FLUENT多孔介质数值模拟设置

合集下载

Fluent数值模拟步骤

Fluent数值模拟步骤

Fluent数值模拟步骤fluent数值模拟的主要步骤与游戏啮合:首先建立几何模型,再进行网格划分,最后定义边界条件。

gambit中采用的单位是mm,fluent默认的长度是m。

fluent数值模拟的主要步骤:(1)根据具体问题选择二维或三维求解器进行数值模拟;(2)导入网格(file-read-case),然后选择由gambit导出的msh文件。

(3)检查网格。

如果网格的最小体积为负值,则需要重新啮合。

(4)选择“定义模型”解算器。

(6)(5)确定流体的物理性质。

(6)定义操作条件。

(7)指定边界条件。

(8)求解方法的设置及其控制(solve-control-solution)。

(9)流场初始化(solve-initialize)。

(10)打开solid monitors残差动态显示残差,然后保存当前案例和data文件(file-writer-case&data)。

(11)求解迭代。

(12)检查结果。

(13)保存结果(file-writer-case&data),后处理等。

在运行FLUENT软件包时,您经常会遇到以下形式的文件:Jou文件:可以编辑和运行的日志文档。

.dbs文件:gambit工作文件,若想修改网格,可以打开这个文件进行再编辑。

.msh文件:gambit输出的网格文件。

.CAS文件:是MSH文件是fluent处理Dat文件后获得的文件:fluent计算数据结果的数据文件。

三维定常速度场的计算实例操作步骤对于三维管道速度场的数值模拟,首先用gambit绘制计算区域,并指定相应的边界条件,然后导出网格文件。

然后,将网格文件导入到fluent解算器中。

经过一些设置后,将获得阴影案例文件,然后使用fluent解算器进行求解。

最后,您可以将fluentsolution的结果导入Tecplot,并进一步处理感兴趣的结果。

多孔介质模型多孔介质,,技术总结

多孔介质模型多孔介质,,技术总结

多孔介质模型多孔介质,-,技术总结12.4.3 可压缩流动的求解策略可压缩流动求解中速度、密度、压力和能量的高度耦合以及可能存在的激波导致求解过程不稳定。

有助于改善可压缩流动计算过程稳定性的方法有???(仅适用于基于压力求解器)以接近于滞止条件的流动参数进行初始化(即,压力很小但不为零,压力和温度分别等于进口总压和总温)。

在迭代过程的最初几十步不求解能量方程。

设置能量方程的亚松驰因子等于1,压力的亚松驰因子0.4,动量的亚松驰因子0.3。

求解过程稳定后再加入能量方程的求解,并将压力的亚松驰因子提高到0.7。

?设置合理的温度和压力限制值以避免求解过程发散。

?必要时,先以较低的进、出口边界压力比进行求解,然后再逐步升高压力比直到预定工况。

对于低Mach 数流动,也可以先求解不可压缩流动,然后以所得到的解作为可压缩流动的迭代初值。

某些情况下,也可以先求解无粘性流动作为迭代初值。

2.5 无粘性流动在高Re数流动中,惯性力相对于粘性力而言起支配作用,可忽略粘性的影响。

例如高速飞行器在空气动力学方案分析阶段可以采用无粘性流动计算初步确定外形,然后进行粘性计算,将流体粘性和湍流粘性对升力和阻力的影响计入。

无粘性流动计算的另一个用途是给复杂的流动提供好的迭代初值。

对于特别复杂的问题有时这是唯一能使求解过程进行下去的方法。

无粘性流动的计算求解 Euler 方程。

其中质量方程与粘性流动的相同:?粘性耗散项能量方程与粘性流动相比,式(2.34)~式(2.36)中符号的意义与粘性流动控制方程的相同见(2.1.1~2.1.3 节)。

2.6 多孔介质模型多孔介质(Porous Media)模型可用于模拟许多问题,包括流过填充床、滤纸、多孔板、布流器、管排等的流动。

多孔介质模型在流体区上定义(见17.2.1 节)。

此外,一个被称为多孔阶跃面(porous jump)的多孔介质模型的一维简化可用于模拟已知速度?压降特性的薄膜。

多孔介质介绍

多孔介质介绍

Fluent自带了一个多孔介质的例子,catalytic_converter.cas,是一个汽车尾气催化还原装置,其中绿色部分为催化剂部分其他设置就不说了,只说说与多孔介质有关的设置。

在建立模型时,必须将多孔介质单独划分为一个区域,然后才可以在设置边界条件时将这个区域设置为多孔介质。

1、在zone中选中该区域,在type中选中fluid,点set来到设置面板。

2、在Fluid面板中,选中Porous zone选项,如果忽略多孔区域对湍流的影响,选中Laminar zone。

3、首先是速度方向的设置,在2d中,在direction-1 vector中填入速度方向,在3d中,在direction-1 vector和direction-2 vector中填入速度方向,余下的未填方向,可以根据principal axis得到。

另外也可以用Update From Plane Tool来得到这两个量。

4、填入粘性阻力系数和惯性阻力系数,这两个系数可以通过经验公式得到。

在catalytic_converter.cas中可以看到x方向的阻力系数都比其他两个方向的阻力系数小1000倍,说明x方向是主要的压力降方向,其他两个方向不流通,压力降无限大。

(经验公式可以看帮助文件,其中有详细的介绍)。

随后的Power Law Model 中两个系数是另一种描述压力降的经验模型,一般不使用,可以保留缺省值0。

5、最后是Fluid Porosity,这个值只在模型选择了Physical Velocity 时才起作用,一般对计算没有影响,这个值要小于1。

补充:这个值在计算热传导时也起作用。

下面是改变一些参数后的比较。

1、速度方向的改变:原case:1、0、0 和0、1、0 y=0截面的速度矢量图修正case:-0.7366537、0.06852359、0.6727893 和0.6694272、-0.06727878、0.7398248 y=0速度矢量图2、修改Porosity值为0.5 原case,y=0截面修正case,y=0截面:修正case,且打开solver面板中的Physical Velocity选项:最后比较一下有多孔介质和无多孔介质对流场的影响。

FLUENT多孔介质中平面面板(plane surface)工具的使用

FLUENT多孔介质中平面面板(plane surface)工具的使用

1、输出grid图形2、选择surface---plane,打开plane surface面板3、通过确定三个点来确定平面位置。

单击slect point,出现提示,不点选cancel.在grid 图形的多孔介质区域任意位置右键点选3个点。

4、回到plane surface面板,勾选plane tool,则在grid图形的多孔介质区域出现一个平面。

若出现的平面与我们的预期相差比较大的话,可以单击reset points,可以获得一个特殊位置的平面。

5、打开多孔介质的控制面板,选择porou zone标签,点击update from plane tool按钮,获得方向矢量1,和方向矢量2的原始值,并与左下角的坐标系统比较,确定我们大概的旋转方向。

6、对比grid图形左下角的坐标系统,红线和红色箭头代表的是方向矢量1,绿线和绿色箭头代表的是方向矢量2应该使红线和X正方向平行,绿线和Y正方向平行。

具体的操作应该是:一:先单击白线的蓝色箭头,固定了该方向在旋转过程中不变,可以保证在旋转的过程比较有规律,然后右键点选白线的红色箭头旋转红线的红色箭头到X的正轴;二: 接下来应该是单击白线的红色箭头,固定该方向不变,单击白线的蓝色箭头,旋转绿线的绿色箭头指向Y的正轴。

(所以多孔介质区域我们一般是设置在坐标系统里面,轴线等与坐标系统无非直角角度关系)。

把平面移动到图形外有利于旋转,比较清楚。

平面法线方向的移动是用鼠标右键单击平面阴影部分并拖动,横向移动则需按下shift并进行如上操作。

7、旋转到适当的位置后(鼠标右键拖动箭头),再次点击update from plane tool按钮,获得方向矢量1,和方向矢量2。

得到的数值很可能不是整数,这个时候我们可以把他简化为整数。

例如:0.9123可以简化为1,0.01245可以简化为0,以此类推。

fluent多孔介质模型

fluent多孔介质模型
多孔介质模型
多孔介质是由多相物质所占据的共同空间,也是多相物质共存 的一种组合体,没有固体骨架的那部分空间叫做孔隙,由液体或气 体或气液两相共同占有,相对于其中一相来说,其他相都弥散在其 中,并以固相为固体骨架,构成空隙空间的某些空洞相互连通。
多孔介质模型可以应用于很多问题,如通过充满介质的流动、 通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。
用Van Winkle方程计算带方孔的多孔板上压强的损失。方程的 提出者认为该方程适用于呈三角形分布的等距方孔板的湍流计算,具 体形式如下:
式中m为通过板的质量流量,fA为孔的总面积,pA板的总面积(固体 与孔的和),D/ t孔直径与板厚之比,C是随雷诺数和D/t变化的系数,其 值可以通过查表获得。在t/D>1.6,且Re>4000时,C近似等于0.98,其中 雷诺数是用孔的直径做特征长,孔中流体的速度做特征速度求出的。
多孔介质模拟 方法是将流动区域 中固体结构的作用 看作是附加在流体 上的分布阻力。

动量方程 能量方程的处理 阻力系数的推导 操作步骤(实例)

后处理
2
计算流体力学控制方程
div u div grad S t


时间项
对流项 变数
扩散项 扩散系数 0
D 0 0 C 0 C11 C 13 v x 12 13 vx x 1 D 0 v v C 0 C C 0 23 y 22 22 23 v y y 21 2 C D33 C 0 C33 31 32 33 v z z vz 0
△Py, △Pz分别是x,y,z三个方向的压力降。△nx, 别是多孔介质在x,y,z三个方向的真实厚度。

学习fluent (流体常识及软件计算参数设置)

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。

FLUENT多孔介质条件


多孔介质的动量方程
多孔介质的动量方程具有附加的动量源项。 源项由两部分组成, 一部分是粘性损失项(Darcy), 另一个是内部损失项:
其中 S_i 是 i 向(x, y, or z)动量源项,D 和 C 是规定的矩阵。在多孔介质单元中,动量损 失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质:
Figure 1:多孔区域的流体面板
定义多孔区域
正如定义边界条件概述中所提到的,多孔区域是作为特定类型的流体区域来模 拟的。亚表明流体区域是多孔区域,请在流体面板中激活多孔区域选项。面板会自动扩展到 多孔介质输入状态。
定义穿越多孔介质的流体
在材料名字下拉菜单中选择适当的流体就可以定义通过多孔介质的流体了。如 果你模拟组分输运或者多相流, 流体面板中就不会出现材料名字下拉菜单了。 对于组分计算 , 所有流体和/或多孔区域的混合材料就是你在组分模型面板中指定的材料。 对于多相流模型, 所有流体和/或多孔区域的混合材料就是你在多相流模型面板中指定的材料。
6. 7.
如果合适的话,限制多孔区域的湍流粘性。 如果相关的话,指定旋转轴和/或区域运动。
在定义粘性和内部阻力系数中描述了决定阻力系数和/或渗透性的方法。如果你使用多孔动 量源项的幂律近似,你需要输入多孔介质动量方程5中的 C_0和 C_1来取代阻力系数和流动 方向。 在流体面板中(下图)你需要设定多孔介质的所有参数,该面板是从边界条件菜单中打开的 (详细内容请参阅边界条件的设定一节)
在多孔介质区域三个坐标方向的压降为:
其中为多孔介质动量方程1中矩阵 D 的元素 vj 为三个方向上的分速度,D n_x、D n_y、以及 D n_z 为三个方向上的介质厚度。 在这里介质厚度其实就是模型区域内的多孔区域的厚度。 因此如果模型的厚度和实际厚 度不同,你必须调节1/a_ij 的输入。.

FLUENT多孔介质中平面面板(plane surface)工具的使用

1、输出grid图形2、选择surface---plane,打开plane surface面板3、通过确定三个点来确定平面位置。

单击slect point,出现提示,不点选cancel.在grid 图形的多孔介质区域任意位置右键点选3个点。

4、回到plane surface面板,勾选plane tool,则在grid图形的多孔介质区域出现一个平面。

若出现的平面与我们的预期相差比较大的话,可以单击reset points,可以获得一个特殊位置的平面。

5、打开多孔介质的控制面板,选择porous zone标签,点击update from plane tool按钮,获得方向矢量1,和方向矢量2的原始值,并与左下角的坐标系统比较,确定我们大概的旋转方向。

6、对比grid图形左下角的坐标系统,红线和红色箭头代表的是方向矢量1,绿线和绿色箭头代表的是方向矢量2应该使红线和X正方向平行,绿线和Y正方向平行。

具体的操作应该是:一:先单击白线的蓝色箭头,固定了该方向在旋转过程中不变,可以保证在旋转的过程比较有规律,然后右键点选白线的红色箭头旋转红线的红色箭头到X的正轴;二: 接下来应该是单击白线的红色箭头,固定该方向不变,单击白线的蓝色箭头,旋转绿线的绿色箭头指向Y的正轴。

(所以多孔介质区域我们一般是设置在坐标系统里面,轴线等与坐标系统无非直角角度关系)。

把平面移动到图形外有利于旋转,比较清楚。

平面法线方向的移动是用鼠标右键单击平面阴影部分并拖动,横向移动则需按下shift并进行如上操作。

7、旋转到适当的位置后(鼠标右键拖动箭头),再次点击update from plane tool按钮,获得方向矢量1,和方向矢量2。

得到的数值很可能不是整数,这个时候我们可以把他简化为整数。

例如:0.9123可以简化为1,0.01245可以简化为0,以此类推。

211247598_多孔介质随机堆积填充床内流体流动的数值模拟研究

收稿日期:2020-09-24基金项目:沈阳工程学院2019年大学生创新创业训练计划项目(201911632174)作者简介:田晓春(1994-),男,安徽六安人,硕士研究生。

多孔介质随机堆积填充床内流体流动的数值模拟研究田晓春,冯兆兴,刘盼(沈阳工程学院能源与动力学院,辽宁沈阳110136)摘要:采用离散单元法(DEM )构建了多孔介质填充床内颗粒随机堆积结构,运用计算流体力学(CFD )对填充床内部的流体流动进行数值模拟,探究不同入口速度下床层内部流体流动的分布规律。

结果表明:在小管径-粒径比填充床的床层中心截面处,流速分布存在局部不均匀性,颗粒表面和床层末端出现了明显的漩涡,床层末端处的漩涡几乎占满了整个流道;随着进口速度的增加,床层颗粒表面的漩涡个数增加,床层内部速度变化剧烈,有利于不同流体的互相掺混。

关键词:多孔介质;随机堆积;流动;数值模拟;填充床中图分类号:TB383文献标识码:A文章编号:1673-1603(2023)02-0019-06DOI :10.13888/ki.jsie (ns ).2023.02.004第19卷第2期2023年4月Vol.19No.2Apr.2023沈阳工程学院学报(自然科学版)Journal of Shenyang Institute of Engineering (Natural Science )多孔介质填充床广泛应用于能源、化工等行业中,如催化反应器、低热值燃气燃烧器、辐射加热器及高温气冷堆堆芯等[1-8]。

由于填充床内部是颗粒随机下落堆积的,其结构对床层内部的孔隙率、压降及速度场有很大的影响[2,7]。

因此,对随机填充的多孔介质填充床内的孔隙率、压降及流场分布进行研究,对填充床的优化设计和提高内部的反应效率具有重要作用[5-6]。

填充床的传统设计是基于平均经验相关性的均质模型,这些关联式通常不适用于以壁效应(Wall effect )和局部效应为主的小管径-粒径比填充床[8]。

fluent多孔板处理方法

fluent多孔板处理方法
Fluent多孔板处理方法是指在Fluent软件中使用多孔板模型进行流体处理的技术。

多孔板是一种被广泛应用于过滤、分离和增加传质过程的设备,它具有各种孔隙形状和尺寸。

在使用Fluent进行多孔板处理时,首先需要建立一个合适的几何模型,包括多孔板的尺寸和流体领域的设置。

然后,根据实际情况选择适当的物理模型和边界条件。

在多孔板模型中,主要涉及两个关键参数:流体流动速度和多孔介质的阻力系数。

流体流动速度可以通过设置入口边界条件来实现,常用的边界条件有速度入口和压力出口。

多孔介质的阻力系数可以通过实验或经验公式获得,并在模型中进行设置。

在处理过程中,还需要考虑多孔板的材料特性,如孔隙率、孔隙形状和孔隙分布。

这些参数将直接影响到流体在多孔介质中的传递和分布过程。

Fluent提供了多种求解器来模拟多孔板处理过程,其中包括具有多孔效应的流体流动模型。

通过使用这些求解器,可以获得多孔板内部的流体速度分布、压力分布和质量传递情况。

总之,Fluent多孔板处理方法是利用Fluent软件模拟多孔板内部流体流动和传质过程的一种技术。

通过合理设置模型参数、边界条件和材料特性,可以准确地模拟和分析多孔板系统中的流体行为,为工程设计和优化提供有效的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FLUENT多孔介质数值模拟设置 FLUENT专题 2009-08-18 21:54:19 阅读1512 评论8 字号:大中小 订阅 多孔介质条件

多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。

多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。

多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。  流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。  多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。

多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: 其中S_i是i向(x, y, or z)动量源项,D和C是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: 其中a是渗透性,C_2时内部阻力因子,简单的指定D和C分别为对角阵1/a 和C_2其它项为零。 FLUENT还允许模拟的源项为速度的幂率: 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。

多孔介质的Darcy定律 通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy定律: 在多孔介质区域三个坐标方向的压降为: 其中 为多孔介质动量方程1中矩阵D的元素vj为三个方向上的分速度,D n_x、 D n_y、以及D n_z为三个方向上的介质厚度。 在这里介质厚度其实就是模型区域内的多孔区域的厚度。因此如果模型的厚度和实际厚度不同,你必须调节1/a_ij的输入。.

多孔介质的内部损失 在高速流动中,多孔介质动量方程1中的常数C_2提供了多孔介质内部损失的矫正。这一常数可以看成沿着流动方向每一单位长度的损失系数,因此允许压降指定为动压头的函数。

如果你模拟的是穿孔板或者管道堆,有时你可以消除渗透项而只是用内部损失项,从而得到下面的多孔介质简化方程: 写成坐标形式为:

多孔介质中能量方程的处理 对于多孔介质流动,FLUENT仍然解标准能量输运方程,只是修改了传导流量和过度项。在多孔介质中,传导流量使用有效传导系数,过渡项包括了介质固体区域的热惯量: 其中: h_f=流体的焓 h_s=固体介质的焓 f=介质的多孔性 k_eff=介质的有效热传导系数 S^h_f=流体焓的源项 S^h_s=固体焓的源项

多孔介质的有效传导率 多孔区域的有效热传导率k_eff是由流体的热传导率和固体的热传导率的体积平均值计算得到: 其中: f=介质的多孔性 k_f=流体状态热传导率(包括湍流的贡献k_t) k_s=固体介质热传导率 如果得不到简单的体积平均,可能是因为介质几何外形的影响。有效传导率可以用自定义函数来计算。然而,在所有的算例中,有效传导率被看成介质的各向同性性质。

多孔介质中的湍流处理 在多孔介质中,默认的情况下FLUENT会解湍流量的标准守恒防城。因此,在这种默认的方法中,介质中的湍流被这样处理:固体介质对湍流的生成和耗散速度没有影响。如果介质的渗透性足够大,而且介质的几何尺度和湍流涡的尺度没有相互作用,这样的假设是合情合理的。但是在其它的一些例子中,你会压制了介质中湍流的影响。 如果你使用k-e模型或者Spalart-Allmaras模型,你如果设定湍流对粘性的贡献m_t为零,你可能会压制了湍流对介质的影响。当你选择这一选项时,FLUENT会将入口湍流的性质传输到介质中,但是它对流动混合和动量的影响被忽略了。除此之外,在介质中湍流的生成也被设定为零。要实现这一解策略,请在流体面板中打开层流选项 。激活这个选项就意味着多孔介质中的m_t为零,湍流的生成也为零。如果去掉该选项(默认)则意味着多孔介质中的湍流会像大体积流体流动一样被计算。。 概述 模拟多孔介质流动时,对于问题设定需要的附加输入如下: 1. 定义多孔区域 2. 确定流过多孔区域的流体材料 3. 设定粘性系数(多孔介质动量方程3中的1/a_ij)以及内部阻力系数(多孔介质动量方程3中的C_2_ij),并定义应用它们的方向矢量。幂率模型的系数也可以选择指定。 4. 定义多孔介质包含的材料属性和多孔性 5. 设定多孔区域的固体部分的体积热生成速度(或任何其它源项,如质量、动量)(此项可选)。 6. 如果合适的话,限制多孔区域的湍流粘性。 7. 如果相关的话,指定旋转轴和/或区域运动。 在定义粘性和内部阻力系数中描述了决定阻力系数和/或渗透性的方法。如果你使用多孔动量源项的幂律近似,你需要输入多孔介质动量方程5中的C_0和C_1来取代阻力系数和流动方向。 在流体面板中(下图)你需要设定多孔介质的所有参数,该面板是从边界条件菜单中打开的(详细内容请参阅边界条件的设定一节) Figure 1:多孔区域的流体面板

定义多孔区域 正如定义边界条件概述中所提到的,多孔区域是作为特定类型的流体区域来模拟的。亚表明流体区域是多孔区域,请在流体面板中激活多孔区域选项。面板会自动扩展到多孔介质输入状态。

定义穿越多孔介质的流体 在材料名字下拉菜单中选择适当的流体就可以定义通过多孔介质的流体了。如果你模拟组分输运或者多相流,流体面板中就不会出现材料名字下拉菜单了。对于组分计算,所有流体和/或多孔区域的混合材料就是你在组分模型面板中指定的材料。对于多相流模型,所有流体和/或多孔区域的混合材料就是你在多相流模型面板中指定的材料。

定义粘性和内部阻力系数 粘性和内部阻力系数以相同的方式定义。使用笛卡尔坐标系定义系数的基本方法是在二维问题中定义一个方向矢量,在三维问题中定义两个方向矢量,然后在每个方向上指定粘性和/或阻力系数。在二维问题中第二个方向没有明确定义,它是垂直于指定的方向矢量和z向矢量所在的平面的。在三维问题中,第三个方向矢量是垂直于所指定的两个方向矢量所在平面的。对于三维问题,第二个方向矢量必须垂直于第一个方向矢量。如果第二个方向矢量指定失败,解算器会确保它们垂直而忽略在第一个方向上的第二个矢量的任何分量。所以你应该确保第一个方向指定正确。

在三维问题中也可能会使用圆锥(或圆柱)坐标系来定义系数,具体如下: 定义阻力系数的过程如下: 1. 定义方向矢量。  使用笛卡尔坐标系,简单指定方向1矢量,如果是三维问题,指定方向2矢量。每一个方向都应该是从(0,0)或者(0,0,0)到指定的(X,Y)或(X,Y,Z)矢量。(如果方向不正确请按上面的方法解决)  对于有些问题,多孔介质的主轴和区域的坐标轴不在一条直线上,你不必知道多孔介质先前的方向矢量。在这种情况下,三维中的平面工具或者二维中的线工具可以帮你确定这些方向矢量。 1. 捕捉"Snap"平面工具(或者线工具)到多孔区域的边界。(请遵循使用面工具和线工具中的说明,它在已存在的表面上为工具初始化了位置)。 2. 适当的旋转坐标轴直到它们和多孔介质区域成一条线。 3. 当成一条线之后,在流体面板中点击从平面工具更新或者从线工具更新按钮。FLUENT会自动将方向1矢量指向为工具的红(三维)或绿(二维)箭头所指的方向。  要使用圆锥坐标系(比方说环状、锥状顾虑单元),请遵循下面步骤(这一选项只用于三维问题): 1. 打开圆锥选项 2. 指定圆锥轴矢量和在锥轴上的点。圆锥轴矢量的方向将会是从(0,0,0)到指定的(X,Y,Z)方向的矢量。FLUENT将会使用圆锥轴上的点将阻力转换到笛卡尔坐标系。 3. 设定锥半角(锥轴和锥表面之间的角度,如下图),使用柱坐标系,锥半角为0. Figure 1:锥半角  对于有些问题,锥形过滤单元的主轴和区域的坐标轴不在一条直线上,你不必知道锥轴先前的方向矢量以及锥轴上的点。在这种情况下,三维中的平面工具或者二维中的线工具可以帮你确定这些方向矢量。一种方法如下: 1. 在点击捕捉到区域按钮之前,你可以在下拉菜单中选择垂直于锥轴矢量的轴过滤单元的边界区域。 2. 点击捕捉到区域按钮,FLUENT会自动将平面工具捕捉到边界。它也会设定锥轴矢量和锥轴上的点(需注意的是你还要自己设定锥半角)。  另一种方法为: 1. 捕捉"Snap"平面工具到多孔区域的边界。(请遵循使用面工具和线工具中的说明,它在已存在的表面上为工具初始化了位置)。 2. 旋转和平移工具坐标轴,直到工具的红箭头指向锥的轴向。工具的起点在轴上。 3. 当轴和工具的起点成一条线时,在流体面板中点击从平面工具更新按钮。FLUENT会自动设定轴向矢量以及在轴上的点(注意:你还是要自己设定锥的半角)。 2. 在粘性阻力中指定每个方向的粘性阻力系数1/a,在内部阻力中指定每一个方向上的内部阻力系数C_2(你可能需要将滚动条向下滚动来查看这些输入)。如果你使用锥指定方法,方向1为锥轴方向,方向2为垂直于锥表面(对于圆柱就是径向)方向,方向3圆周(q)方向。 在三维问题中可能有三种可能的系数,在二维问题中有两种:  在各向同性算例中,所有方向上的阻力系数都是相等的(如海绵)。在各向同性算例中你必须将每个方向上的阻力系数设定为相等。  在三维问题中只有两个方向上的系数相等,第三个方向上的阻力系数和前两个不等,或者在二维问题中两个方向上的系数不等,你必须准确的指定每一个方向上的系数。例如,如果你得多孔区域是由具有小洞的细管组成,细管平行于流动方向,流动会很容易的通过细管,但是流动在其它两个方向上(通过小洞)会很小。如果你有一个平的盘子垂直于流动方向,流动根本就不会穿过它而只在其它两个方向上。  在三维问题中还有一种可能就是三个系数各不相同。例如,如果多孔区域是由不规则间隔的物体(如针脚)组成的平面,那么阻碍物之间的流动在每个方向上都不同。此时你就需要在每个方向上指定不同的系数(请注意指定各向同性系数时,多孔介质的解策略的注解)。

相关文档
最新文档