二次函数根与系数关系

合集下载

二次函数判断根的个数公式

二次函数判断根的个数公式

二次函数判断根的个数公式二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c是实数且a≠0。

一元二次方程的一般形式可以表示为ax^2+bx+c=0,其中a、b、c是已知的实数,求解方程主要是求出方程的根。

我们知道,一元二次方程的根可能有三种情况:1.有两个不相等的实数根;2.有两个相等的实数根;3.没有实数根,但有两个共轭复根。

下面我们来详细介绍一元二次方程的根的个数的判断公式和证明。

首先,要判断一元二次方程是否有实根,我们可以计算判别式Δ=b^2-4ac的值。

判别式可以判断方程的根的性质:1.如果Δ>0,则方程有两个不相等的实数根;2.如果Δ=0,则方程有两个相等的实数根;3.如果Δ<0,则方程无实数根,但有两个共轭复根。

接下来具体推导一下判别式的证明:首先,如果一元二次方程有实数根,设方程的两个实数根为x1和x2,则根据因式定理,可得ax^2+bx+c=a(x-x1)(x-x2)将上式展开,得到:ax^2+bx+c=ax^2-a(x1+x2)x+ax1x2根据一元二次方程的系数与根的关系可得:a(x1+x2)=-bax1x2=c将上述两个等式相加得:a^2(x1+x2)^2+b^2=ab由于a≠0,所以可以将上面的等式继续化简得:(x1+x2)^2=b^2/a^2-4ac/a^2移项得:(x1+x2)^2=b^2-4ac/a^2上式右边的根为判别式Δ=b^2-4ac。

由于(x1+x2)^2≥0,所以当b^2-4ac≥0时方程有实数根。

接下来我们来证明根的情况:1.当Δ>0时根据以上推导可知,方程的两个实数根为:x1=(-b+√Δ)/2ax2=(-b-√Δ)/2a即方程有两个不相等的实数根。

2.当Δ=0时根据以上推导可知,方程的两个实数根为:x1=x2=-b/2a即方程有两个相等的实数根。

3.当Δ<0时根据以上推导可知,方程的两个实数根为:x1=(-b+√(-Δ)i)/2ax2=(-b-√(-Δ)i)/2a其中i为虚数单位,(-Δ)i为共轭复数。

微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题(解析版)

微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。

二次函数两根互为倒数

二次函数两根互为倒数

二次函数两根互为倒数二次函数是一种非常常见的数学函数,其一般形式可以表示为y=ax^2+bx+c,其中a、b和c为常数,且a不等于0。

而二次函数的两个根就是其方程 y=ax^2+bx+c=0 的解,即使得函数值为0的x 值。

而题目要求的是两个根互为倒数,即如果一个根为x1,那么另一个根就是其倒数1/x1。

现在让我们来探讨一下二次函数两根互为倒数的一些特点和性质。

我们可以通过解二次方程 y=ax^2+bx+c=0 来求得函数的两个根。

根据求根公式,可以得到根的表示式为:x1=(-b+√(b^2-4ac))/(2a)x2=(-b-√(b^2-4ac))/(2a)由于题目要求两个根互为倒数,所以我们可以得到以下关系:x1 * (1/x1) = 1根据这个关系,我们可以得到一个等式:(-b+√(b^2-4ac))/(2a) * (-b-√(b^2-4ac))/(2a) = 1化简上述等式,可以得到:(-b^2+√(b^2-4ac)√(b^2-4ac))/(4a^2) = 1进一步化简,可以得到:-b^2+√(b^2-4ac)√(b^2-4ac) = 4a^2由于√(b^2-4ac)√(b^2-4ac) = b^2-4ac,所以上述等式可以进一步化简为:-b^2+b^2-4ac = 4a^2化简后,得到:-4ac = 4a^2进一步化简,得到:c = -a这个结论告诉我们,如果二次函数的两个根互为倒数,那么函数的常数项c一定等于a的相反数。

也就是说,二次函数的常数项c和系数a之间有一个相对应的关系。

我们还可以通过图像来观察二次函数两根互为倒数的特点。

对于二次函数 y=ax^2+bx+c,我们可以将其绘制成一个抛物线。

当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

而当函数的两个根互为倒数时,我们可以发现,这个抛物线与x轴相交于两个点,并且这两个点关于x轴对称。

这是因为如果一个根为x1,那么另一个根为1/x1,它们的坐标分别为(x1,0)和(1/x1,0)。

第二章二次函数-二次函数的图象与系数的关系(教案)

第二章二次函数-二次函数的图象与系数的关系(教案)
(1)二次函数的一般形式:y=ax^2+bx+c(a≠0),以及系数a、b、c对函数图象的影响。
- a决表图象与y轴的交点。
(2)二次函数图象的顶点坐标、对称轴和开口方向。
-顶点坐标为(-b/2a,(4ac-b^2)/4a),是图象的最高点或最低点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的图象与系数的关系,包括开口方向、对称轴、顶点坐标和实数根等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-对称轴x=-b/2a,是图象的对称中心。
-开口方向由a的正负决定。
(3)二次函数实数根的判定:通过判别式Δ=b^2-4ac来判断实数根的个数。
- Δ>0,有两个实数根;
- Δ=0,有一个实数根;
- Δ<0,无实数根。
2.教学难点
(1)理解系数a、b、c对二次函数图象的综合影响。
-难点举例:当a、b、c同时变化时,如何判断图象的开口方向、对称轴和顶点坐标的变化。
第二章二次函数-二次函数的图象与系数的关系(教案)
一、教学内容
本节课选自教材第二章“二次函数”中的“二次函数的图象与系数的关系”。教学内容主要包括以下三个方面:
1.二次函数的一般形式:y=ax^2+bx+c,其中a、b、c为常数,a≠0。
2.二次函数图象的开口方向、对称轴和顶点坐标与系数的关系:
- a>0时,图象开口向上;a<0时,图象开口向下。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

元二次方程根的判别式及根与系数的关系♦【课前热身】1.方程(2X—1) ( 3X+1) =X2+2化为一般形式为,其中a= ____ , b= ___ , c=2.关于X的一元二次方程mx+nx+m+3m=0有一个根为零,贝U m的值等于3.关于X的一元二次方程 2X +mx+ n=0的两个根为x i=1, X2=—2,则x2+mx+n分解因式的结果4.关于X的一元二次方程2X2—3X—a2+1=0的一个根为2,则a的值是()A . 1B .品 C5.若关于X的一元二次方程(m- 1)x2+5x+m—3m+2=0的常数项为0,则m的值等于()A . 1B . 2 C【参考答案】21. 5x —X—3=0 5 —1 —2. —33. ( X—1) (X+2)5.D6.B♦【考点聚焦】知识点:元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理大纲要求:1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题♦【备考兵法】1考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况, 有关试题出现在选择题或填空题中,女口:关于X 的方程ax 2— 2x + 1 = ,0中,如果a<0,那么根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根2.利用一元二次方程的根与系数 的关系求有关两根的代数式的值,有关问题在中考试题中 出现的频率非常高,多为选择题或填空题,如: 设x i ,X 2是方程2x 2—6x + 3 = 0的两根,则X 12+ X 22的值是()(A ) 15 (B ) 12 (C ) 6 (D ) 3 3.在中考试题中常出现有关根的判别式、 根与系数关系的综合解答题.在近三年试题中又出 现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力.在一元二次方程的应 用中,列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须注意所求出的方程的解一定要使实际问题有意义, 解(虽然是原方程的解)一定要舍去. 易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2— 4ac 3 0 ;H0,即只有在一元二次方程有根的前提下,才能应用根与系数的 ♦【考点链接】1. 一元二次方程根的判别式X 1,2 =2.一元二次方程根与系数的关系(C )没有实数根(D )不能确定凡不满足实际问题的 ②二次项系数a关于 X 的一元二次方程ax? + bx 中C = 0(a H 0 )的根的判别式为■.(1) b 2 — 4ac >0台 一元二次方程 ax 2+bx + c = 0a H 0)有两个实数根,即(2)2b — 4ac =0u —元二次方程有.相等的实数根,即 X 1 = X2 =b 2— 4ac <0U —元二次方程 ax +bx + c = 0(a H 0)_实数根._ 2若关于x 的一元二次方程ax + bx+ c=0( a^O)有两根分别为x 1,他,那么X j +X 2 =♦【典例精析】 例1 (四川绵阳)已知关于X 的一元二次方程 X 2+ 2 ( k — 1) X + k 2-1 = 0有两个不相等 的实数根.(1)求实数k 的取值范围;(2) 0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由. 【分析】这是一道确定待定系数 要考生具备分类讨论的思维能力.2 2=4k — 8k + 4 — 4k + 4 =•••原方程有两个不相等的实数根,—8k + 8 >0,解得k < 1,即实数k 的取值范围是 k v 1.(2)假设0是方程的一个根,则代入得02 + 2 ( k — 1 )• 0 + k 2— 1 = 0 ,解得k = — 1或k = 1 (舍去).即当k = — 1时,0就为原方程的一个根.此时,原方程变为 X 2— 4X = 0,解得X 1 = 0 , X 2 = 4,所以它的另一个根是 4.例2 (北京)已知下列n (n 为正整数)个关于 X 的一元二次方程:m 的一元二次方程,?又讨论方程解的情况的优秀考题,需【答案】(= [ 2 ( k — 1)]2— 4 ( k 2— 1)2—1=0(1)2 C 八(2)+X —2+2X— 3=02+ (n —1) X—n=0 (n)(1)请解上述一元二次方程(1), (2), (3) ( n);(2)请你指出这n个方程的根具有什么共同特点,写出.一条即可.【分析】由具体到一般进行探究.【答案】(1) <1> (X+1) (X—1) =0, 所以X1 = —1 , X2=1 .<2> (X+2) (X —1) =0,所以X1=—2, X2=1 .<3> (X+3) (X —1) =0,所以X1=—3, X2=1 .但在解题中心须注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(虽然是原方程 的解)一定要舍去. ♦【迎考精练】 一、选择题<n> (x+n ) (X — 1) =0,所以 X 1=— n , X 2=1.(2)比如:共同特点是:都有一个根为1 ;都有一个根为负整数;两个根都是整数根等.【点评】本例从教材要求的基本知识出发, 探索具有某种特点的方程的解题规律及方程 根与系数之间的关系,注重了对学生观察、类比及联想等数学思想方法的考查. 例3 (江苏南京)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2: 1在温室内沿前侧内墙保留 3m 宽的空地,其他三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各 为多少时,蔬菜种植区域的面积是288m ?【答案】解法一:设矩形温室的宽为 xm 贝y 长为2xm,根据题意,得(X — 2) • (2x — 4) =288.解这个方程,得X 1=— 10 (不合题意,舍去),X 2=14. 所以 x=14, 2x=2X 14=28.答:当矩形温室的长为 28m,宽为14m 时,蔬菜种植区域的面积是288n i .1 解法二:设矩形温室的长为 xm,则宽为一xm.2根据题意,得( 解这个方程,得1-x — 2) • (x — 4) =288.2X =— 20 (不合题意,舍去),X =28. 1 所以x=28X —2x=1 X 28=14.2答:当矩形温室的长为 28m宽 为14m 时,蔬菜种植区域的面积是 288m .【解析】在一元二次方程的应用中, 列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,1.(台湾)若a、b为方程式x2/(x+1)=1的两根,且a>b,则-=bA. —5两个相等的实数根,则下列结论正确的是3.(四川成都)若关于X的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是2则(X1 -X2)的值是(为()A. 2006设方程x2—4x—1=0的两个根为X1与X2,则X1X2的值是()A. —4A. X2 -2x -1 =0 2.X -2x +3=0C. X2 = 2^/3x -32.X -4x +4 = 0A. a =a =2 .a =1 D . a =0或a = 26.(山东烟台)设a,b是方程 2 2X + x-2009 =0的两个实数根,则a + 2a+b的值为((湖北十堰)下列方程中, 有两个不相等实数根的是((四川眉山)若方程X2-3x-1=0的两根为X1、X2,则丄+丄的值为X1 X2A. 310 .(山东东营)若n ( n H 0)是关于x的方程X2 +mx + 2n = 0的根,贝U m+n的值为(D. 32. (2.009年湖南株洲)定义:如果一元二次方程 2ax +bx+c = 0(aH0)满足a + b + c=0 , 那么我们称这个方程为“凤凰”方程.已知ax2+ bx + c = 0(aH0)是“凤凰”方程,且有A. a = cB. a = bC. b = CD. a = b = C4. (内蒙古包头)B. k》_1 且kH0C. k<1D. kc1 且kH0关于x的一元二次方程 2X -mx+2m—1=0的两个实数根分别是为、X2 ,5.A. 1 B . 12 C . 13 D . 25(湖北荆州)关于x的方程ax2 -(a +2)x +2=0只有一解(相同解算一解),则a的值.2007(湖北宜昌)A. 1B.2C.-1D.-2二、填空题1.(上海市)如果关于x的方程X2 - x + k =0 (k为常数)有两个相等的实数根,那么2.(山东泰安)关于X的一元二次方程-X2 +(2k +1)x + 2-k2=0有实数根,贝U k的取值范围是3.(广西崇左)_2元二次方程X +mx+ 3=0的一个根为—1,则另一个根为4.(广西贺州)已知关于X的一元二次方程x2-x-m=0有两个不相等的实数根,则实数m的取值范围是三、解答题1.(山东淄博)已知X i, X2是方程X2 -2x +a =0的两个实数根,且Xi + 2x2=3-42 .(1)求x i, X2及a的值;(2)求X|3 -3x i2+2x i +x2 的值.2.(广东中山)已知:关于X的方程2x2+kx—1=0(1 )求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k值.3.(重庆江津区)已知a、b、c分别是△ ABC的三边,其中a= 1 ,c = 4,且关于x的方2程X -4x +b = 0有两个相等的实数根,试判断^ ABC的形状.2 24.(湖南怀化)如图,已知二次函数y=(x +m) + k-m的图象与X轴相交于两个不同的点A(Xi,O)、B(X2,O),与y轴的交点为C .设△ ABC的外接圆的圆心为点P .(1 )求0卩与y轴的另一个交点D的坐标;(2)如果AB恰好为OP的直径,且△ ABC的面积等于J5,求m和k的值.5.(湖北黄石)已知关于X的函数y=ax2+ x+1 (a为常数)(1 )若函数的图象与X轴恰有一个交点,求a的值;(2 )若函数的图象是抛物线,且顶点始终在X轴上方,求a的取值范围.【参考答案】选择题42. k>_943. 4.有两个相等等的实数根,(a +2 2—4aL2=0 ,解得a =2,故选D.6. 7. 8. 9. 10.填空题1.1. 2. 3. 4.【解析】本题考查一元二次方程根与系数的关系及根的判别式 .由题意知:"x, + X 2 = m [x ,.X 2 = 2m-12 2 2 2又••• X 1 +X 2 =(X 1 +X 2 ) —2X 1X 2 =7•••m —2(2m —1 )=7 得 m, =—1 , mb 当m=5时,原方程的判别式 △ =25-4x9 = —11 v 0,此时方程无解,/• m=5不合.题I X 1+X 2 1 (X 1 _X 2 j =(片+X 2 ) —4X 1X 2 =(-1 ) —4K(—3)=13,故选 C a.X = -3I X, + X = m本题易出错,学生易在求得叶=-1或m^ =5的两个值后,代入 广 2" ,求出.X .X 2 =2m — 12 2(X 1 —X 2 ) =(X 1中X 2 ) —4X 1X 2 =13或—11,易漏掉检验方程是否存在实根5. D 【解析】本题考查方程的有关知识,关于X 的方程ax 2- (a + 2)x + 2 = 0只有一解,有两种情况,①该方程是一元一次方程,此时a =0 ,②该方程是一元二次方程,方程解答题収1 + X2 =2,1.解:(1)由题意,得{[x1 +2x2 =3 —V2.解得X t =1 ,X2 =1 -血.所以a =X1 X2 =(1+间(1 -间=—1 .(2)法一:由题意,得X:—2捲一1 =0 .所以x1^ -3x1^2x1+x, = x13 -2x12 -x1-x1^3x^ +x2=—x|2+2x1 +1 +X1 +X2 —1 =2 —1 =1 .法二:由题意,得为2 =2为+1,3 2所以x1 -3x1+2为+ X2 = ^(2xi +1)—3(2为+1)+2x1+x22= 2X| + 捲一6为一3 +2捲+X2=2(2X| +1)—3为一3+x2= 4X| +2 —3x i —3 +x2 =X i +x2 —1—2 —1 =1 .2.解:(1) 2x2 +kx-1 =0 ,氐=k2 -4x2x(-1) = k2 +8,2 2无论k取何值,k > 0,所以k +8〉0,即也>0 ,2/.方程2x + kx -1 = 0有两个不相等的实数根.k 1(2)设2x2+kx—1=0的另一个根为X,贝y x-1=-- , (―1Lx = —-2 21解得:x=—, k=1,21/. 2x2 +kx—1 =0的另一个根为一,k的值为1.23.解:•••方程X2 -4x+b =0有两个相等的实数根•••△ =(Y)2-4b=0/• b=4.4•/ c=4.••• b=c=4.•••△ ABC为等腰三角形.-11--12 -4.解(1 )易求得点C 的坐标为(0, k )由题设可知x 1, x 2是方程(x + m )2+k-m 2 =0即 X 2 +2mx+k =0 的两根,故 x 1,2=-2m ±J(]2<Z 4k ,所以 X 1 + x^ -2m, x^x 2=k 如图3,vo P 与y 轴的另一个交点为 D,由于AB CD 是O P 的 两条相交弦,设它们的交点为点 O 连结DB OAxOB X 1X 2 kOC " I k k •••△ AO* DOC 贝u OD = =1 yAC 由题意知点C 在y 轴的负半轴上,从而点D 在y 轴的正半轴上, 图3 所以点D 的坐标为(0, 1)(2)因为AB 丄CD AB 又恰好为O P 的直径,则C 、D 关于点O 对称, 所以点C 的坐标为(0,-1),即k = -1)又 AB = X2 -% = J (X 2 + xj 2 -4^X 2 = J (-2m)2 -4k = 2j m 2 - k = 2j m 2 +1 , A A 厂 -所以 ABC = 1 AB^OC = X 2j m 2 +1X 1 = 解得 m = ±2. 2 25.解:(1)当a=0时,函数为y=x+1,它的图象显然与 x 轴 只有一个交点(—1,0).当a H0时,依题意得方程ax 2 +x +1 =0有两等实数根. 1:b =1 -4a =0,”•. a =-4c 1”•.当a=0或a= 时函数图象与X 轴恰有一个交点.44a -1 1(2 )依题意有 --- >0分类讨论解得 a>-或a V 0. 44a 1 当a 》—或a<0时,抛物线顶点始终在 x 轴上方. 4。

初中二次函数最全知识点总结

初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。

2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。

3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。

4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。

5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。

二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。

2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。

3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。

4.抛物线的轴对称性:抛物线关于对称轴对称。

5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。

6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。

三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。

2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。

3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。

四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。

2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。

二次方程解与系数的关系

二次方程解与系数的关系二次方程是高中数学中的重要概念之一,它涉及到方程、系数以及解等数学概念。

二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为方程的系数,x为未知数,我们将从解与系数的关系角度来探讨二次方程的特性。

1. 解的个数与判别式求解二次方程的根需要依靠判别式,即Δ = b^2 - 4ac。

判别式Δ可以判断根的情况,它与系数之间存在着一定的关系:a) 当Δ > 0时,方程有两个不相等的实根;b) 当Δ = 0时,方程有两个相等的实根;c) 当Δ < 0时,方程无实根,但存在一对共轭复根。

2. 解与系数之间的关系解与系数之间存在着一定的关系,通过系数的改变,解的特性也会相应地发生变化。

a) 二次系数a的变化:当a > 0时,二次方程的抛物线开口朝上,最小值在x轴的下方;当a < 0时,二次方程的抛物线开口朝下,最大值在x轴的上方。

这意味着解的符号会随着a的变化而改变,从而影响方程的解的正负。

b) 一次系数b的变化:一次系数b可以影响二次方程的轴对称线的位置。

当b > 0时,轴对称线向左移动;当b < 0时,轴对称线向右移动。

这会对二次方程的两个解的位置产生影响,使得x的取值范围发生变化。

c) 常数项c的变化:常数项c对二次方程的根的位置没有直接影响,但是它会影响方程图像与y轴的交点,也就是方程的解当x为零时的值。

3. 解与系数的关系示例为了更好地理解解与系数之间的关系,我们可以通过具体的例子来说明。

考虑二次方程x^2 - 5x + 6 = 0,其中a = 1,b = -5,c = 6。

根据判别式Δ = (-5)^2 - 4(1)(6) = 1。

根据判别式的结果可知,Δ > 0,因此方程有两个不相等的实根。

我们可以进一步求解方程,通过配方法得到(x - 2)(x - 3) = 0,即得到x1 = 2,x2 = 3两个解。

这个例子中,我们可以看出系数的变化对解的位置及个数产生了影响,而且解与系数之间存在着明确的关系。

专题二次函数根的分布问题、含参数一元二次不等式(原卷版)

专题09 二次函数根的分布问题、含参数一元二次不等式【考点预测】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩ 3、解含参数的一元二次不等式需要对字母的取值进行分类讨论,常用的分类方法有以下三种:(1)按二次项系数a 的符号分类,即0,0,0a a a >=<; (2)按判别式的符号分类,即0,0,0∆>∆=∆<;(3)按方程20ax bx c ++=的根1x 、2x 的大小分类,即121212,,x x x x x x >=<. 【典型例题】例1.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.例2.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0.OnmyxOn m yxOn myx(1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.例3.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.例4.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?例5.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根.【过关测试】一、单选题1.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<<2.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦3.(2022·江苏·高一专题练习)关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或44.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .15.(2022·全国·高一专题练习)已知方程240x x a -+=的两根都大于1,则a 的取值范围是( ) A .34a <≤ B .14a <≤ C .1a >D .4a ≤6.(2022·全国·高一期中)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-7.(2022·上海·高一专题练习)关于x 的不等式2320ax x -+>的解集为{|1x x <或}x b >,则关于x 的不等式2()0ax ac b x bx -++>,以下结论正确的是( ) A .当0c >时,解集为{}|0x x c << B .当0c 时,解集为R C .当0c <时,解集为{|x x c <或0}x >D .以上都不正确8.(2022·全国·高一课时练习)若关于x 的不等式()210x a x a -++<的解集中恰有两个整数,则实数a 的取值范围是 A .{}34a a << B .{|21a a -<<-或}34a << C .{}34a a < D .{|21a a -<-或}34a <二、多选题9.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5-B .3-C .πD .510.(2022·江苏·高一专题练习)已知函数23y ax bx =+-,则下列结论正确的是( )A .关于x 的不等式230ax bx +-<的解集可以是{}3x x >B .关于x 的不等式230ax bx +->的解集可以是∅C .函数23y ax bx =+-在()0,∞+上可以有两个零点D .“关于x 的方程230ax bx +-=有一个正根和一个负根”的充要条件是“0a >”11.(2022·湖南·长沙市实验中学高一期中)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( )A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9}B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0}C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1}D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}12.(2022·湖南·新化县教育科学研究所高一期末)已知a Z ∈,关于x 的一元二次不等式x 2-8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .13 B .14 C .15 D .17三、填空题13.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____.14.(2022·全国·高一专题练习)方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为__.15.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.16.(2022·安徽·泾县中学高一开学考试)记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________. 四、解答题17.(2022·四川成都·高一期末)设函数()()()3f x x x a =--,R a ∈. (1)解关于x 的不等式()0f x <;(2)当()3x ∈+∞,时,不等式()9f x ≥-恒成立,求a 的取值范围.18.(2022·全国·高一课时练习)已知函数()()21f x x x a a =++-,(1)当2a =时,求不等式()0f x <的解集.(2)求不等式()2f x x <的解集.19.(2022·江苏省天一中学高一期末)已知二次函数()()222,R f x ax bx b a a b =++-∈,当()1,3x ∈-时,()0f x >;当()(),13,x ∈-∞-⋃+∞,()0f x <. (1)求a ,b 的值;(2)解关于x 的不等式:()()220R ax b c x c c +-+>∈.20.(2022·湖南·高一课时练习)当k 为何值时,关于x 的方程()22340x k x k +-+=分别满足:(1)无实数根? (2)有两正实根?21.(2022·全国·高一单元测试)关于x 的方程2220x mx m +++=分别满足下列条件: (1)当4m =时,两根分别为1x 、2x ,求2212x x +的值; (2)m 为何值时,有一正根一负根; (3)m 为何值时,有两个不相等的正根.22.(2022·全国·高一专题练习)已知关于x 的方程2(21)70x m x m -+++=有两个不等的实根1x ,2x .(1)两根一个根大于1,一个根小于1,求参数m 的取值范围; (2)113x <<,24x >,求参数m 的取值范围.。

二次函数根的判别式、韦达定理

一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到(x b2b24ac b24ac02a)4a2,显然只有当时,才能直接开平方得: x b b24ac.2a4a2也就是说,一元二次方程 ax2bx c0( a0) 只有当系数 a 、 b 、 c 满足条件b2 4 ac 0时才有实数根.这里 b 24ac 叫做一元二次方程根的判别式.2.判别式与根的关系:ax2在实数范围内,一元二次方程bx c0( a0) 的根由其系数a 、b、 c 确定,它的根的情况(是否有实数根 ) 由b24ac 确定.判别式:设一元二次方程为ax2bx c0(a 0) ,其根的判别式为: b 24ac 则①0方程 ax2bx c0(a0) 有两个不相等的实数根x1,2b b24ac .2a②0方程 ax2bx c0(a0) 有两个相等的实数根1x2b .x2a2③0bx c0(a0) 没有实数根.方程 ax若 a , b , c 为有理数,且为完全平方式,则方程的解为有理根;若为完全平方式,同时b b24ac 是 2a的整数倍,则方程的根为整数根.说明 : (1) 用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0;有两个相等的实数根时,0 ;没有实数根时,0 .(2)在解一元二次方程时,一般情况下,首先要运用根的判别式b24ac 判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根) .当b24ac 0时,方程有两个相等的实数根(二重根 ),不能说方程只有一个根.①当 a0 时抛物线开口向上顶点为其最低点;②当 a0 时抛物线开口向下顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用:(1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围;(3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程ax2bx c0 ( a0 )的两根为 x1,x2,那么,就有ax 2bx c a x x1x x2比较等式两边对应项的系数,得x1x2b①,ax1x2c②a①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程ax2bx c0 就一定有①与②式成立.反过来,如果有两数 x1, x2满足①与②,那么这两数 x1,x2必是一个一元二次方程ax2bx c0 的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程ax2bx c0 的根,而知其根的正、负性.在b24ac ≥ 0的条件下,我们有如下结论:当c0 时,方程的两根必一正一负.若b≥ 0 ,则此方程的正根不小于负根的绝对值;若b 0 ,aaa则此方程的正根小于负根的绝对值.当c0 时,方程的两根同正或同负.若b 0 ,则此方程的两根均为正根;若b 0 ,则此方程的aaa两根均为负根.⑴ 韦达定理:如果 ax 2bx c 0(a0) 的两根是 x 1 , x 2 ,则 x 1x 2b, x 1x 2c. (隐含的条件:0 )是 ax 2a a⑵ 若 x 1 , x 2 bx c 0( a 0) 的两根 (其中 x 1x 2 ),且 m 为实数,当0 时,一般地:① ( x 1 m)( x 2 m) 0x 1 m , x 2 m② ( x 1 m)( x 2 m) 0 且 ( x 1 m) (x 2 m) 0 x 1 m , x 2 m ③ ( x 1m)( x 2 m)0 且 ( x 1 m) (x 2 m) 0x 1 m , x 2m特殊地:当 m0 时,上述就转化为2bx c 0(a 0) 有两异根、两正根、两负根的条件.ax ⑶ 以两个数 x 1 , x 2 为根的一元二次方程 (二次项系数为 1)是: x 2 (x 1 x 2 ) x x 1x 2 0 .⑷ 其他:① 若有理系数一元二次方程有一根 a b ,则必有一根 ab ( a , b 为有理数 ).② 若 ac 0 ,则方程 ax 2 bx c 0(a 0) 必有实数根.③ 若 ac 0 ,方程 ax 2 bxc 0(a0) 不一定有实数根.④ 若 ab c0 ,则 ax 2bx c 0(a 0) 必有一根 x 1 .⑤ 若 a b c 0 ,则 ax 2bx c 0(a 0) 必有一根 x 1 .⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值;② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的 .一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例 1】 不解方程,判别下列方程的根的情况:( 1) 2x 2 3 x 4 0 ;(2) 16y 2 9 24 y ;( 3) 5 x 2 17x 0 。

二次函数的解法及练习题

授课类型S-一元二次函数教学目标 1.二次函数的有关概念2.解二次函数的方法3.二次函数根与系数的关系教学内容第一课时一元二次函数概念及解法(1)考点一:一元二次函数的概念1.定义:等号两边都是等式,只有一个未知数(一元),而且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程的一般形式时ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次系数,bx是一次项,c是常数项。

3.使等式左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的解注:一元二次方程的三要素1)整式方程2)只含有一个未知数3)未知数的最高次数是24.一元二次不等式的解的判定方法。

将解的这个值代入到一元二次方程的左右两边,看方程的两边是否相等,若相等,则这个数就是方程的解;若不等,则不是这个方程的解。

典型例题:例1.在下列方程中,一元二次方成有_________○1 x3-2x2=0 ○2 3x2- +6=0 ○3x2=○4 ax2+bx+c=0 ○5 x2+4x-6=0 ○6(x-2)(x+3)=x2-1例2. 若(a-1)x2+bx+c=0是关于x的一元二次方程,则()A a≠0B a≠1C a=1D a≠-1例3. 若(a+6)x a+2+ax-12=0是关于x的一元二次方程,则()A a≠-6B a=-2C a≠-0D a=0考点二:一元二次函数的解法。

解一元二次方程,我们通常使用的三种方法为“公式法、配方法、因式分解法”,这三种方法的使用特点各不相同。

“公式法”对任何二元一次函数都可以使用,根据我们要解的方程不同选择合适的解法。

1.配方法一般对于x2=p(1)当p>0时,根据平方根的意义,方程x2=p有两个不相等的实数根:== -。

(2)当p=0时,方程x2=p有两个相等的实数根,==0(3)当p<0时,因为对任意实数x都有x2≥0,所以方程x2=p无实数根。

如果方程能化成x2=p或(mx2+n)2=p(p>0)的形式,那么可得x=±或 mx+n=±通过配成完全平方形式来解一元二次的方程的方法,叫做配方法,配方的目的是为了降次,把一个一元二次方程转化成两个二元一次的方程来解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数之根与系数的关系,旋转
1.已知抛物线y=-x²+3x+6交y轴于A点,点C(4,k)在抛物线上,将抛物线向右平移n个
单位长度后与直线AC交于M、N两点,且M、N关于C点成中心对称,求n的值

2.如图,已知抛物线y=x²-4x+3,过点D(0,-25)的直线与抛物线交于点M、N,与x轴交于
点E,且点M、N与X轴交于E点,且M、N关于点E对称,求直线MN的解析式

3.如图1,已知△ABC为直角三角形,∠ACB,ACBC,点A、C在x轴上,点B的坐标
为(3,m)(m>0),线段AB与y轴相较于点D,以P(1,0)为顶点的抛物线过B、D两点。
(1)求抛物线的解析式;
(2)如图2,将(1)中的抛物线沿y轴向上平移k个单位,平移后的抛物线交线段BD于E、

F两点,若EFBD,求k的值;

图 1
C
P

D

y
x
0

B
A
F

E

图 2
C
P

D

y
x
0

B
A
图1

D
M

C

B
A

O
x

y
E
F
Q

O
x

y

4.如图1,抛物线ya1与x轴交于A、B两点,与y轴负半轴交于点C,抛物线的对
称轴交抛物线于点D,交轴于点E,若AB2DE。
(1)求抛物线的解析式;
(2)沿抛物线的对称轴向下平移抛物线,平移后的抛物线交线段BC于F、G两点,若

FGBC,求平移后抛物线的解析式;

5.如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点,
(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线
OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点
C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当
顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半
轴上是否存在一点P,使△PEF的内心在y轴上,若存在,求出点P的坐标;若不存在,说明
理由。

E
图 1
C

D
y

x0B
A
G

F
图 2
C

y
x0B
A
6.抛物线22yaxaxb(0)a交x轴于,AB两点,交y轴于C;且满足
0OAOBOC
,若(0,3)c

(1)求这个抛物线的解析式;
(2)在y轴上是否存在点P,使得30APB,若存在请求出点P的坐标,若不存在,
请说明理由。
(3)若向上平移抛物线m个单位,与线段BC交于,MN 两点,且满足23MNAB,求
m

的取值范围

7.如图25-1,已知抛物线l1:2445yaxaxa的顶点为D,与x轴相交于A、B两点(点
A在点B的左边),且AB=6.
(1)求抛物线l1的解析式及顶点D的坐标.

(2)将直线13yx沿y轴向下平移m个单位,若平移后的直线与抛物线l1相交于点M、

N(点M在点N的左边),且10MN,求m的值.
(3)点P是x轴正半轴上一点,将抛物线l1绕点P旋转180°后得到抛物线l2,抛物线l
2

的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三

角形是直角三角形时,求点P的坐标.

图25-1 图25-2

y
x0CBA

相关文档
最新文档