第8章 静电场中的导体

合集下载

静电场中的导体

静电场中的导体
动的状态,从而电场分布不随时间变化。

说明:



一般情况表面有一定厚度,很复杂如:E=109V,则 感应电荷聚集在表面的厚度为10-10m,本课程不讨论 表面层电荷如何分布。 实际物质内部既有自由电子,又是电介质。如:气体 在一般情况下绝缘(电介质),但加高压气体会被击 穿(导体)——导体是一种理想模型。 对导体只讨论达到静电平衡以后的情况,不讨论加电 以后电荷的平衡过程。
S内
E
E d S 0
内表面不是等势面 ——导 体也不是等势体 ,矛盾
S面内 q 0
内 表面 电 荷代 数和 为 零? 内 表面 无 电荷
q 0
e内 0
空腔内部有带电体 q
导体内表面上所带电荷与腔内电荷的代数 和为零 证明:作Gauss面如图

E内=0 E



力学:只涉及物质的机械性质,对其本身研究甚 少。 电磁学:较多地讨论场,而对物质本身的电磁性 质也涉及得很少。 物质与场是物质存在的两种形式 物质性质非常复杂(要特别注意我们课程中讨论 这种问题所加的限制)
导体静电平衡条件
导体:有足够多的自由电子 ——受电场力会移动.
静电平衡状态:体是一个等势体,导体表 面是等势面 证明:
导体内部E=0
U ab E d l 0
a
b
导体内部任意两点间电势差为零 ——各点等电势——等势体 ——表面为等势面
场强分布
E内 0
表面附近:表 表面 E 表面 : σe 大小: E ε0
导体表面是等势 面,处处与电力 线正交 ?
S内
E d S 0
q 0 q x x q

静电场中的导体

静电场中的导体
孤立导体处于静电平衡时,它的表 面各处的面电荷密度与各处表面的 曲率半径有关,曲率越大的地方, 面电荷密度越大。 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
电风实验
++ ++
+ +
+ +
32
小结: 静电平衡导体的电荷分布 1、实心导体内部无电荷。
Q 1 4 2S Q 2 3 2S
场强分布:
A 板左侧
A
B
1 Q E 0 2 0 S
2 3 Q E 0 0 2 0 S
1 2 3 4 E E E
两板之间
B 板右侧
4 Q E 0 2 0 S
应用:精密测量上的仪器屏蔽罩、屏蔽室、高压 带电作业人员的屏蔽服(均压服)等。
正误题:
1、导体放入电场中,自由电荷要重新分布。两端感应 出的正负电荷一定相等。此时,导体两端的电势相等, 但符号相反。 E 2、带电导体表面附近的电场强度 方向总是与表面 0 垂直,与外部是否存在其它带电体无关; 3、将带+Q的导体A移近不带电的孤立导体B时,B的电势将 升高;如果B是接地的,则B的电势就保持不变,且UB=0 4、导体静电平衡时,内部场强必为零。
静电场中的导体和电介质
主要内容: 导体静电平衡条件和性质

电场中导体和电介质的电学性质 有电介质时的高斯定理 电容器的性质和计算 静电场的能量
▲ ▲

静电场中的导体
Effects of Conductor in Electrostatic Field
一、静电感应

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

[理学]静电场中的导体

[理学]静电场中的导体

QB
4 0r 2
rA r rB
由于球壳接地有 U A 0 ,根据电势的定义,
则O点的电势为:
UO
UO UA
a E dr
0
rB 0
E1
dr
rA E rB 2
dr
a rA E3 dr
rA E rB 2
dr
rA QB dr
rB 4 r 2
QB
4 0
1 rB
1 rA
•高压设备都用金属导体壳接地做保护
•在电子仪器、或传输微弱信号的导线中都常用 金属壳或金属网作静电屏蔽。
•高压带电操作
U C
外界不影响内部
静电的应用
一、静电的特点
•带电体所带的静电电荷的电量都很小; •静电场所具有的能量也不大; •电压可能很高。
二、静电的应用
•范德格拉夫起电机 •静电除尘 •静电分离 •静电织绒 •静电喷漆 •静电消除器 •静电生物技术
B、C、D处的场强和电势又如何?
解:
(1)据静电平衡条件和高斯定理有:
s1
内球:电荷 q 均匀分布在球面; 球壳:内表面均匀分布 q ;
外表面均匀分布 2q 。
s2
D
C
BA
R3
o R1 R2
(2)由高斯定理,可算得:
E1 0
r R1
E2
q
40r 2
R1 r R2
E3 0
U R1 1r
R2 r
E1
dr
R3
R2
E R1 2
E4 dr
RR243 E23 q0rd2r
r
R3
R3
E4
dr
U2
q

导体静电场

导体静电场

电解电容器
3.1 孤立导体的电容
对于孤立带电小球
V
q 4 0 R
R
q
可以证明,电势与电荷的正比关系对任意形状的导体都成立。 因此有:
q CV
比例常数C叫孤立导体的电容
q C V
3.2电容器及其电容
q q ---- 一极板带电量(电容器的电量) c uA uB uAB ---- 两极板电势差(电容器的电压)
q
+
q
+
+
q
+
结论
1.不接地空腔导体,腔外电场对腔内无影响,
腔内电场对腔外有影响。
+q
-q
+q
2.接地空腔导体,则内外电场都无影响.
+q
-q
静电屏蔽的应用
例 1 有一外半径 R1 10cm 和内半径 R2 7cm 的金属球壳,在球壳内放一半径 R3 5cm 的同心金 8 属球,若使球壳和金属球均带有 q 10 C 的正电荷, 问 两球体上的电荷如何分布?球心的电势为多少? 解 根据静电平衡的条件求电荷分布 作球形高斯面 S1
导体静电场
§2-1 静电场中的导体
一.导体的电结构 : 导体中有大量自由电荷(自由电子)
和带正电晶体点阵。 . 通常情况下,正负电荷总量相等,导 体呈电中性。
,
放入电场中后,自由电荷发生移动,产
生静电感应现象。
导体与电介质相比: 电结构不同:导体中有大量自由电荷, 介质中为束缚电荷。
电阻率不同:导体: 108 ~ 106 m
8 18 10 ~ 10 m 介质:
二.导体的静电感应 静电平衡
1. 静电感应现象 (electrostatic induction) a)现象:导体在电场中,其自由电荷受电场力

2.3 静电场中的导体与电介质

2.3  静电场中的导体与电介质

被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。

高二物理竞赛电场强度与电势梯度优静电场中的导体课件


(2)导体是等势体,导体表面是等势面。 二 静电平衡时导体上电荷的分布 1 实心导体
E
0
(1)电荷只分布在导体表面,导体内部净电荷为零。
(2)导体表面附近的场强与该处导体表面的电荷面密度 成正比。
9.1 静电场中的导体
第九章静电场中的导体与电介质
(3)大致而言,导体表面曲率大的地方,电荷密度大。
r 恒
R2 R3
电势分布:
(R1 r R2
V2
q
4 0r
)
q
4 0 R2
q (1 1 )
4 0 r R2
(R2 r R3 )
V3
q
4 0r
q
4 0r
0
r R3
V4
q
中的导体
第九章静电场中的导体与电介质
3、再把内球接地: 电荷重新分布:
q3’
由高斯定律: q'2 q1'
q O V 2、外球接地后再绝缘:
空腔导体可以屏蔽外电场, 使空腔内物体不受外电场影响.
1
R 4 R 4 R 4 R 2 例1 求一均匀带电细圆环轴线上任一点的电场强度.
导体内场强为零,为场中
01
02
03
R 1、求电势分布:用叠加原理)
3 (2)电场强度的方向恒指向电势降落的方向.
二 静电平衡时导体上电荷的分布 (2)导体是等势体,导体表面是等势面。
若断开导线B板接地,则电荷分布 B板外侧的正电荷被中和掉,
QA
QB
' 4
0,
' 1
0
1 2 3 4
A板带正电荷转移到内侧, 相应在B板内侧感应出等量 异号电荷
'' 2

03-静电场中的导体

2
(平行板电容)
2)当 R2 R1 时,
40 R1 R2 C 40 R1 (孤立导体球电容) R2
5、 电容器的串、并联
1)、电容器的并联:
Q1
C Ci
i
+
Q2
Qi
-
等效
C
+
U
-
U
Q1 C1U
Q2 C2U
Qi CiU
C C1 C2 Ci
Q Q1 Q2 Qi C U U
2)、电容器的串联:
+
U1 U2
1 1 C i Ci
等效
Ui
-
+
C
-
U
U U1 U2 Ui
Q C1 U1 Q C2 U2 Q Ci Ui
U
Q Q C U U1 U 2 U i
Ui 1 U1 U 2 C Q Q Q
A
q
+ + +
q
+
q
+
总结:
空腔导体(无论接地与否)将使腔内不 受外场影响。 接地空腔导体将使外部空间不受腔内电 场的影响。
四、静电应用:Van de Graff
起电机
四、静电应用:静电除尘
应用静电除尘技术 处理煤输送线翻车机房煤尘污染
例:如图:在一个接地的导体球附近有一个 点电荷q。求导体球表面上感应电荷电量Q。
内容提纲 •静电场中的导体 •静电场中的电介质、介质中的高斯定理 •电容器和电容 •静电场的能量和能量密度
1-5 静电场中的导体与电介质
一、 导体的静电平衡 1、 金属导体模型 2、 静电感应 - 中性 + + +q - 导体 +

第八章静电场


【主要问题】 主要问题】
1、由库仑定律解题 、 例1:课后作业 :课后作业8.1
例2:课后作业 :课后作业8.2
2、求电场强度 、 (1)由点电荷场强,利用场强叠加原理求解 由点电荷场强,
1 r0 E = ∫ dE = ∫ dq 2 4πε0 r
求解步骤: 求解步骤: 1.选电荷元dq .选电荷元dq 2.确定电荷元所激发的电场dE的大小和方向. dE的大小和方向 .确定电荷元所激发的电场dE的大小和方向. 3.建立坐标系,将电场dE分解在坐标上. dE分解在坐标上 .建立坐标系,将电场dE分解在坐标上. 4.统一积分变量,进行求解. .统一积分变量,进行求解.
五、其它概念及物理量
1、电容器电容 、
C=
U =∫
Q ε0 S 平行平板电容器 平板电容器的电容 平行平板电容器的电容 C = = U d
Q Q = V A − VB U
AB
E ⋅ dl
2、电容器贮存的电能 、
Q2 1 1 We = = QU = CU 2 2C 2 2
3、电场空间所存储的能量 1 W e = ∫ we d V = ∫ ε E 2 d V V V 2
σ E= 2ε0
2. 当R<<x
无限大均匀带电平面的场强) (无限大均匀带电平面的场强)
σ 1 R2 x σ (1 − 1 + ( ) − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ E= (1− )= 2 2 2 x 2ε0 2ε 0 R +x
q ≈ 2 4πε0 x
练习: 两块无限大均匀带电平面, 练习: 两块无限大均匀带电平面,已知电荷面密度 计算场强分布。 为±σ,计算场强分布。
3. 积分 (1)统一变量 θ l 把 r、、 统一到 θ

静电场中的导体球壳类问题例析

阜阳市红旗中学 吴长海当静电场中有导体存在时,导体内的自由电子在电场力的作用下将重新进行分布;反过来,电荷分布的改变又会影响到电场分布。

因此,静电场中有导体存在时,电荷的分布和电场的分布相互影响、相互制约,最后达到的平衡分布是不能预先判知的。

因此,我们处理这类问题的基本方法是:假定这种平衡分布已经达到,然后以静电平衡条件为出发点,结合静电场的普遍规律去进行分析。

而不是去分析电场、电荷在相互作用下怎样达到平衡分布这一复杂过程。

限于中学生的知识水平,物理竞赛中只限于对一些简单问题(主要是导体球壳类问题)进行定性和半定量的分析。

由于中学阶段对这类问题涉及较少,所以,许多参加竞赛的同学对这类问题的理解并不深入,本文试就这类问题的求解思路进行例析。

一、巧用对称性求解均匀带电半球壳问题一个完整的均匀带电球壳可以看作是由两个对称的均匀带电半球壳组成,其内部某点的电势应等于两个均匀带电半球壳单独存在时在该处所产生的电势的叠加。

因此,我们可以巧妙地利用对称性和电势叠加原理来求解。

[例1] (第八届预赛题)电荷q 均匀地分布在半球面ACB上,球面半径为R ,CD 为通过半球面顶点C 与球心O 的轴线,如图1所示,P 、Q 为CD 轴线上在O 点两侧、离O 点距离相等的两点。

已知P 点的电势为U P ,试求Q 点的电势U Q 。

解析:设想一个均匀带电、带电量也是q 的右半球,与题中所给的左半球组成一个完整的均匀带电球壳,由对称性可知,右半球在P 点的电势P U '等于左半球在Q 点的电势,即PU '=Q U (1) 所以 PP Q P U U U U '+=+ (2) 而PP U U '+正是两个半球同时存在时P 点的电势。

因为均匀带电球壳内部各处电势都相等,其值等于Rqk2,k 为静电力常量,所以得 Rq k U U P P 2='+ (3)由(2)、(3)两式得 P Q U RqkU -=2 二、导体球壳的电势常选球心处来计算 这是因为:(1)处于静电平衡状态的导体球壳是一个等势体,其内部各点的电势都与球壳处的电势相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档