2012—2013九年级上一元二次方程测试题
人教版九年级数学上册一元二次方程单元测试卷

人教版九年级数学上册一元二次方程单元测试卷初中数学试卷-一元二次方程单元测试卷考试时间:100分钟满分:120分)姓名成绩一、选择题:(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A。
(x+1)=2(x+1)B。
2x+11=222ax+bx+cC。
D=-22.使得代数式3x-6的值等于21的x的值是( )A。
3B。
-3C。
±3D。
±33.关于x的一元二次方程x-k=有实数根,则()A。
k<0B。
k>0C。
k≥0D。
k≤04.用配方法解关于x的方程x+ px + q = 0时,此方程可变形为( )A。
(x+2)=2pB。
(x-2)=2pC。
(x+2)=2pD。
(x-2)=2p5.使分式的值等于零的x是( )A。
2B。
-2C。
±2D。
±46.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A。
x(x+1)=1035B。
x(x-1)=1035C。
x(x+1)=1035D。
x(x-1)=10357.若方程(a-b)x+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A。
a=b=cB。
一根为1C。
一根为-1D。
以上都不对奋斗没有终点,任何时候都是一个起点。
2.剔除格式错误。
3.改写每段话。
奋斗没有终点,任何时候都是一个起点。
8.若分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,则 $x$ 的值为().A。
3或-2B。
3C。
-2D。
-3或2改写为:已知分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,求 $x$ 的值。
A。
3或-2B。
3C。
-2D。
-3或29.已知方程 $x+p x+q=0$ 的两个根分别是2和-3,则 $x-p x+q$ 可分解为().A。
(x+2)(x+3)B。
(x-2)(x-3)C。
(x-2)(x+3)D。
九年级上学期数学《一元二次方程》单元综合测试含答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A . x1=0,x2=2B . x1=0,x2=-2C . x1=x2=1D . x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )A . 2B . ﹣2C .D . ﹣3.用因式分解法解一元二次方程时,原方程可化为( )A .B .C .D .4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A . 180(1+x%)=300B . 180(1+x%)2=300C . 180(1-x%)=300D . 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是( )A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A . 该方程有两个不相等的实数根B . 该方程有两个相等的实数根C . 该方程有实数根D . 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A . y2+5y-6=0B . y2+5y+6=0C . y2-5y+6=0D . y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A . x2﹣7x+12=0B . x2+7x+12=0C . x2﹣9x+20=0D . x2+9x+20=09.设A 是方程x2+2x﹣2=0的一个实数根,则2A 2+4A +2016的值为( )A . 2016B . 2018C . 2020D . 202110.如图,△A B C 是一块锐角三角形材料,高线A H长8 C m,底边B C 长10 C m,要把它加工成一个矩形零件,使矩形D EFG的一边EF在B C 上,其余两个顶点D ,G分别在A B ,A C 上,则四边形D EFG 的最大面积为( )A . 40 C m2B . 20C m2C . 25 C m2D . 10 C m2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数A 的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知A 、B 是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△A B C 中,三边分别为A 、B 、C ,其中A =5,若关于x的方程x2+(B +2)x+6﹣B =0有两个相等的实数根,求△A B C 的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m和n,请你研究满足什么条件时,矩形B 存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A ,B 两种规格的自行车100辆,已知A 型的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。
九年级上册数学《一元二次方程》单元测试题(含答案)

【解析】
【分析】设经过x秒钟,△PBQ的面积等于16平方厘米,根据点P从B点开始沿BA边向点A以1cm/s的速度移动,点Q从B沿BC→CA以1cm/s的速度移动,表示出BP和BQ的长可列方程求解.
【详解】
由勾股定理得 ,
设x秒后△PBQ的面积等于16,依题意有
①当t≤6时, ,
解得 , (负值舍去);
人教版数学九年级上学期
《一元二次方程》单元测试
(满分120分,考试用时120分钟)
一、选择题(每小题4分,共32分)
1.已知关于x的方程:(1)ax2+bx+c=0;(2)x2-4x=8+x2;(3)1+(x-1)
(x+1)=0;(4)(k2+1)x2+kx+1=0中,一元二次方程的个数为( )
A.1B.2C.3D.4
x2+6x+5=0
(x+5)(x+1)=0
x1=-1,x2=-5
故选A.
【点睛】本题考查了一元二次方程,掌握因式分解法解一元二次方程是解题关键.
4.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)要想平均每天销售这种童装盈利1800元,有可能吗?
(3)要想平均每天销售这种童装获利达最大,则每件童装应降价多少元?每天的获利是多少元?
参考答案
一、选择题(每小题4分,共32分)
1.已知关于x的方程:(1)ax2+bx+c=0;(2)x2-4x=8+x2;(3)1+(x-1)
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题1.将一元二次方程2316x x +=化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D . 23,6x x -2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .()223x +=B .()223x -=C .()225x +=D .()225x -= 3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣24.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ). A .a c = B .a b = C .a b = D .a b c == 5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值( ) A .0 B .1或2 C .1 D .26.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( ) A .1 B .-1 C .±1 D .07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.关于x 的方程(m +n )x 2+mn 2-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为12,差为2,则常数项为( )A .18B .12C .116D .149.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根10.若代数式2x 6x 5-+的值是12,则x 的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 11.将一元二次方程2230x x --=用配方法化成()2()0x h k k +=≥的形式为( )A .2 (1)4x -=B .2(1)1x -=C .2 (1)4x +=D .2 (1)1x +=12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣3二、填空题13.若方程2234mx x x +-=是关于x 的一元二次方程,则m 的取值范围是_____.14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____. 15.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.16.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为_________.三、解答题17.已知:已知关于x 的方程220x mx m ++-=(1)求证:不论m 为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求m 的值及方程的另一个根.18.据统计某市农村2013年人均纯收入是10000元,预计2015年人均纯收入可达到12100元. ()1试求该市农村这两年人均纯收入的平均增长率;() 2按此增长速度2016年该市农村人均纯收入可达到多少元?19.选择适当方法解下列方程:(1)2510x x -+=(用配方法); (2)()()2322x x x -=-;(3)2250x --=;(4)()()22231y y +=-.20.已知关于x 的方程()()22110m x m x m --++=. ()1m 为何值时,此方程是一元一次方程?()2m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.22.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具()1若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围; ()2在实际销售中,玩具城以()1中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%a ,从而每天的销售量降低了2%a ,当每天的销售利润为147元时,求a 的值.23.某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为21.6m ,上口宽比渠深多2m ,渠底比渠深多0.4m()1渠道的上口宽与渠底宽各是多少?()2如果计划每天挖土348m ,需要多少天才能把这条渠道挖完?24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.参考答案一、选择题1.将一元二次方程化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D .[答案]A[解析][分析]一元二次方程的一般形式是:A x 2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x 2叫二次项,B x 叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.[详解]解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6. 故选A .[点评]此题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 2316x x +=23,6x x -2316x x +=23-610x x +=2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .B .C .D . [答案]C[解析][分析]根据一元二次方程的配方法即可求出答案.[详解]∵x 2+4x-1=0,∴x 2+4x+4=5,∴(x+2)2=5,故选:C .[点评]此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 [答案]B[解析][分析]根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k 的方程即可.[详解]把x=2代入得,4-6+k=0,解得k=2.故答案为:B . ()223x +=()223x -=()225x +=()225x -=2x -3x+k=02x -3x+k=0[点评]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k 的新方程,通过解新方程来求k 的值是解题的关键.4.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .B .C .D .[答案]A[解析] [分析]因为方程有两个相等的实数根,所以根的判别式△=B 2-4A C =0,又A +B +C =0,即B =-A -C ,代入B 2-4AC =0得(-A -C )2-4A C =0,化简即可得到A 与C 的关系.[详解]∵一元二次方程A x 2+B x+C =0(A ≠0)有两个相等的实数根∴△=B 2−4A C =0,又A +B +C =0,即B =−A −C ,代入B 2−4A C =0得(−A −C )2−4A C =0,即(A +C )2−4A C =A 2+2A C +C 2−4A C =A 2−2A C +C 2=(A −C )2=0,∴A =C故选:A[点评]本题考查了一元二次方程根的判别式的应用,根据方程根的情况确定方程中字母系数之间的关系. 5.若关于的一元二次方程有一个根为0,则的值( )A .0B .1或2C .1D .2[答案]D 20(a 0)++=≠ax bx c 0a b c ++=20(a 0)++=≠ax bx c a c =a b =a b =a b c ==x 22(1)5320m x x m m -++-+=m[解析][分析]把x=0代入已知方程得到关于m 的一元二次方程,通过解方程求得m 的值;注意二次项系数不为零,即m-1≠0.[详解]解:根据题意,将x=0代入方程,得:m 2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D .[点评]本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m 的值必须满足:m-1≠0这一条件.6.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( )A .1B .-1C .±1D .0[答案]A[解析][分析]方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于A 的方程,从而求得A 的值,且(A +1)x 2+x +A 2-1=0为一元二次方程,即.[详解]把x=0代入方程得到:A 2-1=0解得:A =±1. (A +1)x 2+x +A 2-1=0为一元二次方程 即.+10a ≠-1a ≠∴+10a ≠-1a ≠综上所述A =1.故选:A .[点评]此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A .2根小分支B .3根小分支C .4根小分支D .5根小分支[答案]B[解析][分析]先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可. [详解]设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B .[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.关于x 的方程(m +n )x 2+-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为,差为2,则常数项为( )A .B .C .D . [答案]A[解析][分析]二次项系数与一次项系数的和为,差为2列方程组求出m 、n 的值,然后可求出常数项. [详解]由题意得 , 解之得, ∴. 故选A .[点评]本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程.对于一元二次方程A x 2+B x +C =0(A ≠0),其中A 是二次项系数,B 是一次项系数,C 是常数项.本题也考查了二元一次方程组的解法. mn 21218121161412()()()()122m n m n m n m n ⎧+--=⎪⎨⎪++-=⎩114m n =⎧⎪⎨=⎪⎩1114=228mn ⨯=9.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B .[点评]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.10.若代数式的值是,则的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 [答案]A[解析][分析]首先把方程化为一般形式x 2-6x+5-12=0,即x 2-6x-7=0,用因式分解法求解.[详解]2x 6x 5-+12x 26512,x x -+=265120,x x -+-=2670,x x --=∴解得:故选:A .[点评]考查一元二次方程的解法,掌握一元二次方程的解法是解题的关键.11.将一元二次方程用配方法化成的形式为( ) A .B .C .D .[答案]A[解析] [分析]先移项得,x 2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k 的形式.[详解]移项,得x 2-2x=3,配方,得x 2-2x+1=3+1,即(x-1)2=4.故选A .[点评]本题考查了配方法的应用,将一元二次方程x 2-2x-3=0用配方法化成(x+h)2=k (k≥0)的形式,其关键步骤就是移项后,在方程的左右两边加上一次项系数一半的平方.12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3[答案]A ()()710,x x -+=70,x -=10,x +=127, 1.x x ==-2230x x --=()2()0x h k k +=≥2 (1)4x -=2(1)1x -=2 (1)4x +=2 (1)1x +=[解析][分析]把X=0代入方程(m-3)x +3x+m -9=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0[详解]把x=0代入方程(m-3)x +3X+m -9=0中得:m -9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A[点评]此题主要考查一元二次方程的定义,难度不大二、填空题13.若方程是关于的一元二次方程,则的取值范围是_____.[答案][解析][分析]将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.[详解]原方程可化为:, ∵方程是关于的一元二次方程,∴,即,故答案为:.[点评]本题考查了一元二次方程的定义,掌握二次项系数不能为零这一点是解题关键.222222234mx x x +-=x m 1m ≠()21340m x x -+-=2234mx x x +-=x 10m -≠1m ≠1m ≠14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.[答案]3或-7[解析]据题意得,∵(x+2)*5=(x+2)2-52∴x 2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.15.若方程的两根,则的值为__________.[答案]5[解析][分析]根据根与系数的关系求出,代入即可求解.[详解]∵是方程的两根∴=-=4,==1 ∴===4+1=5,故答案为:5.[点评]此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用. 16.已知是一元二次方程的一根,则该方程的另一个根为_________.[答案]-2[解析][分析]由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.[详解]2410x x -+=12,x x 122(1)x x x 12x x +12x x ⋅12,x x 2410x x -+=12x x +b a 12x x ⋅c a122(1)x x x 1122x x x x ++1212x x x x ++12x x +b a 12x x ⋅c a1x =220x mx +-=设方程的另一根为x 1,由根与系数的关系可得:1×x 1=-2, ∴x 1=-2.故答案为:-2.[点评]本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.三、解答题17.已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.[答案](1)见解析;(2),方程的另一个根是. [解析][分析](1)由方程的各系数 结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m 的一元一次方程,解方程求出m 的值,将其代入原方程得出关于x 的一元二次方程,结合根与系数的关系得出方程的另一个解.[详解]解:(1)证明:∵在关于x 的方程中, ,所以不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0解得:, x 220x mx m ++-=m m 12m =32-220x mx m ++-=()()22412240m m m =-⨯⨯-=-+>m 1m 2=∴原方程为: ∴ ∵∴ ∴,方程的另一个根是. [点评]本题考查的知识点是根的判别式以及根与系数的关系,熟记每个公式是解题的关键.18.据统计某市农村年人均纯收入是元,预计年人均纯收入可达到元. 试求该市农村这两年人均纯收入的平均增长率;按此增长速度年该市农村人均纯收入可达到多少元?[答案](1);年该市农村人均纯收入可达到元.[解析][详解](1)设该市农村这两年人均纯收入的平均增长率为x,根据题意得:10000(1+x)2=12100,解得:x=0.1或x=﹣2.1(舍去),故该市农村这两年人均纯收入的平均增长率为;(元),答:年该市农村人均纯收入可达到元.[点评]本题主要考查一元二次方程的应用,解此题的关键在于先设出未知数x,再根据题意列出方程求解即可. 213022x x +-=1212b x x a +=-=-11x =232x =-12m =32-201310000201512100()1() 220161?0%()220161331010%()()212100110%13310⨯+=20161331019.选择适当方法解下列方程:(1)(用配方法);(2);(3); (4). [答案](1),;(2),;(3),;(4),.[解析][分析][详解]解:,移项得:,配方得:,即,∴,∴,;,移项,得 ,,或, 2510x x -+=()()2322x x x -=-2250x --=()()22231y y +=-152x +=252x =12x =23x=1x=22x =132y =214y =-()21510x x -+=251x x -=-225255144x x -+=-+2521()24x -=52x -=152x=252x =()()223(2)2x x x -=-()23(2)20x x x ---=()()2360x x x ---=20x -=260x -=,;; , ∵,,∴,∴, ∴,; ; .,,或,,. [点评]掌握一元二次方程的求根方法是解题的关键.20.已知关于的方程. 为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.[答案](1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;[解析]12x =23x =()23250x --=2a=b =-5c =-()842548=-⨯⨯-=x ==12x =22x =()224(2)(31)y y +=-()231y y +=±-231y y +=-()231y y +=--132y =214y =-x ()()22110m x m x m --++=()1m ()2m 1m =1m ≠±21m -()1m -+m试题分析:(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m 的值;(2)根据一元二次方程的定义可得≠0,可得m 的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.试题解析:解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m . 考点:一元一次方程的定义;一元二次方程的定义.21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.[答案](1);(2)5. [解析][分析](1)根据题中的解法即可得到答案;(2)同理(1).[详解] 21m -21m -21m -21m -21m -34(1)m 2+m+1=m 2+m++=(m+)2+≥, 则m 2+m+1的最小值是; (2)4﹣x 2+2x=﹣x 2+2x ﹣1+5=﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值是5.[点评]本题主要考查了配方法与偶次方的非负性,解此题的关键在于利用配方法得到完全平方式,再利用非负数的性质即可得解.22.一玩具城以元/个的价格购进某种玩具进行销售,并预计当售价为元/个时,每天能售出个玩具,且在一定范围内,当每个玩具的售价平均每提高元时,每天就会少售出个玩具若玩具售价不超过元/个,每天售出玩具总成本不高于元,预计每个玩具售价的取值范围; 在实际销售中,玩具城以中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了,从而每天的销售量降低了,当每天的销售利润为元时,求的值.[答案]预计每个玩具售价的取值范围是; 或.[解析][分析]根据题意列不等式组即可得到结论;; 由知最低销售价为元/个,对应销售量为,根据题意列方程即可得到结论. [详解] 解:每个玩具售价元/个,根据题意得, 解得:, 1434123434344950500.53()160686()2()1%a 2%a 147a ()15660x ≤≤()225a =12.5a =()1()2()1565650503140.5--⨯=个()1x 6050495036860.5x x ≤⎧⎪-⎨⎛⎫-⨯≤ ⎪⎪⎝⎭⎩5660x ≤≤答:预计每个玩具售价的取值范围是;由知最低销售价为元/个,对应销售量为, 由题意得:,令,整理得:,解得:,, ∴或.[点评]考查一元二次方程的应用,解决问题的关键是读懂题意,根据题意列出方程和不等式进行求解即可. 23.某林场计划修一条长,断面为等腰梯形的渠道,断面面积为,上口宽比渠深多,渠底比渠深多渠道的上口宽与渠底宽各是多少?如果计划每天挖土,需要多少天才能把这条渠道挖完?[答案]渠道的上口与渠底宽各是米和米; 需要天才能把这条渠道的土挖完.[解析][分析](1)设渠道深x 米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.[详解]设渠道深米,则上口的宽度是米,渠底宽米,根据题意得:, 5660x ≤≤()2()1565650503140.5--⨯=个()()561%491412%147a a ⎡⎤+-⨯⨯-=⎣⎦%t a =2321210t t -==114t =218t =25a =12.5a =750m 21.6m 2m 0.4m ()1()2348m ()1 2.8 1.2()225()1x ()2x +()0.4x +()()120.4 1.62x x x ⎡⎤+++=⎣⎦解得:(舍去),,则渠道的上口宽是:(米),渠底宽是(米);答:渠道的上口与渠底宽各是米和米;∵渠道的长为米,∴渠道的体积为(立方米),∵每天挖土立方米,∴需要的天数是:(天),答:需要天才能把这条渠道的土挖完.[点评]考查了一元二次方程的应用,解题的关键是读懂题目,设出未知数,找出等量关系,列方程求解. 24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.[答案]x 1=﹣0.5,x 2=1[解析]12x =-20.8x =0.82 2.8+=0.80.4 1.2+= 2.8 1.2()2750750 1.61200⨯=4812004825÷=25[分析]解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x ﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.[详解]解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1[点评]本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.。
九年级上《21.1一元二次方程定义、配方法》练习题含答案

九年级上《211. 一元二次方程的定义:方程两边差不多上整式,只含有一个未知数,同时未知数的最高次数为2的方程叫做一元二次方程。
举例:2230x x +-=;20x x -=;22x =。
2. 一元二次方程的一样形式:()200ax bx c a ++=≠,其中2ax 叫做二次项,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
举例:2230x x +-=。
3. 一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也能够叫做一元二次方程的根。
例题1 (1)下列方程中,是一元二次方程的有 。
(填序号)①25x =; ②30x y +-=; ③253302x x +-=;④2(5)2x x x x +=-; ⑤23580x x-+=;⑥204y y -=。
(2)若关于x 的方程(a -5)3a x -+2x -1=0是一元二次方程,则a 的值是_______。
思路分析:(1)按照一元二次方程的定义进行判定:①③⑥是一元二次方程;②是二元一次方程;④通过化简二次项系数为0,不是一元二次方程;⑤分母中含有未知数,方程左边是分式而不是整式;(2)由一元二次方程的定义可得32a -=,因此5a =±;然而当5a =时,原方程二次项系数为0,不是一元二次方程,故5a =应舍去;当5a =-时,原方程为210210x x -+-=,因此5a =-。
答案:(1)①③⑥;(2)5-点评:做概念辨析题要紧扣定义,关于一元二次方程要把握如此几个关键点:①方程两边差不多上整式;②只含有一个未知数;③未知数的最高次数为2。
例题2 把方程x(2x -1)=5(x+3)化成一样形式是___________,其中二次项是_________,一次项系数是_________,常数项是_________。
思路分析:将方程左右展开,然后移项(把所有的项都移到等号的左边),合并同类项即可:由()()2153x x x -=+得22515x x x -=+,移项得225150x x x ---=,合并同类项得226150x x --=。
九年级上册(人教版)数学:第21章 二元一次方程 章末测试卷
第21章二元一次方程一、填空题(每小题3分,共30分)1.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.【答案】22.已知关于x的一元二次方程的两个根是1和,则mn的值是______.【答案】3.若关于x的一元二次方程有实数根,则整数a的最大值是____.【答案】34.直角三角形两直角边的比为3:4,其斜边长10,则两直角边的长分别是_____.【答案】6和8.5.已知关于x的一元二次方程有两个实数根和.若时,则m= ______ .【答案】6.规定:,如:,若,则x=__.【答案】1或-37.一个QQ 群里共有若干个好友,如果每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,则这个 QQ 群里有_____个好友.【答案】308.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3596,每件工艺品需降价______元.【答案】69.关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1、x2,且=3,则m=_______.【答案】010.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A、C同时出发,点P以3cm/S 的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P、Q两点从出发开始到_____秒时,点P和点Q的距离是10cm.【答案】2或.一、选择题(每小题3分,共30分)11.如果﹣1是方程x2﹣3x+k=0的一个根,则常数k的值为()A. 4 B. 2 C.﹣4 D.﹣2【答案】C12.已知a 、b 、c 是的三边长,且方程的两根相等,则为( )A . 等腰三角形B . 等边三角形C . 直角三角形D . 任意三角形【答案】C13.用配方法解方程变形后为( ) A .B .C .D .【答案】A14.某商场3月份的销售额为160万元,5月份为250万元,则该商场这两个月销售额的平均增长率为( )A .B .C .D .【答案】B15.若α,β是一元二次方程3x 2+2x -9=0的两根,则的值是( ).A .B . -C . -D . 【答案】C16.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是 ( )A . 50(1+x 2)=196B . 50+50(1+x 2)=196C . 50+50(1+x )+50(1+x ) 2=196D . 50+50(1+x )+50(1+2x )=196【答案】C17.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共同签订了45份合同.设共有x 家公司参加商品交易会,则x 满足的关系式为( )A . x (x +1)=45B . x (x -1)=45C . x (x +1)=45D . x (x -1)=45【答案】B18.若关于x 的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是( )A .B .C .D .【答案】C19.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为若设道路的宽为xm,则下面所列方程正确的是()A. B.C. D.【答案】A20.设一元二次方程()()=m(m>0)的两实数分别为α、β且α<β,则α、β满足()A. -1<α<β<3 B.α<-1且β>3C.α<-1<β<3 D. -1<α<3<β【答案】B三、解答题(共60分)21.(本题8分)用适当的方法解下列方程:(1)x2+2x+1=4; (2)x2-x=-.【答案】(1)x1=-3,x2=1;(2)x1=x2=22.(本题7分)关于x的一元二次方程有实数根,求m的取值范围;若方程有一个根为,求m的值和另一根.【答案】;(2)m的值为,方程的另一根为1.23.(本题6分)列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园ABCD,为了节约材料,花园的一边AD靠着原有的一面墙,墙长为8米(AD<8),另三边用栅栏围成,已知栅栏总长为24米,求花园一边AB的长.【答案】AB的长为10米.24.(本题6分)(阅读材料)为解方程,我们可以将看作一个整体,然后设,那么原方程可化为……①.解得,.当时,,即..当时,,即..所以,原方程的解为,,,.(解答问题)上述解题过程中的“由原方程得到方程①”这一步,是利用“整体换元”的方法达到了降次的目的,从而求出原高次方程的解,体现了转化的数学思想.请你参考以上解决问题的方法解方程:.【答案】25.(本题7分)为打造“文化太湖,书香圣地”,太湖中学的学生积极开展“图书飘扬”活动,让全体师生创美好,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.【答案】(1)6月份借阅了名著类书籍的人数为1440人;(2)从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.26.(本题8分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.【答案】(1) 0.2;(2)27.(本题8分)百货商店销售某种冰箱,每台进价2500元。
九年级上册数学《一元二次方程》单元检测带答案
九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一.选择题(共10小题,满分30分,每小题3分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A .m=±2B .m=2C .m=﹣2D .m≠±22.将一元二次方程2x2+7=9x化成一般式后,二次项系数和一次项系数分别为()A .2,9B .2,7C .2,﹣9D .2x2,﹣9x 3.已知一元二次方程2x2+3x﹣B =0的一个根是1,则B =()A .3B .0C .1D .54.以x=为根的一元二次方程可能是()A .x2+B x+C =0 B .x2+B x﹣C =0 C .x2﹣B x+C =0D .x2﹣B x﹣C =0 5.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A .(x﹣2)2=﹣B .(x﹣2)2=C .(x+2)2=7D .(x﹣2)2=7 6.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7.已知(x2+y2)(x2+y2﹣4)=5,则x2+y2的值为()A .1B .﹣1或5C .5D .1或﹣58.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感,每轮传染中平均一只鸡传染()只鸡.A .22B .24C .25D .269.已知P=m﹣1,Q=m2﹣m(m为任意实数),则P与Q的大小关系为()A .P>QB .P=QC .P<QD .不能确定10.若整数A 使得关于x的一元二次方程(A +2)x2+2A x+A ﹣1=0有实数根,且关于x 的不等式组有解且最多有6个整数解,则符合条件的整数A 的个数为()A .3B .4C .5D .6二.填空题(共8小题,满分32分,每小题4分)11.下列方程中,①7x2+6=3x;②=7;③x2﹣x=0;④2x2﹣5y=0;⑤﹣x2=0中是一元二次方程的有.12.把一元二次方程x(x+1)=4(x﹣1)+2化为一般形式为.13.方程(2x﹣5)2=9的解是.14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为.15.关于x的一元二次方程A x2+3x﹣2=0有两个不相等的实数根,则A 的取值范围是.16.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135C m2,则以小长方形的宽为边长的正方形面积是 C m2.17.已知一元二次方程2x2+B x+C =0的两个实数根为﹣1,3,则B +C =.18.如果关于x的一元二次方程A x2+B x+C =0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程A x2+B x+C =0是“半根方程”,且点P(A ,B )是函数y=x图象上的一动点,则的值为.三.解答题(共8小题,满分58分)19.(8分)解下列一元二次方程:(1)x2﹣2x﹣1=0;(2)3x(2x+3)=4x+6.20.(6分)已知△A B C 的三边长为A 、B 、C 且关于x的方程A (1﹣x2)+2B x+C (1+x2)=0有两个相等的实数根,请判断△A B C 的形状并加以说明.21.(6分)某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.求进馆人次的月平均增长率.22.(6分)一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数.23.(7分)关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.24.(8分)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?25.(8分)适逢中高考期间,某文具店平均每天可卖出30支2B 铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B 铅笔获取的利润为40元?(2)该文具店每天卖2B 铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.26.(9分)先阅读下面的内容,再解决问题:问题:对于形如x2+2A x+A 2这样的二次三项式,可以用公式法将它分解成(x+A )2的形式.但对于二次三项式x2+2A x﹣3A 2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2A x﹣3A 2中先加上一项A 2,使它与x2+2A x成为一个完全平方式,再减去A 2,整个式子的值不变,于是有:x2+2A x﹣3A 2=(x2+2A x+A 2)﹣A 2﹣3A 2=(x+A )2﹣4A 2=(x+A )2﹣(2A )2=(x+3A )(x﹣A )像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:A 2﹣8A +15=;(2)若△A B C 的三边长是A ,B ,C ,且满足A 2+B 2﹣14A ﹣8B +65=0,C 边的长为奇数,求△A B C 的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B .2.解:2x2+7=9x化成一元二次方程一般形式是2x2﹣9x+7=0,则它的二次项系数是2,一次项系数是﹣9.故选:C .3.解:把x=1代入2x2+3x﹣B =0,得2+3﹣B =0.解得B =5.故选:D .4.解:由题意可知:二次项系数为1,一次项系数为﹣B ,常数项为C ,故选:C .5.解:∵2x2﹣8x﹣3=0,∴2x2﹣8x=3,则x2﹣4x=,∴x2﹣4x+4=+4,即(x﹣2)2=,故选:B .6.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .7.解:设x2+y2=m,则由题意得:m(m﹣4)=5∴(m﹣5)(m+1)=0∴m=5或m=﹣1(舍)∴x2+y2=5故选:C .8.解:设每轮传染中平均一只鸡传染x只,则第一轮后有x+1知鸡感染,第二轮后有x(x+1)+x+1只鸡感染,由题意得:x(x+1)+x+1=625,即:x1=24,x2=﹣26(不符合题意舍去).故选:B .9.解:∵Q﹣P=m2﹣m﹣m+1=m2﹣m+1=(m﹣)2+≥>0∴Q>P,故选:C .10.解:∵整数A 使得关于x的一元二次方程(A +2)x2+2A x+A ﹣1=0有实数根,∴△=(2A )2﹣4(A +2)(A ﹣1)≥0且A +2≠0,解得:A ≤2且A ≠﹣2,∵关于x的不等式组有解且最多有6个整数解,∴解不等式组得:A <x≤3,∴A 可以为2,1,0,﹣1,﹣3,共5个,故选:C .二.填空题(共8小题,满分32分,每小题4分)11.解:①③⑤是一元二次方程,②是分式方程,④是二元二次方程,故答案为:①③⑤.12.解:x2+x=4x﹣4+2,x2﹣3x+2=0,故答案为:x2﹣3x+2=0.13.解:∵(2x﹣5)2=9,∴x=4或1,故答案为:x=4或114.解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=2023.故答案为:2023.15.解:∵方程A x2+3x﹣2=0是一元二次方程,∴A ≠0,∵原方程有两个不相等的实数根,∴△=9+8A >0,解得:A ,综上可知:A 且A ≠0,故答案为:A 且A ≠0.16.解:设小长方形的长为xC m,宽为xC m,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(C m2).故答案为:9.17.解:根据题意得﹣1+3=﹣,﹣1×3=,解得B =﹣4,C =﹣6,所以B +C =﹣4﹣6=﹣10.故答案为﹣10.18.解:不妨设方程A x2+B x+C =0的两根分别为x1,x2,且x1=x2,∵点P(A ,B )是函数y=x图象上的一动点,∴B = A ,∴方程化为A x2+ A x+C =0,∴由韦达定理得:x1+x2=x2=﹣=﹣.∴x2=﹣,x1x2===××6=.故答案为:.三.解答题(共8小题,满分58分)19.解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.20.解:△A B C 是直角三角形.方程整理得(C ﹣A )x2+2B x+(C +A )=0;由方程有两个相等的实数根知△=4B 2﹣4(C +A )(C ﹣A )=4(B 2﹣C 2+A 2)=0,∴B 2+A 2=C 2,∴△A B C 是直角三角形.21.解:设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x﹣7=0∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍)答:进馆人次的月平均增长率为50%.22.解:设这个两位数的个位数字为x,则十位数字为(9﹣x),依题意,得:x2+(9﹣x)2=45,整理,得:x2﹣9x+18=0,解得:x1=3,x2=6.当x=3时,这个两位数为63;当x=6时,这个两位数为36.答:这个两位数为36或63.23.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.24.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.25.解:(2)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B 铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得:10x2﹣7x+2=0,△=B 2﹣4A C =(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B 铅笔获取的利润不可以达到50元.26.解:(1)A 2﹣8A +15=(A 2﹣8A +16)﹣1=(A ﹣4)2﹣12=(A ﹣3)(A ﹣5);故答案为:(A ﹣3)(A ﹣5);(2)∵A 2+B 2﹣14A ﹣8B +65=0,∴(A 2﹣14A +49)+(B 2﹣8B +16)=0,∴(A ﹣7)2+(B ﹣4)2=0,∴A ﹣7=0,B ﹣4=0,解得,A =7,B =4,∵△A B C 的三边长是A ,B ,C ,∴3<C <11,又∵C 边的长为奇数,∴C =5,7,9,当A =7,B =4,C =5时,△A B C 的周长最小,最小值是:7+4+5=16;(3)﹣2x2﹣4x+3,=﹣2(x2+2x+1﹣1)+3,=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5.。
人教版九年级数学上册 一元二次方程单元测试卷(含答案解析)
人教版九年级数学上册 一元二次方程单元测试卷(含答案解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts .(1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值;(2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析【解析】【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等;②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=,即54t -=,1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =, DN CD ∴<,∴点N 在点C 、D 之间,1.54AM t ==,4CD =,AM CD ∴=,如图②中,连接AC 交MD 于O ,90ABC BCD ∠=∠=︒,180ABC BCD ∴∠+∠=︒,//AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠,在AOM 和COD △中,AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=,ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-,ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.3.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7213,k =±详见解析 【解析】【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围.(2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在.【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0,即4k 2+8k +4﹣4k 2+4k >0,∴12k >﹣4解得:k >13-且k ≠0(2)存在,且7k =±理由如下: ∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=-21430,k k ∴--=1,14,3,a b c ==-=-24208,b ac ∴∆=-=1472k ±∴==± k >13-且k ≠0, 172130.21,3-≈--> 17.3+-∴满足条件的k 值存在,且7k =± .【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.4.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值;【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3,解得,a 1=﹣2,a 2=﹣4,∴a 的值是﹣2或﹣4;②∵a ≤x ≤b ,b =﹣3∴a =﹣2舍去,∴a =﹣4,∴﹣4≤x ≤﹣3,∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.5.阅读以下材料,并解决相应问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程42210x x -+=,就可以令21x =,则原方程就被换元成2210t t -+=,解得 t = 1,即21x =,从而得到原方程的解是 x = ±1材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:……………………………………(1)利用换元法解方程:()()222312313+-++-=x x x x(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,n c 表示第(n )1-行第 3 个数,请用换元法因式分解:()41-⋅+n n n b a c【答案】(1)x =或x = 或x=-1或x=-2;(2)()41-⋅+n n n b a c =(n 2-5n+5)2【解析】【分析】(1)设t=x 2+3x-1,则原方程可化为:t 2+2t=3,求得t 的值再代回可求得方程的解; (2)根据杨辉三角形的特点得出a n ,b n ,c n ,然后代入4(b n -a n )•c n +1再因式分解即可.【详解】(1)解:令t=x 2+3x-1则原方程为:t 2+2t=3解得:t=1 或者 t=-3当t=1时,x 2+3x-1=1解得:x =或x =当t=-3时,x 2+3x-1=-3解得:x=-1或x=-2∴方程的解为:x =或x =或x=-1或x=-2 (2)解:根据杨辉三角形的特点得出:a n =n-1(1)(2)2n n n b --= (2)(3)2n n n c --= ∴4(b n -a n )•c n +1=(n-1)(n-4)(n-2)(n-3)+1=(n 2-5n+4)(n 2-5n+6)+1=(n 2-5n+4)2+2(n 2-5n+4)+1=(n 2-5n+5)2【点睛】本题主要考查因式分解的应用.解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.6.问题提出:(1)如图1,在四边形ABCD 中,已知:AD BC ∥,90D ∠=︒,4BC =,ABC 的面积为8,求BC 边上的高.问题探究(2)如图2在(1)的条件下,点E 是CD 边上一点,且2CE =,EAB CBA =∠∠,连接BE ,求ABE △的面积问题解决(3)如图3,在(1)的条件下,点E 是CD 边上任意一点,连接AE 、BE ,若EAB CBA =∠∠,ABE △的面积是否存在最小值;若存在,求出最小值;若不存在;请说明理由.【答案】(1)4;(2)203;(3)存在,最小值为16216- 【解析】【分析】 (1)作BC 边上的高AM ,利用三角形面积公式即可求解;(2)延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,易得四边形BCDF 为矩形,在(1)的条件下BC=CD=4,则BCDF 为正方形,由EAB CBA =∠∠,结合∠FAB=∠CBA 可得∠FAB=∠EAB ,从而推出BF=BH=4,易证Rt △BCE ≌Rt △BHE ,所以EH=CE=2,设AD =a ,则AF=AH=4-a ,在Rt △ADE 中利用勾股定理建立方程可求出a ,最后根据S △ABE =1AE BH 2即可求解; (3)辅助线同(2),设AD=a ,CE=m ,则DE=4-m ,同(2)可得出m 与a 的关系式,设△ABE 的面积为y ,由y=1AE BH 2得到m 与y 的关系式,再求y 的最小值即可. 【详解】(1)如图所示,作BC 边上的高AM ,∵S △ABC =1BC AM=82∴82AM==44⨯ 即BC 边上的高为4;(2)如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,∵AD BC ∥,90D ∠=︒∴∠BCD=∠D=90°=∠F∴四边形BCDF 为矩形,又∵BC=CD=4∴四边形BCDF 为正方形,∴DF=BF=BC=4,又∵AD ∥BC∴∠FAB=∠CBA又∵∠EAB=∠CBA∴∠FAB=∠EAB∵BF ⊥AF ,BH ⊥AE∴BH=BF=4,在Rt △BCE 和Rt △BHE 中,∵BE=BE ,BH=BC=4∴Rt △BCE ≌Rt △BHE (HL )∴EH=CE=2同理可证Rt △BAF ≌Rt △BAH (HL )∴AF=AH设AD=a ,则AF=AH=4-a在Rt △ADE 中,AD=a ,DE=2,AE=AH+EH=4-a+2=6-a由勾股定理得AD 2+DE 2=AE 2,即()22226+=-a a 解得8=3a ∴AE=6-a=103 S △ABE =111020AE BH=4=2233⨯⨯ (3)存在,如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,同(2)可得CE=EH ,AF=AH ,设AD=a ,CE=EH=m ,则DE=4-m ,AF=AH=4-a在Rt △ADE 中,AD 2+DE 2=AE 2,即()()22244+-=-+a m a m整理得8=4+m a m ∴AE=AH+HE=2816444+-+=++m m m m m 设△ABE 的面积为y ,则y=()222161116AE BH=42244++=++m m m m ∴()()24216+=+y m m 整理得:223240++-=m ym y∵方程必有实数根∴()2=423240∆-⨯⨯-≥y y 整理得2322560+-≥y y∴()()16216162160⎡⎤⎡⎤---≥⎣⎦⎣⎦y y (注:利用求根公式进行因式分解) 又∵面积y ≥0∴216≥y即△ABE 的面积最小值为16216.【点睛】本题考查四边形综合问题,正确作出辅助线,得出AB 平分∠FAC ,利用角平分线的性质定理得到BF=BH ,结合勾股定理求出AE 是解决(2)题的关键,(3)题中利用一元二次方程的判别式求最值是解题的关键.7.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题8.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y =(11﹣2x )m .依题意,得:xy =12,即x (11﹣2x )=12,解得:x 1=1.5,x 2=4(舍去),∴y =11﹣2x =8.答:矩形园子的长为8m ,宽为1.5m .【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y 关于x 的函数表达式;(2)找准等量关系,正确列出一元二次方程.10.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF .(1)当32BG = 时,求AE 的长;(2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】【分析】 (1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得;(2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得.【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-,由勾股定理,得()(222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,点E 与点B 重合,此时四边形AEGF 是正方形,∴折痕226662EF =+=(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①当FG=FC时,如图2,过F作FH⊥CG于H,则有:AF=FG=FC,CH=DF=GH设AF=FG=FC=x,则DF=10-x=CH=GH在Rt△CFH中∵CF2=CH2+FH2∴x2=62+(10-x)2解得:x=345,∴DF=CH=GH=10-165,即BG=10-165×2=185,②当FG=GC时,则有:AF=FG=GC=x,CH=DF=10-x;∴GH=x-(10-x)=2x-10,在Rt△FGH中,由勾股定理易得:x2=62+(2x-10)2,化简得:3x2-40x+136=0,∵△=(-40)2-4×3×136=-32<0,∴此方程没有实数根.综上可知:BG=185.【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.。
数学九年级上册《一元二次方程》单元测试含答案
人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟 满分:100分一.选择题(每题3分,共30分)1.关于x 的方程(m ﹣3)x﹣mx +6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣12.方程x (x ﹣5)=x ﹣5的根是( )A .x =5B .x =0C .x 1=5,x 2=0D .x 1=5,x 2=13.已知一元二次方程ax 2+bx +c =0(a ≠0)中.下列说法:①若a +b +c =0,则b 2﹣4ac ≥0;②若方程两根为﹣1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根;④若b =2a +3c ,则方程有两个不相等的实根.其中结论正确的有( )个.A .1个B .2个C .3个D .4个4.已知x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( )A .2B .3C .2或3D .﹣2或﹣35.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为( )A .10%B .15%C .20%D .25%6.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则=( )A .3B .﹣3C .D .﹣ 7.某中学有一块长30cm ,宽20cm 的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=×20×30B .(30﹣2x )(20﹣x )=×20×30C .30x +2×20x =×20×30D .(30﹣2x )(20﹣x )=×20×308.某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则每天销售量会减少2kg .该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( )A .(20+x )(100﹣2x )=1800B .C .D .x [100﹣2(x ﹣20)]=18009.已知关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5,则方程m (2x +5)2﹣n (2x +5)﹣p =0的根为( )A .x 1=3,x 2=5B .x 1=﹣1,x 2=0C .x 1=﹣2,x 2=0D .x 1=11,x 2=15 10.定义新运算:a *b =a (m ﹣b ).若方程x 2﹣mx +4=0有两个相等正实数根,且b *b =a *a (其中a ≠b ),则a +b 的值为( )A .﹣4B .4C .﹣2D .2二.填空题(每题4分,共20分)11.方程x 2﹣3=0的解是 .12.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= . 13.已知实数a ,b 满足等式a 2﹣2a ﹣1=0,b 2﹣2b ﹣1=0,则的值是 .14.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为 .15.已知t 是实数,若a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,则(a 2﹣1)(b 2﹣1)的最小值是 .三.解答题(每题10分,共50分)16.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).17.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x (万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?20.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为m元,则该销售公司该月盈利万元(用含m的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)参考答案一.选择题1.解:由题意得:m 2﹣2m ﹣1=2,m ﹣3≠0,解得m =﹣1或m =3.m =3不符合题意,舍去,所以它的一次项系数﹣m =1.故选:B .2.解:∵x (x ﹣5)﹣(x ﹣5)=0,∴(x ﹣5)(x ﹣1)=0,则x ﹣5=0或x ﹣1=0,解得x =5或x =1,故选:D .3.解:①若a +b +c =0,方程ax 2+bx +c =0有一根为1,又a ≠0,则b 2﹣4ac ≥0,正确; ②由两根关系可知,﹣1×2=,整理得:2a +c =0,正确;③若方程ax 2+c =0有两个不相等的实根,则﹣ac >0,可知b 2﹣4ac >0,故方程ax 2+bx +c =0必有两个不相等的实根,正确;④由b =2a +3c ,b 2﹣4ac =(2a +3c )2﹣4ac =4(a +c )2+5c 2>0,所以④正确. 故选:D .4.解:∵x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m ﹣6,△=[﹣(5m ﹣6)]2﹣4m 2>0,解得m <或m >2,∵x 1+x 2=m 2,∴5m ﹣6=m 2,解得m =2(舍)或m =3,故选:B .5.解:设这两个月的营业额增长的百分率是x .200×(1+x )2=288,解得:x 1=﹣2.2(不合题意舍去),x 2=0.2,答:每月的平均增长率为20%.故选:C .6.解:根据题意得m +n =3,mn =﹣1, 所以=.故选:B .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:由题意可得,x (100﹣)=1800,故选:C . 9.解:∵关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5, ∴方程m (2x +5)2﹣n (2x +5)﹣p =0中2x +5=3或2x +5=5,解得:x =﹣1或x =0,即x 1=﹣1,x 2=0,故选:B .10.解:∵方程x 2﹣mx +4=0有两个相等实数根,∴△=(﹣m )2﹣4×4=0,解得m 1=4,m 2=﹣4,当m =﹣4时方程有两个相等的负实数解,∴m =4,∴a *b =a (4﹣b ),∵b *b =a *a ,∴b (4﹣b )=a (4﹣a )整理得a 2﹣b 2﹣4a +4b =0,(a ﹣b )(a +b ﹣4)=0,而a ≠b ,∴a +b ﹣4=0,即a +b =4.故选:B .二.填空题(共5小题)11.解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.12.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.13.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.14.解:设较小的数为x,则较大的数为x+3,根据题意得:x(x+3)=88,即x2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x=8或x=﹣11,∴x+3=11或﹣8,则较大的数为11或﹣8,故答案为:11或﹣815.解:∵a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,∴可得a +b =2,ab =t ﹣1≥0,∴t ≥1,又△=4﹣4(t ﹣1)≥0,可得t ≤2,∴2≥t ≥1,又(a 2﹣1)(b 2﹣1)=(ab )2﹣(a 2+b 2)+1=(ab )2﹣(a +b )2+2ab +1,∴(a 2﹣1)(b 2﹣1),=(t ﹣1)2﹣4+2(t ﹣1)+1,=t 2﹣4,又∵2≥t ≥1,∴0≥t 2﹣4≥﹣3,故答案为:﹣3.三.解答题(共5小题)16.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3),∴(x +3)2﹣(2x ﹣1)(x +3)=0,∴(x +3)(﹣x +4)=0,则x +3=0或﹣x +4=0,解得x 1=﹣3,x 2=4.17.解:(1)∵x 2+10x +7=x 2+10x +25﹣18=(x +5)2﹣18,由(x +5)2≥0,得(x +5)2﹣18≥﹣18;∴代数式x 2+10x +7的最小值是﹣18;(2)﹣a 2﹣8a +16=﹣a 2﹣8a ﹣16+32=﹣(a +4)2+32,∵﹣(a +4)2≤0,∴﹣(a +4)2+32≤32,∴代数式﹣a 2﹣8a +16有最大值,最大值为32.18.解:(1)设BC =xm ,则AB =(33﹣3x )m ,依题意,得:x (33﹣3x )=90,解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去.答:鸡场的长(AB )为15m ,宽(BC )为6m .(2)不能,理由如下:设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y (33﹣3y )=100,整理,得:3y 2﹣33y +100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m 2的矩形养鸡场.19.解:(1)设y 与x 的函数关系式为y =kx +b , 依题意,得解得所以y 与x 的函数关系式为y =﹣5x +200.(2)依题知(x ﹣25)(﹣5x +200)=130.整理方程,得x 2﹣65x +1026=0.解得x 1=27,x 2=38.∵此设备的销售单价不得高于35万元,∴x 2=38(舍),所以x =27.答:该设备的销售单价应是27 万元.20.解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25﹣2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25﹣4×0.2=24.2万元,∴该月盈利为5(m ﹣24.2)+5×0.6=5m ﹣118,故答案为:(5m ﹣118);(3)设需要售出x 辆汽车,由题意可知,每辆汽车的销售利润为:25.6﹣[25﹣0.2(x﹣1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x﹣84=0,解这个方程,得x1=﹣12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x﹣84=0,解这个方程,得x1=﹣14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程测试题
一、选择题(每小题3分,共30分)
1.要使式子aa2有意义,a的取值范围是( )
A. a≠0 B. a>-2且a≠0 C. a>-2或a≠0 D. a≥-2且a≠0
2.下列各式中属于最简二次根式的是( )
A.22yx B.xyx C.12 D.211
3.下列方程属于一元二次方程的是( )
A.032xx B.322xx C.22332xx D.224xxx
4.用配方法解方程0782xx,则配方法正确的是( )
A.942x B.942x C.1682x D.5782x
5.在方程02cbxax(a≠0)中,若有0cba,则方程必有一根为( )
A.1 B.0 C.1或-1 D.-1
6.下列计算错误的是( )
A.22416aa B.aaa2510 C.aaaaa112 D.aaa23
7.某地举行一次足球单循环比赛,每一个球队都和其他球队进行一场比赛,共进行了55场比
赛,如果设有x个球队,根据题意列出方程为( )
A. 551xx B. 551xx C. 2551xx D. 5512xx
8.已知关于x的方程0232xkx有两个实数根,则k的取值范围为( )
A. k≤89 B. k<89 C. k≤89且k≠0 D. k<89且k≠0
9.对于一元二次方程02cbxax(a≠0),下列说法:①若0ca则02cbxax 有两
个不等的实数根;②若方程02cbxax有两个不等实数根,则方程02abxcx也一定有
两个不相等的实数根;③若c是方程02cbxax的一个根,则一定有01bac成立;④
若m是方程02cbxax的一个根则一定有2224bamacb成立。其中正确的有( )
A. ①② B.②③ C.③④ D. ①④
二、填空(每题3分,共30分)
1.方程xxx1的根是 .
2.在实数范围内分解因式:254m .
3.使n12是整数的最小正整数n= .
4.等腰直角三角形的面积为8,则斜边长为 .
5.设1x、2x是方程0252xx的两根,则2111xx .
6.观察下列各式规律:①322322 ②833833 ③15441544 ,……,则第
⑩个等式为 .
7.使式子23x有意义的x的取值范围是 .
8.若m的算术平方根是31,则m等于 .
9.式子77的小数部分是 .
10.化简375.0 .
三解答题(共60分)
1.解方程:032xx(5分)
2.计算:015282218 (5分)
3.已知201220112011xxy,求2yx的值. (6分)
4.已知1x=-1是方程052mxx的一个根,求m的值及方程的另一个根2x. (6分)
5.先化简,再求值:222211yxyxyyxyx,其中23x,23y.
(6分)
6.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围成一个矩形场地.(8分)
(1)怎样围才能使矩形场地的面积为7502m?
(2)能否使所围矩形场地的面积为8102m,为什么?
7.小明家有一块长8m,宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面
积为空地面积的一半.小明设计了如下的四种方案供妈妈挑选.请你选择其中的一种方案帮助
小明求出图中的x值.
(8分)
8.先阅读下面的解题过程,再回答后面的问题:(8分)
如果nm216和17nmm在二次根式的加减运算中可以合并成一项,求m、n的值。
解:因为nm216与17nmm可以合并
所以721621mnmnm即716313nmnm
解得47864755nm
问:(1)以上解是否正确?答 .
(2)若以上解法不正确,请给出正确解法.
x
x
x
x
xxxxxxxx
x
x
x
x
x
x
x
x
9.(8分)如图,已知在△ABC中,∠B=90°,AB=BC=5㎝。点P从点A开始沿AB边向点B
以1㎝/s的速度移动,点Q从点B开始沿BC边向点C以2㎝/s的速度移动,当一动点到终
点另一动点出随之停止.
(1)如果P、Q分别从A、B两点同时出发,那么几秒后△PBQ的面积等于4㎝2?
(2)在(1)中,△PBQ的面积能否等于7㎝2,试说明理由.
Q
P
C
B
A
参考答案
一、选择题:
1.D;2.A;3.C;4.B;5.A;6.D;7.C;8.C9.D
二、填空题:
1. 1x=0,2x=2;
2. 5552mmm
3. n=3;
4. 24;
5. 25;
6. 1201111201111;
7. x≥32;
8. m=91;
9. 27;
10. 641;
三、解答题:
1. 1x=2131,2x=2131;
2. 2+1;
3.1;
4. 2x=5;
5. 2yx,621
6.(1)长30,宽25;(2)不能.
7.选择第一种方案,x=2;
8.(1)不正确;
(2)
因为nm216与17nmm可以合并,
所以7221mnmnm或721621mnmnm
解得,
25n
m
或47864755nm.
9.(1)设x秒后,△PBQ的面积等于42cm
42521xx
解得1x=1,2x=4
∵CB=AB=5,
∴5255xx
∴2x=4舍去,∴x=1. ∴1秒后,△PBQ的面积等于4㎝2.
(2)不能.
理由:设x秒后,△PBQ的面积等于7㎝2.
72521xx
a=1,b=-5,c
=7,
△ =2b-4ac=25-28=-3<0
∴△PBQ的面积不能等于7㎝2.