最新第七章静电场中的导体

合集下载

静电场中的导体

静电场中的导体
动的状态,从而电场分布不随时间变化。

说明:



一般情况表面有一定厚度,很复杂如:E=109V,则 感应电荷聚集在表面的厚度为10-10m,本课程不讨论 表面层电荷如何分布。 实际物质内部既有自由电子,又是电介质。如:气体 在一般情况下绝缘(电介质),但加高压气体会被击 穿(导体)——导体是一种理想模型。 对导体只讨论达到静电平衡以后的情况,不讨论加电 以后电荷的平衡过程。
S内
E
E d S 0
内表面不是等势面 ——导 体也不是等势体 ,矛盾
S面内 q 0
内 表面 电 荷代 数和 为 零? 内 表面 无 电荷
q 0
e内 0
空腔内部有带电体 q
导体内表面上所带电荷与腔内电荷的代数 和为零 证明:作Gauss面如图

E内=0 E



力学:只涉及物质的机械性质,对其本身研究甚 少。 电磁学:较多地讨论场,而对物质本身的电磁性 质也涉及得很少。 物质与场是物质存在的两种形式 物质性质非常复杂(要特别注意我们课程中讨论 这种问题所加的限制)
导体静电平衡条件
导体:有足够多的自由电子 ——受电场力会移动.
静电平衡状态:体是一个等势体,导体表 面是等势面 证明:
导体内部E=0
U ab E d l 0
a
b
导体内部任意两点间电势差为零 ——各点等电势——等势体 ——表面为等势面
场强分布
E内 0
表面附近:表 表面 E 表面 : σe 大小: E ε0
导体表面是等势 面,处处与电力 线正交 ?
S内
E d S 0
q 0 q x x q

2、静电场中的导体和电介质

2、静电场中的导体和电介质

思考题
1. 导体静电平衡时,有什么特点? 2. 现有甲、乙二人,站在与地绝缘的泡沫板上, 甲带有正电荷,乙不带电。你只有一根导线。 (1)如何让乙也带上正电荷? (2)如何让乙带上负电荷? 3. 电极化强度矢量满足何种边界条件?
学习动物精神

11、机智应变的猴子:工作的流程有时往往是一成不变的, 新人的优势在于不了解既有的做法,而能创造出新的创意 与点子。一味 地接受工作的交付, 只能学到工作方法 的皮毛,能思考应 变的人,才会学到 方法的精髓。
垂直的端面上出现极化电荷。

对于非均匀电介质,除在电介质表面上出现极化
电荷外,在电介质内部也将产生体极化电荷。
2.5.2
电极化强度
当电介质处于极化状态时,在电介质内部任一宏观小 体积元V内分子的电矩矢量和不等于零,即Σp≠0(其中p 为分子电矩)。 为了定量地描述电介质的极化程度,引入电极化强度 矢量P,它等于介质单位体积内分子电矩的矢量和。
导体静电平衡的特点

(1)导体内部任意一点的电场强度等于零。


(2)导体表面上任一点的场强必定垂直于导体表面。
(3)导体为等势体,导体表面是等势面。 (4)电荷都分布在导体的表面上,导体内部任一小体积 元内的净电荷等于零。 (5)导体在电场中达到静电平衡时,其表面上电荷的分

布不一定是均匀的,一般地讲,表面曲率大的地方,电荷
力线只能终止(或起始)于导体表面,并与导体表面垂直,
不能穿过导体进入内部。也就是说,空腔导体内部的物体不 会受到外部电场的影响。 空腔导体使其内部不受外电场影响的性质叫静电屏蔽。 在静电防护领域,为了使对静电敏感的器件不受外界静
电场的影响,通常将敏感器件装在屏蔽袋中。

2024年度大学物理第七章静电场思维导图

2024年度大学物理第七章静电场思维导图
极化现象
在静电场作用下,绝缘体中的正负电荷中心会发生相 对位移,形成电偶极子,从而产生极化现象。
介电常数
绝缘体的介电常数反映了其在静电场中的极化程度。 介电常数越大,绝缘体的极化能力越强。
2024/2/2
20
导体和绝缘体之间相互作用
2024/2/2
静电感应现象
当导体靠近绝缘体时,由于静电感应作用,导体会在靠近绝缘体的一侧感应出异号电荷,而绝缘体也会因为 极化作用在靠近导体的一侧出现束缚电荷。
电势与电场线关系
沿电场线方向电势逐渐降低。
15
等势面特点及应用
等势面特点
与电场线垂直,且等势面上各点电势相等。
2024/2/2
等势面定义
电势相等的点构成的面。
等势面应用
用于分析电场中电荷的运动轨迹和能量变化 。
16
电场力做功与路径无关性讨论
电场力做功特点
只与电荷的初末位置有关,与路径无关。
路径无关性证明
高斯定理及其应用
高斯定理揭示了静电场中电荷分布与电场强度之间的关系,是求解电 场问题的重要工具。
静电场中的导体与电介质
导体在静电场中达到静电平衡时,内部场强处处为零,电势处处相等 ;电介质在电场中会发生极化现象,影响电场的分布。
29
拓展延伸
非均匀带电球体产生电场
非均匀带电球体产生的电场分 布复杂,一般需要通过数值方 法进行求解。
通过环路定理和电场强度的矢量性进行证明。
路径无关性应用
在计算电场力做功时,可选择任意路径进行 计算。
2024/2/2
17
04 静电场中导体和 绝缘体特性分析
2024/2/2
18
导体在静电场中表现特性

静电场中的导体

静电场中的导体
R2
R1
22
Vo
E dl
0 R3
0 R1
R2
E1 E3
dl
dl
R2
R3
E2
dl
R1 E4 dl
q (1 1 2)
4 π ε0 R3 R2 R1
2.31103 V
R1=10 cm,R2=7 cm R3=5 cm,q=10-8 C
2q
q
q
R3
R2 R1
23
S4
E4
dS
2q ε0
2q E4 4 π ε0r 2 (r R1)
S4
R1
2q
S3
qq
q
R33
rr
R2
R1111
R1
21
E1 0
(r R3 )
E2
4
q π ε0r 2
(R3 r R2 )
E3 0
(R1 r R2 )
E4
2q 4 π ε0r 2
(r R1)
2q
q
q
R3
电势也会受到影响 25
二 电介质的极化
电介质 无极分子:(氢、甲烷、石蜡等) 有极分子:(水、有机玻璃等)
26
电介质分子可分为有极和无极两类:
(1)分子中的正电荷等效中心 与负电荷等效
中心重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 无极分子
E
正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。
1 CU 2 2
+++++++++
---------
+ dq

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

习题解答---大学物理第7章习题--2

习题解答---大学物理第7章习题--2

专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。

则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。

解答单一就带电体A来说,它在C点产生的电场强度是不为零的。

对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。

由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。

2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。

解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。

故选(B )。

3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。

(C)导体部的电势比导体表面的电势高。

(D)导体任一点与其表面上任一点的电势差等于零。

4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。

静电场中的导体

静电场中的导体
静电场中的 导体
一、导体的静电平衡条件
+
++++ + + + +
感应电荷
静电平衡条件
导体 内部 的场
E0
E E0 E'
E'
静电平衡时
E E' E0
E E0 E' 0
外场
E0
•静电平衡条件: 导 感应场 E '
体内部场强为0。
导体内部的场 E
二、处于静电平衡的导体的性质
1.静电平衡时导体为等势体,导体表面 为等势面。
R2 R3
(1)球壳B内、外表面上的电量及球A和球壳B的电势
(2)将球壳B接地然后断开,再把金属球A接地,求金 属球A和球壳B内、外表面上各带有的电量以及球A 和球壳B的电势
• 例:有一块大金属平板,面 积为S,带有总电量Q,在 其近旁平等放置第二块 大金属板,此板原来不带 电.求静电平衡时,金属板 上的电荷 分布及其空间
如尖端放电
三、静电空腔内表面无电荷,全部电 荷分布于外表面。
证明:在导体内作高斯面
S
E
dS
q
0
导体内 E 0, q 0
面内电荷是否会等量异号?
如在内表面存在等量异号 电荷,则腔内有电力线, 电势沿电力线降落,所以 导体不是等势体,与静电 平衡条件矛盾。
所以内表面无电荷,所有电荷分布于外表 面。
• 不管外电场如何变化,由于导体表面电 荷的重新分布,总要使内部场强为 0。
• 空腔导体具有静电屏蔽作用。例如:高 压带电作业人员穿的导电纤维编织的工 作服。
2.腔内有电荷
空腔原带有电荷 Q ,将 q 电荷放入空腔内。 结论:

静电场中的导体

静电场中的导体

'
'
13
电偶极矩: 斜柱体的体积:
' ql Sl V Sl cos
电极化强度矢量的大小: p

' p cos pn
3、电介质的极化规律,极化率:
' V cos
p
极化强度矢量与该点的合场强有关,并与介质有关 对大多数各向同性电介质
2、电容器及其电容: 平板电容:
同轴柱形电容器 设 长 为 l
s c 0 d
C AB
qA U A UB
带电量为 q 外半径为 RB
8
内半径为 RA 则 q l
L
E 2 0 r B U AB E dl

A

RB

q c 2 0 U AB
同心球形电容器
1.0 102 m 处的电势
3、把点电荷移开球心,导体球壳的电势是否变化?
10 4 . 0 10 解:1、 V 9 109 40 R2 3.0 10 2
q
+q
-q
120v
2、定义
R1
+q
V1

R1
q 4 0 r
2
r1
dr


R2
q 4 0 r
0
s
E
0
2
尖端放电的实质 三、静电屛蔽:
+
+ + + + +
+ +
四、导体存在时静电场的计算: 例1、金属板面积为S,带电量为 Q。近旁平行放置第二块不 带电大金属板。 1、求电荷分布和电场分布;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 静电场中的导体、电介质一、选择题:1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ](A )E=02εσ (B )E=02εσ (C )E=0εσ (D )E=02dεσ2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ](A )U 1 (B )U 2 (C )U 1+U 2 (D )21(U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A )U A =U B =U C (B )U B > U A =U C(C )U B >U C>U A (D )U B >U A>U C4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ](A )零 (B )02εσ (C )0εσh (D )02εσh5. 当一个带电导体达到静电平衡时: [ ](A) 表面上电荷密度转大处电势较高 (B) 表面曲率较大处电势。

(C)导体内部的电势比导体表面的电势高。

(D)导体内任一点与其表面上任一点的电势差等于零。

6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ](A )E=rQ U rQ 0204,4πεπε=(B )E=0,104r Q πε(C )E=0,rQ 04πε (D )E=0,204r Q πε7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ](A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1<E 2, U 1<U 28.一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为d 处(d<R ),固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为 [ ](A )0 (B )04q dπε (C )-Rq 04πε (D))11(40Rd q-πε 9. 金属球A 与同心球壳B 组成电容器,球A 上带电荷q ,壳B 上带电荷Q ,测得球与壳间电势差为U AB ,可知该电容器的电容值为 [ ](A )q/U AB (B )Q/U AB (C )(q+Q)/U AB (D )(q+Q)/(2U AB ) 10. 如右图所示,有一接地的金属球,用一弹簧吊起,金属球原来不带电,若在它的下方放置一电量为q 的点电荷,则 [ ] (A) 只有当q>0时,金属球才下移。

(B) 只有当q<0时,金属球才下移。

(C) 无论q 是正是负金属球都下移。

(D) 无论q 是正是负金属球都不动。

11. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一带电量为q 0(q 0>0)的点电荷放在p 点,如图所示,测得它所受的电场力为F ,若电量q 0不是足够小,则 [ ](A )F/q 0比P 点处场强的数值大。

(B )F/q 0比P 点处场强的数值小。

(C )F/q 0比P 点处场强的数值相等。

q。

q OA BQ Rd +q(D )F/q 0点处场强的数值关系无法确定。

12. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A )SQ 012ε (B )S Q Q 0212ε-(C )SQ 01ε (D )S Q Q 0212ε+13. 关于高斯定理,下列说法中哪一个是正确的?[ ](A )高斯面内不包围自由电荷,则面上各点电位移矢量D为零。

(B )高斯面上处处D为零,则面内必不存在自由电荷。

(C )高斯面的D通量仅与面内自由电荷有关。

(D )以上说法都不正确。

14.一导体外为真空,若测得导体表面附近电场强度的大小为 E ,则该区域附近导体表面的电荷面密度 σ 为[ ](A )ε0E/2 (B )ε0E (C )2ε0E (D )无法确定15. 孤立金属球,带有电量1.2×10-8C,当电场强度的大小为3×106V/m 时,空气将被击穿,若要空气不被击穿,则金属球的半径至少大于 [ ](A )3.6×10-2m (B )6.0×10-6m (C )3.6×10-5m (D )6.0×10-3m16. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源,再将一块与板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为: [ ](A )储能减少,但与金属板位置无关。

(B )储能减少,且与金属板位置有关。

(C )储能增加,但与金属板位置无关。

(D )储能增加,且与金属板位置无关。

17. 两个完全相同的电容器C 1和C 2,串联后与电源连接,现将一各向同性均匀电介质板插入C 1中,则 [ ](A )电容器组总电容减小。

(B )C 1上的电量大于C 2上的电量。

(C )C 1上的电压高于C 2上的电压。

(D )电容器组贮存的总能量增大。

B1Q +218. 一空气平行板电容器,极板间距为d ,电容为C ,若在两板中间平行插入一块厚度为d/3的金属板,则其电容值变为 [ ](A )C (B )2C/3 (C )3C/2 (D )2C19. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为: [ ](A )S 02q ε (B )S 022q ε (C )2022q S ε (D )202q Sε 20.三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接,中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示,则比值σ1/σ2为 [ ](A )d 1/d 2 (B )d 2/d 1 (C )1 (D )d 22/d 1221.C 1和C 2两个电容器,其上分别标明200pF (电容量)、500V(耐压值)和300pF 、900V ,把它们串连起来在两端加上1000V 电压,则 [ ](A )C 1被击穿,C 2不被击穿。

(B )C 2被击穿,C 1不被击穿。

(C )两者都被击穿。

(D )两者都不被击穿。

22. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性,均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为: [ ](A )E ↑,C ↑,U ↑,W ↑ (B )E ↓,C ↑,U ↓,W ↓ (C )E ↓,C ↑,U ↑,W ↓ (D )E ↑,C ↓,U ↓,W ↑23.若某带电体的电荷分布的体密度ρ增大为原来的2倍,则其电场能量变为原来的[ ](A )2倍 (B )1/2倍 (C )4倍 (D )1/4倍24、用力 F 把电容器中的电介质拉出,在图(a )和图(b )的两种情况下, 电容器中储存的静电能量将 [ ] (A ) 都增加。

(B ) 都减少。

(C )(a )增加, (b )减少。

(D )(a )减少, (b )增加。

(a )充电后与电源连接 (b )充电后与电源断开3d25.一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常数为εr的各向同性均匀介质,这时两极板上的电荷,以及两极板间的电场强度、总的电场能量分别是原来的[ ](A)εr倍,1 倍和εr倍。

(B)1/εr倍,1 倍和εr倍。

(C)1 倍,1/εr倍和εr倍。

(D)εr倍,1 倍和1/εr倍。

二、填空题:1.两同心导体球壳,内球壳带电量+q,外球壳带电量-2q,静电平衡时,外球壳的电荷分布为:内表面带电量为;外表面带电量为。

2.将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度,导体的电势。

(填增大、不变、减小)3.一任意形状的带电导体,其电荷面密度分布为σ(x、y、z),则在导体表面外附近任意点处的电场强度的大小E(x、y、z)= ,其方向。

4.一带电量为q半径为Ar的金属球A,与一原先不带电、内外半径分别为Br和Cr的金属球壳B同心放置如图.则图中P点的电场强度E= .如果用导线将A、B连接起来,则A球的电势U= .(设无穷远处电势为零)5.如图所示,把一块原来不带电的金属板B,移近一块已带有正电荷Q的金属板A,平行放置,设两板面积都是S,板间距离是d,忽略边缘效应,当B板不接地时,两板间电势差ABU= ;B板接地时'ABU= 。

6.如图示,A、B为靠得很近的两块平行的大金属平板,两板的面积均为S,板间的距离为d,今使A板带电量为q A,B板带电量为q B,且BAqq , 则A板的内侧带电量为;两板间电势差U AB= 。

S S+ + + + + + + + + + +7.如图所示,平行板电容器中充有各向同性均匀电介质,图中画出两组带有箭头的线分别表示电力线、电位移线,则其中(1)为,(2)为。

8.半径为R1和R2的两个同轴金属圆筒,其间充满着相对介电常数为εr的均匀介质,设两筒上单位长度带电量分别为+λ和-λ,则介质中的电位移矢量的大小D= ,电场强度的大小E= 。

9.一空气平行板电容器,两极板间距为d,极板上带电量分别为+q和-q,板间电势差为U,在忽略边缘效应的情况下,板间场强大小为,若在两板间平行地插入一厚度为t(t<d)的金属板,则板间电势差变为,此时电容值等于。

10.一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常数为εr,若极板上的自由电荷面密度为σ,则介质中电位移的大小D= ,电场强度的大小E= 。

11.在电容为C0的平行板空气电容器中,平行地插入一厚度为两极板距离一半的金属板,则电容器的电容C= 。

相关文档
最新文档