣29.如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A方向运动至点A处停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则三角形ABC的面积为()A.20 B.10 C.30 D.不能确定10.如图,小亮在操场上玩,一段时间内沿M﹣A﹣B﹣M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()A.B.C. D.11.甲、乙两人沿同一方向去B地,途中都使用两种不同的速度v1,v2(v1<v2).甲一半路程使用速度v1,另一半路程使用速度v2,乙一半时间使用速度v1,另一半时间使用速度v2,甲、乙两人从A地到B地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴t表示时间,纵轴S表示路程),其中正确的图示分析为()A.(1)B.(3)C.(1)或(4)D.(1)或(2)二.填空题(共10小题)12.如果y﹣3与x+2成正比例,且当x=﹣1时,y=2.则y与x的函数关系式为.13.已知一次函数y=(2m﹣1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是.14.若一次函数y=kx+b的图象与y轴交点的纵坐标为﹣2,且与两坐标轴围成的直角三角形面积为1,则此一次函数的表达式为.15.已知一次函数y=2x﹣a与y=3x+b的图象交于x轴上原点外一点,则=.16.在平面直角坐标系中,点A(2,0)到动点P(x,x+2)的最短距离是.17.已知直线y=x+(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…S n=.18.如图,已知直线l:,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l 的垂线交x轴于点M2,…;按此作法继续下去,则点M6的坐标为.19.如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,分别为P1,P2,P3,…,P n﹣1T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n=.﹣120.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.21.如图,在平面直角坐标系xOy中,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴,交直线y=x于点B1,以A1为直角顶点,A1B1为直角边,在A1B1的右侧作等腰直角三角形A1B1C1;再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以A2为直角顶点,A2B2为直角边,在A2B2的右侧作等腰直角三角形A2B2C2…,按此规律进行下去,点C1的横坐标为,点C2的横坐标为,点C n的横坐标为.(用含n的式子表示,n为正整数)三.解答题(共19小题)22.已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.23.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围.24.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的交点的纵坐标为(0,﹣2),求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.25.已知一次函数y=kx+2b+4的图象经过点(﹣1,﹣3),k满足等式|k﹣3|﹣4=0,且y随x的增大而减小,求这个一次函数解析式.26.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.27.如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB:OC=3:1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.28.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S=8时,求点P的坐标;△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.29.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ 时,试用含t的式子表示m.30.如图①,我们在“格点”直角坐标系上可以看到,要求AB或CD的长度,可以转化为求Rt△ABC或Rt△DEF的斜边长.例如:从坐标系中发现:D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:.(1)在图①中请用上面的方法求线段AB的长:AB=;(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示:AC=,BC=,AB=;(3)试用(2)中得出的结论解决如下题目:已知:A(2,1),B(4,3);①直线AB与x轴交于点D,求线段BD的长;②C为坐标轴上的点,且使得△ABC是以AB为边的等腰三角形,请求出C点的坐标.31.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C 地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x(h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.32.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.33.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)34.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.35.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y(元),在乙店购买的付甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.款数为y乙(2)就乒乓球盒数讨论去哪家商店买合算?36.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?37.日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?38.某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?39.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).40.为了节约资源,科学指导居民改善居住条件,小王向房管部分提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式(m为常数);(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元且102<y≤105时,求m的取值范围.人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)参考答案与试题解析一.选择题(共11小题)1.【分析】分别分析四个选项的自变量和函数的取值范围,与y=|x|相同者为正确答案.【解答】解:A、x不能为0,故错误;B、y==|x|,故正确;C、x不能为负数,故错误;D、对应关系不同,故错误.故选:B.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.2.【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【解答】解:①当mn>0时,m、n同号,y=mnx过一三象限,同正时,y=mx+n经过一、二、三象限;同负时,过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,过一、二、四象限;故选:A.【点评】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3.【分析】首先根据四条直线的解析式画出示意图,从而发现四边形是梯形,求得梯形的四个顶点的坐标,再进一步根据梯形的面积公式进行计算.【解答】解:如图所示,根据题意,得A(1,3),B(1,﹣1),C(,﹣1),D(,3).显然ABCD是梯形,且梯形的高是4,根据梯形的面积是12,则梯形的上下底的和是6,则有①当k<0时,1﹣+1﹣=6,∴2﹣=6,∴=﹣4,解得k=﹣2;②当k>0时,﹣1+﹣1=6,∴=8,解得k=1.综上所述,则k=﹣2或1.故选:B.【点评】此题考查了用图象法表示函数、两条直线的交点坐标和梯形的面积公式,注意此题的两种情况.4.【分析】先根据题意得出以A n为顶点的正方形边长的规律,进而可得出点A6的坐标.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2为顶点的正方形边长A2C1=2=21,同理得:A3为顶点的正方形边长A3C2=4=22,…,∴顶点为A6的正方形的边长=25=32,∴点A6的纵坐标为32,当y=32时,32=x+1,解得x=31,即点A6的横坐标为31,∴A6的坐标是(31,32).故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质的运用;求出以A n为顶点的正方形边长的变化规律是解决问题的关键.5.【分析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当x=35时,出现拐点,显然此时亮亮到达A地,利用速度=路程÷时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离=明明的速度×第二次相遇的时间﹣A、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离=明明的速度×出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【解答】解:∵第一次相遇两人共走了2800米,第二次相遇两人共走了3×2800米,且二者速度不变,∴c=60÷3=20,∴出发20分时两人第一次相遇,C选项错误;亮亮的速度为2800÷35=80(米/分),两人的速度和为2800÷20=140(米/分),明明的速度为140﹣80=60(米/分),A选项错误;第二次相遇时距离B地距离为60×60﹣2800=800(米),B选项正确;出发35分钟时两人间的距离为60×35=2100(米),D选项错误.故选:B.【点评】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.6.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.7.【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.8.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故选:A.【点评】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.9.【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选:B.【点评】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.10.【分析】考查点的运动变化后根据几何图形的面积确定函数的图象,图象需分段讨论.【解答】解:分析题意和图象可知:当点M在MA上时,y随x的增大而增大;当点M在半圆上时,y不变,等于半径;当点M在MB上时,y随x的增大而减小.而D选项中:点M在半圆上运动的时间相对于点M在MB上来说比较短,所以C正确,D错误.故选:C.【点评】要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.11.【分析】甲一半路程使用速度v1,另一半路程使用速度v2,因为v1<v2,所以走一半路程所用时间大于,同时,乙一半时间使用速度v1,另一半时间使用速度v2,在t1时间里所走的路程小于总路程是一半.【解答】解:根据题意,从A 到B 地,甲用的时间为t 1=+=S , 乙用的时间2121222v v s tt v t v s v st +=+==- 用21t t -分析可得t 1>t 2,即乙比甲先到B 地,进而可排除图(3)、(4);当甲前一半路程速度为V 1,后一半路程为V 2时,因为v 1<v 2,所以走一半路程所用时间大于,图(2)正确,当甲前一半路程速度为V 2,后一半路程为V 1时,因为v 1<v 2,所以走一半路程所用时间小于,图(1)正确,则图(1)、(2)都正确;故选D .【点评】本题考查函数图象的变化趋势,是一道非常好的题目.二.填空题(共10小题)12.【分析】首先设y ﹣3=k (x +2),然后再把x=﹣1时,y=2代入可得k 的值,进而可得函数解析式.【解答】解:设y ﹣3=k (x +2),∵当x=﹣1时,y=2,∴2﹣3=k (﹣1+2),﹣1=k ,∴y ﹣3=﹣(x +2),y=﹣x +1,故答案为:y=﹣x +1.【点评】此题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx +b ;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.13.【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故答案是:m>.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.14.【分析】根据题意,画出一次函数y=kx+b的大体图象所在的位置,然后根据直角三角形的面积公式求得该函数图象与x轴的交点,再将其代入函数解析式,求得k值.【解答】解:根据题意,知一次函数y=kx+b的图象如图所示:∵S=1,OC=2,△AOC∴1=×OA•OC,∴OA=1;①∴一次函数y=kx+b的图象经过点(0,﹣2)、(﹣1,0),∴,解得,k=﹣2,∴一次函数的表达式是y=﹣2x﹣2;②同理求得OB=1,∴一次函数y=kx+b的图象经过点(0,﹣2)、(1,0),,∴k=2,∴一次函数的表达式是y=2x﹣2.故答案为:y=2x﹣2或y=﹣2x﹣2;【点评】本题考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,注意:一次函数图象上的点,一定满足该函数的关系式,题目比较好,注意要进行分类讨论.15.【分析】可分别用a、b表示出两函数与x轴的交点横坐标,由于两函数交x轴于同一点,因此它们与x轴的交点横坐标相同,可求得a、b的比例关系式,进而可求出的值.【解答】解:在一次函数y=2x﹣a中,令y=0,得到x=,在一次函数y=3x+b中,令y=0,得到x=﹣,由题意得:=﹣,图象交于x轴上原点外一点,则a≠0,且b≠0,可以设=﹣=k,则a=2k,b=﹣3k,代入=﹣2.故填﹣2.【点评】正确理解本题的含义是解决问题的关键,难度不大,注意细心运算即可.16.【分析】先判断P点在函数y=x+2上,过A作直线y=x+2的垂线交直线于点P,再根据勾股定理可求得AP的长.【解答】解:∵点P坐标为(x,x+2),∴点P在直线y=x+2上,如图,设直线交x轴于点B,过A作直线的垂线交直线于点P,则AP的长即为最短距离,在y=x+2中,令y=0可知x=﹣2,∴B点坐标为(﹣2,0),又点B在直线y=x+2上,∴∠PBA=45°,∵OA=2,∴AB=4,在Rt△ABP中,则AP=AB•sin45°=4×=2,故答案为:2.【点评】本题主要考查一次函数图象上点的特征,确定出点P所在的直线是解题的关键,注意数形结合.17.【分析】令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.【解答】解:∵直线AB的解析式为:y=﹣x+,∴当x=0时,y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S n=(﹣+﹣+…+﹣)=(﹣)=×=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.18.【分析】根据直线l的解析式求出∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OM6与OM 的关系,再根据点M6在x轴上写出坐标即可.【解答】解:∵直线l:y=x,∴∠MON=60°,∵NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°﹣60°=30°,∴ON=2OM,OM1=2ON=4OM=22•OM,同理,OM2=22•OM1=(22)2•OM,…,OM6=(22)6•OM=212•2=213,所以,点M6的坐标为(213,0).故答案为:(213,0).【点评】本题考查了一次函数图象上点的坐标特征,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出变化规律是解题的关键.19.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣。

人教版八年级数学下册 一次函数图象性质 同步测试(配套练习附答案)

3.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据正比例函数图象的性质进行解答.
【详解】根据正比例函数的图象必过原点,排除A,D;
B、从左到右呈上升趋势,不符合题意;
C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.
(2)画出这个函数图象;
(3)点(2,-5)是否在此函数图象上?
(4)若这个图象还经过点A(a,8),求点A的坐标.
【答案】见解析.
【解析】
试题分析:(1)设函数关系式为y=kx,将点(-1,2)代入可得出k的值.
(2)找出图象过的两个点,画图.
(3)将点(2,-5)代入,看能否满足函数解析式,继而可作出判断.
解得:x=3,
故M点坐标为:(0,3).
故选B.
二、填空题:
13.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是____________.
【答案】y=﹣2x+3.
【解析】
设y+1=k(2−x ),
把x=−1,y=5代入得5+1=k(2+1),
解得:k=−2,
则y+1=−2(2−x),即y=−2x+3.
x=0时,y=8,则B点坐标为:(0,8);
∴BO=8,AO=6,
∴AB= =10,
直线AB沿AM折叠,点B恰好落在x轴上的点C处,
∴AB=AC=10,MB=MC,
∴OC=AC−OA=10−6=4.
设MO=x,则MB=MC=8−x,
在Rt△OMC中,OM2+OC2=CM2,

【学生卷】初中数学八年级数学下册第十九章《一次函数》经典习题(培优)

一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟2.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<5.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→ B .CDE A →→→ C .A E C B →→→D .AE D C →→→6.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .7.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 11.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在13.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5下列说法错误的是( )A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.17.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.18.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 19.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.20.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.21.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.22.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.23.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.24.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.25.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.26.在平面直角坐标系中,Rt ABO 的顶点B 在x 轴上,90∠=︒ABO ,AB OB =,点()10,8C 在AB 边上,D 为OB 的中点,P 为边OA 上的动点(不与,O A 重合).下列说法正确的是________(填写所有正确的序号).①当点P 运动到OA 中点时,点P 到OB 和AB 的距离相等; ②当点P 运动到OA 中点时,APC DPO ∠=∠;③当点P 从点O 运动到点A 时,四边形PCBD 的面积先变大再变小; ④四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫⎪⎝⎭.三、解答题27.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?28.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.29.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.30.已知一次函数3y kx =-的图象经过点()2,1A .(1)求这个一次函数的表达式;(2)在图中的直角坐标系画出这个函数的图象.。

《常考题》初中八年级数学下册第十九章《一次函数》经典测试题(课后培优)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 4.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤- 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 7.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 8.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =- 9.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小10.下列说法正确的是( ) ①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米;④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 11.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个12.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 13.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <- 14.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-515.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2) 二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.18.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.19.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________. x -10 m y1 -2 -520.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.21.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③22.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.23.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.24.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).25.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.28.已知:正比例函数y =kx 的图象经过点A ,点A 在第四象限,过A 作AH ⊥x 垂足为H ,点A 的横坐标为3,S △AOH =3.(1)求点A 坐标及此正比例函数解析式;(2)在x 轴上能否找到一点P 使S △AOP =5,若存在,求点P 坐标;若不存在,说明理由. 29.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.30.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOB DOA S S =,求点D 的坐标;(3)若点C 在第三象限,求k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年 八年级数学下册 一次函数图像性质 培优班 练习卷
一、选择题
1.
一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既

进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单
位:min)之间的关系如图所示.则8min时容器内的水量为( )


A.20 L B.25 L C.27L D.30 L
2.
市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)

与用水量x(吨)的函数关系如图所示.若该用户本月用水21吨,则应交水费( )

(A)52.5元 (B)45元 (C)42元 (D)37.8元
3.
如图所示,函数y=mx+m的图象可能是下列图象中的( )

4.
下列说法中:

①直线y=-2x+4与直线y=x+1的交点坐标是(1,1);
②一次函数y=kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;
③函数y=-6x是一次函数,且y随着x的增大而减小;
④已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为y=-x
+6;
⑤在平面直角坐标系中,函数y=-x+1的图象经过一、二、四象限;
⑥若一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是m>3
;
⑦点A的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(-1,1);
⑧直线y=x―1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的
点C最多有5个.正确的有( )
A.2个 B.3个 C.4个 D.5个
5.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路
线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间
关系的图象是( )

6.
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、

(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )


A.4 B.8 C.16 D.24
7.
如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )


A.(0,0) B.(,) C.(-,-) D.(-,-)
8.
如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A、B两点,以线段AB为边,在

第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在
直线y=3x﹣2上,则a的值为( )
A.1 B.2 C.﹣1 D.﹣1.5
9.
如图,直线y=﹣x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM

折叠,点B恰好落在x轴上的点C处,则点M的坐标是( )

A.(0,4) B.(0,3) C.(﹣4,0) D.(0,﹣3)
10.
甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休

息.已知甲先出发2秒,在跑步的过程中,甲乙两人之间的距离y(m)与乙出发的时间t(s)
之间的函数关系如图所示,给出以下结论①a=8,②b=92,③c=123,其中正确的是( )


A.①②③ B.仅有①② C.仅有①③ D.仅有②③
二、填空题

11.
如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),

则直线BC的函数表达式为 .
12.如图,直线y=-2x+7与两条坐标轴分别交于点P、Q,在线段PQ上有一点A,过A作两条
坐标轴的垂线,垂足分别为B、C,若矩形ABOC的面积等于5,则点A的坐标
为 .

13.
若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当﹣1≤x1≤2时,﹣2≤y1≤1,则这

条直线的函数解析式为 .
14.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形
OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .

15.如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,
2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是 .

16.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是
x轴上的两点,则PA+PB的最小值为 .

三、解答题
17.
如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P

沿路线O→A→B运动.
(1)求点A的坐标,并回答当x取何值时y1>y2?
(2)求△AOB的面积;
(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.
18.
如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A

坐标为(0,4).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA
的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,△OPA的面积为12,并说明理由.

19.
如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,

直线l1,l2交于点C.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点
P的坐标.

20.对于长方形OABC,O为平面直角坐标系的原点,A点在x轴的负半轴上,C点在y轴的正
半轴上,点B(m,n)在第二象限.且m,n满足0)3(52nm.
(1)求点B的坐标;并在图上画出长方形OABC;
(2)在画出的图形中,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC
的面积分为1:4两部分,求点P的坐标.

答案
1.B
2.C

3.
D.

4.B
5.A.
6.D
7.C
8.A
9.B.
10.A.

11.
答案为:y=﹣x+1.

12.答案为:(1,5)或(2.5,2);
13.
答案为:y=x﹣1或y=﹣x.

14.答案为:(﹣1,2).
15.答案为:﹣2≤a≤2.

16.
答案为:

17.
解:(1)∵直线l1与直线l2相交于点A,

∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);
观察图象可得,当x>2时,y1>y2;
(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=0.5×3×2=3;
(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,
∵点P沿路线O→A→B运动,∴P(1,1)或(2.5,1).

18.
解:(1)把E(﹣8,0)代入y=kx+6得﹣8k+6=0,解得k=;

(2)直线EF的解析式为y=x+6,
设P点坐标为(x, x+6),所以S=•4•(﹣x)=﹣2x(﹣8<x<0);
(3)当S=12,则﹣2x=12,解得x=﹣6,所以y=×(﹣6)+6=,
所以P点坐标为(﹣6,).

19.
解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);

(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,

∴,∴,∴直线l2的解析表达式为;

(3)由,解得,∴C(2,﹣3),
∵AD=3,∴S△ADC=×3×|﹣3|=;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距
离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,
∵y=1.5x﹣6,y=3,∴1.5x﹣6=3,x=6,所以P(6,3).
20.(1)B(﹣5,3)画出图形.
(2)当点P在OA上时,设P(x,0)(x<0),
∵S△ABP:S四边形BCOP=1:4,∴S△ABP=0.2S矩形OABC,∴P(﹣3,0);
当点P在OC上时,设P(0,y)(y>0),
∵S△CBP:S四边形BPOA=1:4,∴S△CBP=0.2S矩形OABC,∴P(0,1.4),

相关文档
最新文档