尺寸链
尺寸链计算及例题解释

2. 概率法特点:以概率论理论为基础,计算科学、复杂, 经济效果好,用于环数较多的大批大量生产中。
假定各环尺寸按正态分布,且其分布中心与公差带中心重合。
(1) 各环公差之间的关系
(2) 各 环 平 均 尺 寸 之 间 的 关 系
(3)各环平均偏差之间的关系
n1
T ( A0) T 2 ( Ai)
2006-3
13
四、尺寸链计算的基本公式
1.极值法
(1) 极值法各环基本尺寸之间的关系 封闭环的基本尺寸A0等于增环的基本尺寸之和减去减环的
基本尺寸之和,即
m
n 1
A A A 0基
i基
i基
i 1
i m1
(2)各环极限尺寸之间的关系
封闭环的最大极限尺寸A0max等于增环的最大极限尺寸之和减去 减环的最小极限尺寸之和,即
4、增、减环判别方法
在尺寸链图中用首尾相接的单向 箭头顺序表示各尺寸环,其中与 封闭环箭头方向相反者为增环, 与封闭环箭头方向相同者为减环。
举例:
增环
A1 A0 A2
A3
封闭环
减环
二、尺寸链的分类
1、按应用范围分类
1)工艺尺寸链——全部组成环为 同一零件工艺尺寸所形成的尺寸链。 2)装配尺寸链——全部组成环为 不同零件设计尺寸所形成的尺寸链。 3)零件尺寸链——全部组成环为同 一零件设计尺寸所形成的尺寸链。 4)设计尺寸链——装配尺寸链与零 件尺寸链,统称为设计尺寸链。
2、按几何特征及空间位置分类
1) 长度尺寸链—全部环为长度的尺寸链 2) 角度尺寸链—全部环为角度的尺寸链 3)直线尺寸链—— 全部组成环平行于封闭 环的尺寸链。 4)平面尺寸链—— 全部组成环位于一个或 几个平行平面内,但某些组成环不平行于 封闭环的尺寸链。 5) 空间尺寸链——组成环位于几个不平行 平面内的尺寸链。
装配尺寸链的计算

d=
,
250.0025
D=
0. .0125
25 ②按尺寸大小分成0四.00组7,列5 表,工件按组涂上不同颜色便于
分组装配.
0.0175
图示为活塞销与活塞销孔的装配,直径为28mm,过盈量为 0.0025~0.0075mm
应用分组装配法必须注意以下几点
1>配合件公差应当相等;公差要向同方向增大;增大的 倍数要等于分组数.
但增加了修配工作,生产效率低,对装配工 人技术要求高。
应用
用于产品结构比较复杂、尺寸链环数较多、 产品精度要求高的单件小批生产的场合。
修配方法
〔1单件修配法 〔2合并加工修配法 〔3 自身加工修配法
应用单件修配法必须注意以下几点
修配环 的选择
〔1易于修配、便于装卸
〔2尽量不选公共环为修配 环
单件修配法解算步骤
固定调整法
选择一个组成环作调整环, 作为调整环的零件是按一
定尺寸间隔制成的一组零 件,装配时根据封闭环超差 的大小,从中选出某一尺寸 等级适当的零件来进行补 偿,从而保证规定的装配精 度.通常使用的调整环有垫 圈、垫片、轴套等.
• 需要计算调整环的各档尺寸及其偏差
要求A0=0.05~0.2mm ,已 知各组成环的基本尺寸为 A1=115mm,
0.52= 0.42+ 0.22+ 0.082+ T42+ 0.082 T4=0.192
中间偏差Δ0=<Δ1+Δ2>-<Δ3+Δ4+Δ5> Δi=<ESi+EIi>/2
Δ4=-0.07
③ 核算封闭环的极限偏差
Δ0=<Δ1+Δ2>-<Δ3+Δ4+Δ5>= <0.2+0.1>-<-0.04-0.070.04>=0.45
尺寸链计算方法及步骤

尺寸链计算方法及步骤尺寸链计算方法是在工程和设计领域中用来确定产品尺寸的一种方法。
通过尺寸链计算,可以确保产品的各个组成部分之间的尺寸关系符合设计要求,从而实现功能和装配的有效性。
下面将介绍尺寸链计算的具体方法及步骤。
一、确定设计要求在进行尺寸链计算之前,首先需要明确产品的设计要求。
这包括产品的功能要求、装配要求、尺寸公差要求等。
只有明确了这些设计要求,才能够有针对性地进行尺寸链计算。
二、确定尺寸链的起点和终点尺寸链计算中,需要确定尺寸链的起点和终点。
起点是指一个确定的尺寸基准,终点是指产品中的某个关键尺寸。
起点和终点之间的尺寸关系将通过尺寸链计算得出。
三、确定尺寸链的路径确定尺寸链的路径是指确定起点和终点之间的尺寸关系路径。
这个路径通常是通过产品的装配关系来确定的。
在确定路径时,需要考虑产品的功能和装配要求,确保路径的合理性和有效性。
四、确定尺寸链各个环节的尺寸公差尺寸链计算中,每个环节都有一定的尺寸公差。
尺寸公差是指在设计和生产过程中,为了满足产品功能和装配要求而允许的尺寸偏差范围。
确定尺寸链各个环节的尺寸公差需要考虑产品的功能要求和装配要求,确保尺寸链的有效性和可控性。
五、计算尺寸链各个环节的尺寸在确定了尺寸链的路径和尺寸公差之后,就可以开始计算尺寸链各个环节的尺寸了。
计算尺寸时,需要考虑尺寸公差和装配要求,确保尺寸的准确性和一致性。
六、验证尺寸链的有效性计算完成后,需要对尺寸链进行验证,确保其满足设计要求和装配要求。
验证的方法可以采用数值模拟、实验测试等手段。
通过验证,可以判断尺寸链的有效性,及时发现和解决尺寸关系的问题。
七、优化尺寸链在进行尺寸链计算的过程中,可能会发现一些尺寸关系不符合设计要求或装配要求。
在这种情况下,需要对尺寸链进行优化,调整尺寸关系,使其满足要求。
优化尺寸链的方法可以包括调整尺寸公差、改变尺寸关系路径等。
八、更新尺寸链计算结果在完成尺寸链计算和优化之后,需要及时更新尺寸链计算结果。
尺寸链原理及其应用

尺寸链原理及其应用一、引言尺寸链原理是指在一个系统中,各个组成部分的尺寸之间存在着特定的比例关系。
这种比例关系可以用来设计和优化系统,提高系统的效率和性能。
尺寸链原理被广泛应用于各种领域,如机械设计、电子电路设计、化学反应等。
二、尺寸链原理的基本概念在一个系统中,各个组成部分的尺寸之间存在着特定的比例关系,这种比例关系可以用数学公式来表示。
例如,在机械设计中,轴承内径和外径之间的比例关系可以表示为d1/d2=k,其中d1为内径,d2为外径,k为常数。
三、尺寸链原理的应用1. 机械设计中的应用在机械设计中,利用尺寸链原理可以优化机械结构,并提高机械性能。
例如,在齿轮传动系统中,齿轮模数和齿数之间存在着特定的比例关系,在设计时可以根据这种比例关系来确定齿轮模数和齿数的取值范围。
2. 电子电路设计中的应用在电子电路设计中,利用尺寸链原理可以优化电路结构,并提高电路性能。
例如,在滤波器的设计中,电容和电感之间存在着特定的比例关系,可以根据这种比例关系来确定电容和电感的取值范围,从而优化滤波器的性能。
3. 化学反应中的应用在化学反应中,利用尺寸链原理可以优化反应条件,并提高反应效率。
例如,在合成有机物的反应中,反应物的摩尔比和反应时间之间存在着特定的比例关系,可以根据这种比例关系来确定最佳的反应条件。
四、尺寸链原理的优点1. 提高系统效率利用尺寸链原理可以优化系统结构和参数,从而提高系统效率。
2. 提高系统稳定性尺寸链原理可以保证系统各个部分之间存在着协调一致的比例关系,从而提高系统稳定性。
3. 提高设计效率利用尺寸链原理可以快速确定系统各个部分的参数范围,从而提高设计效率。
五、尺寸链原理在实际工程中的案例1. 汽车发动机设计中的应用在汽车发动机设计中,利用尺寸链原理可以优化发动机结构和参数,从而提高发动机的性能和效率。
例如,在汽车发动机的气缸直径和行程之间存在着特定的比例关系,可以根据这种比例关系来确定最佳的气缸直径和行程。
尺寸链的原理及其应用

A2
280.08 0.095
mm
装配尺寸链—间隙
A0 0.05 ~ 0.25mm
A1
43.5
0.10 0.05
mm
A2 2.500.04 mm
A3 38.500.07 mm A4 2.500.04 mm
A0 A1 A2 A3 A4 0 mm
ES0 ES1 EI2 EI3 EI4 0.25
EI0 EI1 ES2 ES3 ES4 0.05
A0
00.25 0.05
mm
装配尺寸链—调整环
装配尺寸链—调整环
A0 0.05 ~ 0.20mm AF 9mm A1 11500.15 mm A3 9500.1 mm A2 8.500.1 mm A4 2.500.12 mm
Tav
工艺尺寸链—滚筒
工艺尺寸链—滚筒
A0
A1
A2
A3
A2
A3
A1 2
A0
750 720 2
15 mm
ES0
ES1
2EI2
EI2
0.4
2
0.6
0.1
mm
EI0 EI1 2ES2 ES2 0 0 0 mm
A2 A3 1500.1 mm
工艺尺寸链—键槽
A0 A R r A A0 R r 43.6 20 39.6 / 2 43.4 mm
Ac6
100.021 0.121
mm
Ad6 A5 A3 24 14 10 mm
ESd6 0 (0.021) 0.021mm
EId6 0.084 0.021 0.105 mm
Ad6
100.021 0.105
mm
工艺尺寸链—活塞
尺寸链

一、尺寸链的概念图5-1: 尺寸链示例二、尺寸链的基本术语及分类(一)尺寸链的基本术语1.环:尺寸链中每个尺寸2.封闭环:在加工或装配过程中最后形成的一环,它的大小是由组成环间接保证的AO3.组成环:对封闭环有影响的其它各环。
增环:引起封闭环同向变动减环:引起封闭环反向变动(二)尺寸链的分类1.按尺寸链的功能要求分:1)工艺尺寸链2)装配尺寸链2.尺寸链间相互联系分:1)独立尺寸链2)并联尺寸链图5-2:并联尺寸链3.按环的几何特征分1.长度尺寸链2.角度尺寸链图5-3:角度尺寸链3.组合形式4.按环的空间位置分1.直线尺寸链2.平面尺寸链图5-4:平面尺寸链3.空间尺寸链三、尺寸链的计算公式(一)极值法计算公式1.基本尺寸计算2.极限尺寸的计算3.上、下偏差的计算4.环公差的计算5.各环平均公差计算6.平均尺寸及对称偏差计算法二、概率法计算公式k 0、ki为各环的相对分布系数,影响k的因素为二个方面:一是合格率,在公差带范围内即(3σ内)全部合格,认为k'=1不作另外考虑,一般与实际中的情况符合,否则要考虑置信水平P二是分布规律:当分布规律为正态分布时k n=1,否则要考虑分布特性K″获得,在3σ区间内(公差带内)全部合格推导:一、工艺尺寸链的建立和增环、减环判别(一)、尺寸链的建立1.确定封闭环装配尺寸链中,装配精度就是封闭环;(设计)尺寸链中,未标尺寸(环)就是封闭环。
工艺尺寸链:间接获得的,不是直接保证的尺寸。
2.查组成环加工中直接获得且对封闭环有影响的尺寸3.画出尺寸链注意:使组成环环数达到最少(二)、增坏,减环的判别1、回路法:与封闭环反向的为增环,与封闭环同向的为减环。
2、直观法:与封闭环串联的是减环,与封闭环共基线并联的是增环。
串联的组成环性质相同,共基线并联的组成环性质相反。
3、分析法:假定其它组成环均为定值,分析某一组成环,其增大使封闭环增大为增环,反之为减环。
二、工艺基准与设计基准不重合时,工序尺寸及其公差的确定例、图5-5:测量基准与设计基准不重合的尺寸换算轴承碗问题,测量基准与设计基准不重合1、设计要求保证10-0.10及40-0.20孔深任意设计尺寸链,封闭环---总长X0X0=10+40=50, ES(x0)=0, EI0=-0.2-0.1=-0.3封闭环X0=50-00.32、测量问题----如何保证40-0.2?测量基准与设计基准不重合尺寸换算40-0.2尺寸的设计基准为B,无法直接测量改为A, 40-0.2是封闭环,由10-0.1及尺寸X1间接保证A.初检T0=ΣT i?否则调整公差B.判别增减环C.选用公式3、假废品问题,若测量结果为50? 49.75?合格否?需重测A14、如何提高测量----加工的可能性-----设计工艺装备,保证设计尺寸。
尺寸链计算方法-公差计算
尺寸链计算方法-公差计算本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March尺寸链计算一.基本概念尺寸链是一组构成封闭尺寸的组合。
尺寸链中的各个尺寸称为环。
零件在加工或部件在装配过程中,最后得到的尺寸称为封闭环。
组成环又分为增环和减环,当尺寸链中某组成环的尺寸增大时,封闭环的尺寸也随之增大,则该组成环称为增环。
反之为减环。
补偿环:尺寸链中预先选定的某一组成环,可以通过改变其大小或位置,使封闭环达到规定要求。
传递系数ξ:表示各组成环对封闭环影响大小的系数。
增环ξ为正值,减环ξ为负值。
通常直线尺寸链的传递系数取+1或-1.尺寸链的主要特征:①.尺寸连接的封闭性;②.每个尺寸的变化(偏差)都会影响某一尺寸的精度。
二.尺寸链的分类1.按应用范围分工艺尺寸链:在零件加工过程中,几个相互联系的工艺尺寸形成的封闭链。
装配尺寸链:在设计或装配过程中,由几个相关零件的有关尺寸形成的封闭链。
2. 按构成尺寸链各环的空间位置分线性尺寸链:各环位于平行线上平面尺寸链:各环位于一个平面或相互平行的平面,各环不平行排列。
空间尺寸链:各环位于不平行的平面,需投影到三个座标平面上计算。
3.按尺寸链的形式分a)长度尺寸链和角度尺寸链b)装配尺寸链装、零件尺寸链和工艺尺寸链c)基本尺寸链与派生尺寸链基本尺寸链指全部组成环皆直接影响封闭环的尺寸链派生尺寸链指一个尺寸链的封闭环为另一个尺寸链组成环的尺寸链。
d)标量尺寸链和矢量尺寸链三. 基本尺寸的计算把每个基本尺寸看成构成尺寸链的各环,验算其封闭环是否符合设计要求。
是设计中尺寸链计算时首先应该进行的工作。
目前产品生产中经常出现错误的环节,大部分是基本尺寸链错误。
特别是测绘设计的产品。
由于原机的制造误差,测量系统的误差以及尺寸修约的误差,往往会使测绘设计与原设计产生很大的偏差,所以必须进行基本尺寸链的计算四.解尺寸链的主要方法根据零件尺寸的要求和相关标准确定零件尺寸公差,然后按照解尺寸链的最短途径原理的方法对尺寸公差进行验算和修正。
尺寸链概念及尺寸链计算方法
尺寸链的计算之巴公井开创作时间:二O二一年七月二十九日一、尺寸链的基本术语:1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链.如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链.2.环——列入尺寸链中的每一个尺寸称为环.如上图中的A0、A1、A2、A3、A4、A5都是环.长度环用年夜写斜体拉丁字母A,B,C……暗示;角度环用小写斜体希腊字母α,β等暗示.3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一尺寸,称为封闭环.如上图中A0.封闭环的下角标“0”暗示.4.组成环——尺寸链中对封闭环有影响的全部尺寸,称为组成环.如上图中A1、A2、A3、A4、A5.组成环的下角标用阿拉伯数字暗示.5.增环——尺寸链中某一类组成环,由于该类组成环的变更引起封闭环同向变更,该组成环为增环.如上图中的A3.6.减环——尺寸链中某一类组成环,由于该类组成环的变更引起封闭环的反向变更,该类组成环为减环.如上图中的A1、A2、A4、A5.7.赔偿环——尺寸链中预先选定某一组成环,可以通过改变其年夜小或位置,使封闭环到达规定的要求,该组成环为赔偿环.如下图中的L2.二、尺寸链的形成为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等分歧观点,对尺寸链加以分类,得出尺寸链的分歧形式.1.长度尺寸链与角度尺寸链①长度尺寸链——全部环为长度尺寸的尺寸链,如图1 ②角度尺寸链——全部环为角度尺寸的尺寸链,如图32.装配尺寸链,零件尺寸链与工艺尺寸链①装配尺寸链——全部组成环为分歧零件设计尺寸所形成的尺寸链,如图4②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6.工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等.装配尺寸链与零件尺寸链统称为设计尺寸链.3.基本尺寸链与派生尺寸链①基本尺寸链——全部组成环皆直接影响封闭环的尺寸链,如图7中尺寸链β.②派生尺寸链——这一尺寸链的封闭环成为另一尺寸链组成环的尺寸链,如图7中γ.4.直线尺寸链,平面尺寸链与空间尺寸链①直线尺寸链——全部组成环平行于封闭环的尺寸链,如图1、图2、图5.②平面尺寸链——全部组成环位于一个或几个平行平面内,但某些组成环不服行于封闭环的尺寸链,如图8.③空间尺寸链——组成环位于几个不服行平面内的尺寸链,如图9.三.尺寸链的极值算法1.分析确定增环及减环①用增环及减环的界说(组成环中的某类环的变更引起封闭环的同向变更为增环,引起封闭环的反向变更的环为减环)确定.如图10中,A3为增环,A1、A2、A4、A5为减环.②用“箭头法”确定:先从任一环起画单向箭头,一个接一个的画,包括封闭环,直到最后一个形成闭合回路,然后按箭头的方向判断,凡是与封闭环箭头同向的为减环,反向的为增环.如图10中A1、A2、A4、A5与封闭环的箭头同向,因此是减环,A3的箭头与封闭环的箭头方向相反,所以是增环.2.求封闭环的基本尺寸封闭环的基本尺寸=所有增环基本尺寸之和减去所有减环基本尺寸之和.A0=A3-(A1+A2+A4+A5) 已知A3=43,A1=30,A2=5,A4=3,A5=5 故A0=43-(30+5+3+5)=0 即封闭环的尺寸A0=03.求封闭环的公差封闭环的公差=所有组成环的公差之和T0=T1+T2+T3+T4+T5 已知T1=0.1,T2=0.05,T3=0.1,T4=0.05,T5=0.05 故T0=0.1+0.05+0.1+0.05+0.05=0.35mm4.求封闭环的极限偏差封闭环上偏差=所有增环上偏差之和减去所有减环下偏差之和(带符号运算)封闭环下偏差=所有增环下偏差之和减去所有减环上偏差之和(带符号运算)已知:增环上偏差ESiy为:+0.20;减环下偏差Eliz为:-0.10,-0.05,-0.05,0.05;增环下偏差Eliy为:+0.10;减环上偏差ESiz为:0,0,0,0.故:封闭环上偏差ES0=+0.20-(-0.10-0.05-0.05-0.05)=+0.45mm 封闭环下偏差E10=+0.10-(0+0+0+0)=+0.10mm 即:封闭环上偏差ES0=+0.45mm;下偏差E10=+0.10mm;封闭环A0=O+0.45+0.10mm,其间隙年夜小为+0.1~0.45mm.时间:二O二一年七月二十九日。
尺寸链计算方法
2、按几何特征及空间位置分类
1) 长度尺寸链—全部环为长度的尺寸链 2) 角度尺寸链—全部环为角度的尺寸链 3)直线尺寸链—— 全部组成环平行于封闭 环的尺寸链。 4)平面尺寸链—— 全部组成环位于一个或 几个平行平面内,但某些组成环不平行于 封闭环的尺寸链。 5) 空间尺寸链——组成环位于几个不平行 平面内的尺寸链。
假定各环尺寸按正态分布,且其分布中心与公差带中心重合。
(1) 各环公差之间的关系
(2) 各 环 平 均 尺 寸 之 间 的 关 系
(3)各环平均偏差之间的关系
n1
ቤተ መጻሕፍቲ ባይዱ
T ( A0) T 2 ( Ai)
i 1
m
n 1
A0 Ai Ai
i 1
i m 1
m
n 1
A0 Ai Ai
i 1
i m1
m
n 1
n 1
T(A ) 0
T
i 1
(A) i
T
i m1
(A) i
T
(
A i
)
i 1
极值法解算尺寸链的特点是: 简便、可靠,但当封闭环公差较小,组成环数目较多 时,分摊到各组成环的公差可能过小,从而造成加工困 难,制造成本增加,在此情况小,常采用概率法进行尺 寸链的计算。
2. 概率法特点:以概率论理论为基础,计算科学、复杂, 经济效果好,用于环数较多的大批大量生产中。
2)查找组成环,建立尺寸链
3)计算尺寸及偏差
10.4-0.2
求得 A0=15-0.4+0.5 4)解决办法:
( 超差)
10-0.3
•改变工艺过程,如将钻孔改在工序40之后;
•提高加工精度,缩小组成环公差。
尺寸链的计算
尺寸链的计算
尺寸链是指一系列尺寸关联的链条,通过计算,可以找到从一组基准尺寸到其他所有尺寸的关联方式。
尺寸链的计算通常遵循以下步骤:
1. 确定基准尺寸。
基准尺寸是计算尺寸链的起点,通常是物体的宽度、长度或高度。
2. 确定尺寸关联方式。
尺寸关联方式指各个尺寸之间的比例关系。
通常,尺寸之间的比例关系可以通过物体的形状、比例尺、缩放比例等确定。
3. 根据尺寸关联方式计算其他尺寸。
通过已知的尺寸关联方式,可以根据基准尺寸计算出其他所有尺寸。
例如,假设一个桌子的长度为1米,宽度为0.8米,高度为0.7米,而我们想计算它的各个尺寸之间的关联方式。
首先,我们可以将长度作为基准尺寸,即1米。
接着,我们可以通过测量出其他尺寸,计算出它们之间的比例关系。
比如,实测得桌子的宽度为0.8米,那么宽度与长度之间的比例关系为0.8/1=0.8。
同理,高度与长度之间的比例关系为0.7/1=0.7。
最后,根据这些比例关系,我们可以计算出任何一个尺寸,比如长度为2米时,宽度应该是1.6米,高度应该是1.4米。