2011年中考数学试题分类汇总单选:等腰三角形

合集下载

[中考]2011年中考数学试卷分类汇编:44动态问题

[中考]2011年中考数学试卷分类汇编:44动态问题

2011年中考数学试卷分类汇编:44动态问题一、选择题1.(2011安徽,10,4分)如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN 的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【答案】C2. (2011山东威海,12,3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()【答案】B3. (2011甘肃兰州,14,4分)如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是A .B .C .D .【答案】B 4.二、填空题 1. 2. 3. 4. 5. 三、解答题1. (2011浙江省舟山,24,12分)已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.A BCDEFGHxy -1 O1xy 1 O1xyO1 xy1O11(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2), ① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?【答案】(1)①C (1,2),Q (2,0).②由题意得:P (t ,0),C (t ,-t+3),Q (3-t ,0), 分两种情形讨论:情形一:当△AQC∽△AOB 时,∠AQC=∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP ,即3-t =t ,∴t=1.5.情形二:当△ACQ∽△AOB 时,∠ACQ=∠AOB =90°,∵O A=O B=3,∴△AOB 是等腰直角三角形,∴△ACQ 是等腰直角三角形,∵CQ ⊥OA ,∴AQ=2CP ,即t =2(-t +3),∴t=2.∴满足条件的t 的值是1.5秒或2秒.(2) ①由题意得:C (t ,-34t +3),∴以C 为顶点的抛物线解析式是23()34y x t t =--+,BAOPCxy11D(第24题图2)(第24题图1) BAOP CQxy11由233()3344x t t x --+=-+,解得x 1=t ,x 2=t 34-;过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB =90°,DE∽OA ,∴∠EDC=∠OAB ,∴△DEC∽△AOB ,∴DE CDAO BA=, ∵AO =4,AB =5,DE =t -(t-34)=34.∴CD =35154416DE BA AO ⨯⨯==.②∵CD =1516,CD 边上的高=341255⨯=.∴S △COD =11512921658⨯⨯=.∴S △COD 为定值; 要使OC 边上的高h 的值最大,只要OC 最短. 因为当OC ⊥AB 时OC 最短,此时OC 的长为125,∠BCO =90°,∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,又∵CP ⊥OA ,∴Rt △PCO∽Rt △OAB ,∴OP OC BO BA =,OP =123365525OC BO BA ⨯⨯==,即t =3625,∴当t 为3625秒时,h 的值最大. 2. (2011广东东莞,22,9分)如图,抛物线2517144y x x =-++与y 轴交于点A ,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式;(2)动点P 在线段OC 上,从原点O 出发以每钞一个单位的速度向C 移动,过点P 作⊥x 轴,交直线AB 于点M ,抛物线于点N ,设点P 移动的时间为t 秒,MN 的长为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设(2)的条件下(不考虑点P 与点O ,点G 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平等四边形?问对于所求的t 的值,平行四边形BCMN 是否为菱形?说明理由.【解】(1)把x=0代入2517144y x x =-++,得1y = 把x=3代入2517144y x x =-++,得52y =,∴A 、B 两点的坐标分别(0,1)、(3,52) 设直线AB 的解析式为y kx b =+,代入A 、B 的坐标,得1532b k b =⎧⎪⎨+=⎪⎩,解得112b k =⎧⎪⎨=⎪⎩所以,112y x =+ (2)把x=t 分别代入到112y x =+和2517144y x x =-++ 分别得到点M 、N 的纵坐标为112t +和2517144t t -++ ∴MN=2517144t t -++-(112t +)=251544t t -+即251544s t t =-+∵点P 在线段OC 上移动, ∴0≤t ≤3.(3)在四边形BCMN 中,∵BC ∥MN∴当BC=MN 时,四边形BCMN 即为平行四边形 由25155442t t -+=,得121,2t t == 即当12t =或时,四边形BCMN 为平行四边形 当1t =时,PC=2,PM=32,PN=4,由勾股定理求得CM=BN=52, 此时BC=CM=MN=BN ,平行四边形BCMN 为菱形; 当2t =时,PC=1,PM=2,由勾股定理求得CM=5, 此时BC ≠CM ,平行四边形BCMN 不是菱形; 所以,当1t =时,平行四边形BCMN 为菱形.3. (2011江苏扬州,28,12分)如图,在Rt △ABC 中,∠BAC=90º,AB<AC ,M 是BC 边的中点,MN ⊥BC 交AC 于点N ,动点P 从点B 出发沿射线BA 以每秒3厘米的速度运动。

全国各地2011年中考数学试卷解析汇编(四)华东卷(52套打包下载)

全国各地2011年中考数学试卷解析汇编(四)华东卷(52套打包下载)

2011年上海市中考数学试卷(解析版)锦元数学工作室编辑满分150分考试时间100分钟一、选择题(本大题共6题,每题4分,共24分)1.(上海4分)下列分数中,能化为有限小数的是(A) 13;(B) 15;(C) 17;(D) 19.【答案】B。

【考点】有理数。

【分析】∵15=0.2,故选B。

2.(上海4分)如果a>b,c<0,那么下列不等式成立的是(A) a+c>b+c;(B) c-a>c-b;(C) a c>b c;(D) a bc c >.【答案】A。

【考点】不等式的性质。

【分析】根据不等式的性质,得(A) a>b有a+c>b+c,选项正确;(B)由a>b有-a<-b,从而c-a<c-b,选项错误;(C) 由a>b,c<0有a c<b c,选项错误;(D) 由a>b,c<0有a b<c c。

故选A。

3.(上海4分)下列二次根式中,最简二次根式是(A)15;(B) 0.5;(C) 5(D) 50.【答案】B。

【考点】最简二次根式。

【分析】155120.522504525⨯,∴15,0.550都不是最简二次根式。

故选B。

4.(上海4分)抛物线y=-(x+2)2-3的顶点坐标是(A) (2,-3);(B) (-2,3);(C) (2,3);(D) (-2,-3).【答案】D。

【考点】二次函数的顶点坐标。

【分析】由二次函数的顶点式表达式y =-(x +2)2-3直接得到其顶点坐标是(-2,-3)。

故选D。

5.(上海4分)下列命题中,真命题是.(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 【答案】D 。

【考点】命题与定理,全等三角形的判定。

【分析】根据全等三角形的判定方法,逐一判断:A 、周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B 、周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题;C 、周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题;D 、由于等腰直角三角形三边之比为1:1:2 ,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等,真命题。

专题01 等腰三角形的性质与判定(十六大题型+跟踪训练)(解析版)

专题01 等腰三角形的性质与判定(十六大题型+跟踪训练)(解析版)

专题01等腰三角形的性质与判定(十六大题型+跟踪训练)题型1:等腰三角形的定义1.用刻度尺测量得出下图()是等腰三角形.A .B .C .D .【答案】B【分析】分别量取各三角形的三边长,然后根据等腰三角形两腰相等,进行判断即可.【解析】解:A 中三边长分别为:1.8,2.6,2.9,不是等腰三角形,故不符合要求;B 中三边长分别为:2.2,2.2,2.2,是等腰三角形,故符合要求;C 中三边长分别为:3.4,3.2,2,不是等腰三角形,故不符合要求;D 中三边长分别为:3.3,1.8,3.7,不是等腰三角形,故不符合要求;故选:B .【点睛】本题考查了等腰三角形的定义.解题的关键在于熟练掌握等腰三角形两腰相等.2.在ABC 中,若AB BC =,则ABC 是()A .不等边三角形B .等边三角形C .直角三角形D .等腰三角形【答案】D【分析】由等腰三角形的定义:有两边相等的三角形,即可判断.【解析】解:在ABC 中,若AB BC =,则ABC 是等腰三角形.故选:D .【点睛】本题考查等腰三角形,关键是掌握等腰三角形的定义.3.以下列线段为边不能组成等腰三角形的是()A .2,2,4B .6,3,6C .4,4,5D .1,1,1【答案】A【分析】根据三角形三边关系和等腰三角形的判定对所给的四个选项逐一判断、解析即可.【解析】解:A .∵224+=,∴以2,2,4为边不能组成三角形,更不可能组成等腰三角形,故此选项符合题意;B.∵以6,3,6为边能组成三角形,且有两边相等,∴以6,3,6为边能组成等腰三角形,故此选项不符合题意;C.∵以4,4,5为边能组成三角形,且有两边相等,∴以4,4,5为边能组成等腰三角形,故此选项不符合题意;D.∵以1,1,1为边能组成三角形,且有两边相等,∴以1,1,1为边能组成等腰三角形,故此选项不符合题意.故选:A.【点睛】本题考查三角形的三边关系、等腰三角形的判定等知识点及其应用问题.牢固掌握三角形的三边关系、等腰三角形的判定是解题的关键.4.等腰三角形两边长分别是2cm和3cm,则周长是()A.7cm B.8cm C.7cm或8cm D.条件不足,无法求出【答案】C【分析】分两种情况讨论:①底边为3cm时;②底边为2cm时,分别求解即可得到答案.【解析】解:分两种情况讨论:①底边为3cm时,等腰三角形的周长为3227cm++=;②底边为2cm时,等腰三角形的周长为2338cm++=,∴等腰三角形的周长为7cm或8cm,故选C.【点睛】本题考查了等腰三角形的性质,利用分类讨论的思想解决问题是解题关键.5.已知等腰三角形的一边长为2cm,另一边长为4cm,则它周长是()A.6cm B.8cm C.10cm D.8cm或10cm【答案】C【分析】根据等腰三角形的性质及三角形的三边关系进行分类讨论,即可得到答案.当AD AC+与BC+即115 22x x x⎛⎫+-+⎪⎝⎭解得:8x=,8,8,5能够组成三角形;当BC BD+与AD+∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴9044A ABD ∠︒-=︒=∠,∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴904644DAB ∠︒=︒-,【分析】根据轴对称的性质,得到ABC 是以AB 和AC 为腰的等腰三角形,再根据对称性可得结果.【解析】解:由题意可得:ABC 是以AB 和AC 为腰的等腰三角形,且不是等边三角形,∴AB AC =,∴ABC 的周长2AB AC BC AB BC =++=+,故选B .【点睛】本题考查了等腰三角形的性质,轴对称图形,解题的关键是根据题意判断出ABC 是等腰三角形.13.如图,在ABC 中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,若5cm AB =,则DBE 的周长是()A .5cmB .6cmC .7cmD .8cm【答案】A 【分析】根据角平分线的定义和性质可得DE CD =,CAD EAD ∠=∠,推出CDA EDA ∠=∠,可得AC AE =,证明再根据等腰直角三角形的性质求出AC BC AE ==,然后求出DBE 的周长AB =,代入数据即可得解.【解析】解:AD 平分CAB ∠,DE AB ⊥,90C ∠=︒,DE CD ∴=,CAD EAD ∠=∠,CDA EDA ∴∠=∠,AC AE ∴=,又AC BC = ,AC BC AE ∴==,DBE ∴△的周长DE BD EB CD BD EB BC EB AE EB AB =++=++=+=+=,5cm AB = ,DBE ∴△的周长5cm =.故选:A .A .80︒B 【答案】C 【分析】根据等边对等角可得【解析】解:∵AB AC =∴B C ∠=∠,∵80B ∠=︒,∴80C ∠=︒,∵180A B C ∠+∠+∠=︒∴20A ∠=︒.故选:C .【点睛】本题考查三角形内角和定理,等腰三角形的性质.解题的关键是掌握三角形的三个内角之和是180°.16.如图,在△ABC 中,AB =AD =DC ,∠C =35°,则∠B 的度数为()A .50︒B .60︒C .70︒D .80︒【答案】C 【分析】首先利用等腰三角形的性质求得∠DAC 的度数,然后求得∠BDA 的度数,最后利用等腰三角形的性质求得∠B 的度数.【解析】解:∵AD =DC ,∴∠DAC =∠C ,∵∠C =35°,∴∠DAC =35°,∴∠BDA =∠C +∠DAC =70°,∵AB =AD ,∴∠BDA =∠B =70°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形两底角相等.17.如图,在ABC 中,90BAC ∠= ,AB AC =,点D 在BC 上,且BD BA =,则CAD ∠的度数为()A .30︒B .25︒C .22.5︒D .21︒【答案】C 【分析】利用ABC 是等腰直角三角形先求出B ∠,再利用BDA △是等腰三角形求出BAD ∠,最后利用直【答案】50︒/50度【分析】首先根据垂直平分线的性质得到据角的和差计算求解即可.∵80ACB ∠=︒∴803050BCE ACB ACE ∠=∠-∠=︒-︒=︒.故答案为:50︒.【点睛】此题考查了垂直平分线的性质,等边对等角性质,解题的关键是熟练掌握以上知识点.21.如图,直线a ∥b ,AB AC =,140 ∠=,则∠BAC 的度数是()A .100B .110C .120D .130【答案】A 【分析】根据直线a ∥b ,140 ∠=,可知140ACB ∠=∠= ,由AB AC =,可得40ACB ABC ∠=∠= ,利用平行的性质即可求出∠BAC 的值.【解析】解:由题意得,∵直线a ∥b ,140 ∠=,∴140ACB ∠=∠= ,∵AB AC =,∴40ACB ABC ∠=∠= ,∴()180118080100BAC ABC ∠=︒-∠+∠=︒-︒=︒,故选:A .【点睛】本题主要考查的是平行线的性质,熟练利用平行线进行角度转化时解题的关键.22.如图,在∠ECF 的边CE 上有两点A 、B ,边CF 上有一点D ,其中BC =BD =DA 且∠ECF =27°,则∠ADF 的度数为()A .54°B .91°C .81°D .101°【答案】C【分析】根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ADF 的度数.【解析】解:∵BC =BD =DA ,∴∠C =∠BDC ,∠ABD =∠BAD ,∵∠ABD =∠C +∠BDC ,∠ECF =27°,∴∠ADF =∠C +∠BAD =3∠ECF =81°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运用.23.如图,在ABC 中,DE 垂直平分BC ,若6428CDE A ∠=︒∠=︒,,则ABD ∠的度数为()A .100︒B .128︒C .108︒D .98︒【答案】A 【分析】直接利用线段垂直平分线的性质结合三角形内角和定理得出答案.【解析】解:∵DE 垂直平分BC ,∴BD =DC ,∴∠BDE =∠CDE =64°,∴∠ADB =180°-64°-64°=52°,∵∠A =28°,∴∠ABD =180°-28°-52°=100°.故选:A .【点睛】此题主要考查了线段垂直平分线的性质、三角形内角和定理,正确掌握相关定理是解题关键.24.如图,已知D 为ABC 边AB 的中点,E 在AC 上,将ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若70B ∠=︒,则BDF ∠等于()键.题型5:等边对等角的解答证明26.如图,在ABC 中,AB AC =,点D 、E 都在边BC 上,且BE CD =,求证:AD AE =.【答案】见详解【分析】利用等腰三角形的性质可得B C ∠=∠,再由SAS 证明()SAS ABE ACD ≌△△,从而得AD AE =.【解析】证明:∵AB AC =,∴B C ∠=∠,在ABE 和ACD 中,AB AC B C BE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ACD ≌△△,∴AD AE =.【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.27.如图,,∥DE AB AE 平分DAB ∠,点C 在线段AE 上,AC BC AD ==,求证:AE AB =.【答案】见解析【分析】根据平行和角平分线得出AD DE =,再证△ADE ≌△ACB 即可.【解析】证明:∵AE 平分DAB ∠,∴DAE CAB ∠=∠,∵DE AB ∥,∴E BAE ∠=∠,∵AC BC =,∴B BAE ∠=∠,∴E B ∠=∠,在△ADE 和△ACB 中,E B DAE CAB AD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ACB ,∴AE AB =.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解题关键是熟练运用等腰三角形的性质得出角相等.28.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD △≌DCE △;(2)若3BD =,5CD =,求AE 的长.【答案】(1)见解析;(2)2【分析】(1)根据等边对等角可得:B C ∠=∠,利用全等三角形的判定定理证明即可;(2)根据全等三角形的性质可得5AB DC ==,3CE BD ==,由图形中各边的关系计算即可得出.【解析】(1)证明:∵AB AC =,∴B C ∠=∠,在ABD 和DCE 中,12B C AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD DCE ≅ ;(2)解:∵ABD DCE ≅ ,∴5AB DC ==,3CE BD ==,∵5AB AC ==,∴532AE AB CE =-=-=.【点睛】题目主要考查全等三角形及等腰三角形的性质,理解题意,结合图形,熟练运用各个性质是解题关键.29.如图,在ABC 中,AB AC =,延长BC 至D ,使得BD AC =,连接AD ,再延长AB 至E ,使得BE CD =,连接DE .求证:≌BED CDA △△.【答案】见详解【分析】先证明,EBD ACD ∠=∠再根据SAS 判定证明即可.【解析】解:∵在ABC 中,AB AC =,ABC ACB ∴∠=∠,180,180,EBD ABC ACD ACB ∠=︒-∠∠=︒-∠ ,EBD ACD ∴∠=∠BE CD = ,BD AC =,(SAS)BED CDA ≌.【点睛】本题考查了等腰三角形的性质,全等三角形的判定,解题的关键是熟练掌握全等三角形的判定定理.题型6:等腰三角形的“三线合一”30.等腰三角形的“三线合一”指的是()A .中线,高线,角平分线互相重合B .顶角的平分线,中线,高线三线互相重合C .腰上的中线,腰上的高线,底角的平分线互相重合D .顶角的平分线,底边上的中线及底边上的高线三线互相重合【答案】D【分析】根据等腰三角形的性质直接选取答案即可求解.【解析】解:三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线相互重合.【点睛】本题考查等腰三角形的性质,解题的关键是熟练掌握等腰三角形的三线合一的性质,属于中考基础题.33.下列说法错误的是()A .等腰三角形两腰上的高相等B .等腰三角形两腰上的中线相等C .等腰三角形两底角的平分线相等D .等腰三角形高、中线和角平分线重合【答案】D【分析】根据等腰三角形的性质依次判断.【解析】解:A 、等腰三角形两腰上的高相等,故正确;B 、等腰三角形两腰上的中线相等,故正确;C 、等腰三角形两底角的平分线相等,故正确;D 、等腰三角形底边上的高、底边上的中线和顶角的角平分线重合,故错误;故选:D .【点睛】此题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.34.已知点P 到ABC 的两边AB ,AC 所在直线的距离相等,且PB PC =,则下列命题为假命题的是()A .若点P 在边BC 上,则AB AC=B .若点P 在ABC 内部,则AB AC=C .若点P 在ABC 外部,则AB AC=D .若AB AC =,则点P 可能在边BC 上,可能在ABC 内部,也可能在ABC 外部【答案】C【分析】选项A 根据等腰三角形的性质判断;当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,先证明Rt Rt (HL)BEP CFP ≌ ,再证明(AAS)ABP ACP ≌可判断选项B ;若AB AC =,都有(SSS)ABP ACP ≌,可判断选项D ;选项C 有两种情况,具体见详解.【解析】∵点P 到ABC 的两边AB ,AC 所在直线的距离相等,∴点P 在BAC ∠的角平分线所在的直线上,即BAP CAP ∠=∠,如图1,当点P 在边BC 上时,即P 为BC 的中点,根据等腰三角形的“三线合一”,得到AB AC =,故选项A 是真命题;如图2,当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,,PE PF PB PC == ,Rt Rt (HL)BEP CFP ≌ ,得到EBP FCP ∠=∠,∵BAP CAP ∠=∠,AP AP =,(AAS)ABP ACP ∴ ≌,AB AC ∴=;故选项B 是真命题;若AB AC =,都有(SSS)ABP ACP ≌,故选项D 是真命题;当点P 在ABC 外部时,如图3所示,AB 与AC 不一定相等,故选:C .【点睛】此题考查了等腰三角形的判定与性质以及直角三角形全等的判定与性质.本题的关键是注意数形结合思想的应用,注意掌握辅助线的作法.题型7:等腰三角形的“三线合一”有关的最值问题35.如图,在ABC 中,AB AC =,=4BC ,面积是10;AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则PBF △周长的最小值为()A .7B .9C .10D .14【答案】A 【分析】连接AP ,根据线段垂直平分线性质得AP BP =,PBF △周长==BP PF BF AP PF BF AF BF ++++≥+,再根据等腰三角形的性质和三角形的面积求出AF ,BF ,即可得出答案.【解析】解:如图所示.连接AP ,∵DE 是AB 的垂直平分线,A.①②③【答案】D【分析】根据三线合一得到A.8cm B.【答案】B【分析】根据等腰三角形三线合一的性质,得【答案】见解析【分析】过点A 作AM BC ⊥于点M ,由等腰三角形的性质得出2BAC BAM ∠=∠,D E ∠=∠,由三角形外角的性质得出2BAC D ∠=∠,即可推出BAM D ∠=∠,最后根据平行线的判定和性质即可证明DE BC ⊥.【解析】证明:如图,过点A 作AM BC ⊥于点M .AB AC = ,2BAC BAM ∠∠∴=,AD AE = ,D E ∴∠=∠,2BAC D E D ∠∠∠∠∴=+=,22BAC BAM D ∠∠∠∴==,BAM D ∠∠∴=,DE AM ∴∥,AM BC ⊥ ,DE BC ∴⊥.【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,平行线的判断和性质,正确作出辅助线,构建等腰三角形三线合一的性质是解题的关键.42.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【答案】(1)相等,理由见解析(2)50︒【分析】(1)连接CE ,根据中垂线的性质得到,AE CE BE CE ==,即可得到AE BE =;(2)利用等边对等角,求出ABC ∠的度数,三线合一,求出BAE ∠的度数,等边对等角得到ABE ∠的度数,利用EBD ABD ABE ∠=∠-∠,即可得解.【解析】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,∵AB AC =,AD 是BC 边上的高,∴BD CD =,∴AD 为BC 的垂直平分线,∵点E 在AD 上,∴BE CE =,又∵线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,∴AE CE =,∴AE BE =;(2)∵AB AC =,40BAC ∠︒=,【答案】见解析【分析】作EF AC ⊥于点F EA EC = ,12AF FC AC ∴==.2AC AB = ,A.3【答案】A【分析】利用等腰三角形三线合一解题即可.∠=【解析】解:∵B【解析】解:如图,在AB 上截取BE BC =,连接DE ,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,在CBD △和EBD △中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩,∴CBD △≌EBD △()SAS ,∴CDB BDE ∠=∠,C DEB ∠=∠,∴2CDE CDB ∠=∠,∵2C CDB ∠=∠,∴CDE DEB C ∠=∠=∠,∴ADE AED ∠=∠,∴AD AE =,∴ABC 的周长=27AD AE BE BC CD AB AB CD ++++=++=,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.题型11:等角对等边证明等腰三角形的解答证明48.已知:如图,在ABC 中,点D 在CA 边的延长线上,AE 平分DAB ∠,AE BC ∥.求证:ABC 为等腰三角形.【答案】见解析【分析】首先依据平行线的性质证明2B ∠=∠,1C ∠=∠,然后结合角平分线的定义可证明B C ∠=∠,故此可证明ABC 为等腰三角形.【解析】证明:∵AE BC ∥,∴2B ∠=∠,1C∠=∠∵AE 平分DAB ∠,∴12∠=∠∴B C∠=∠即ABC 为等腰三角形.【点睛】本题主要考查的是等腰三角形的判定,熟练掌握平行线的性质及等腰三角形的判定定理是解题的关键.49.如图,在ABD △和ACD 中,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)过点D 作∥DE AC 交AB 于点E ,求证:AED △是等腰三角形.【答案】(1)见解析(2)见解析【分析】(1)根据SSS 证明三角形全等即可;(2)证明EAD ADE ∠=∠即可证明AE DE =,进而得到AED △是等腰三角形.【解析】(1)证明:在ABD △和ACD 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴()SSS ABD ACD ≌;(2)证明:∵ABD ACD △≌△,∴∠=∠DAB DAC ,∵∥DE AC ,∴ADE DAC ∠=∠,∴EAD EDA ∠=∠,∴AE DE =,∴AED △是等腰三角形.【点睛】本题考查全等三角形的判定和性质,平行线的性质,等腰三角形的判定等知识,解题的关键是掌握全等三角形的判定方法.50.已知ABC 中,AD 平分BAC ∠交BC 于点D ,且2B C ∠=∠.(1)如图1,求证:AB BD AC +=;(2)如图2,延长CB 至点E ,使BE AB =,连接AE ,若36C ∠=︒,直接写出图中所有的等腰三角形(ABC 和ADE V 除外).【答案】(1)证明见解析(2)ABE 是等腰三角形,ACE △是等腰三角形,ADC △是等腰三角形,ABD △是等腰三角形;【分析】(1)如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,证明()SAS ABD AED ≌△△得到BD ED B AED ==,∠∠,根据三角形外角的性质结合已知条件证明EDC C ∠=∠,得到ED EC BD ==,即可证明AC AE CE AB BD =+=+;(2)根据等腰三角形的判定条件结合三角形内角和定理进行推理即可.【解析】(1)证明:如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,∵AD 平分BAC ∠,∴BAD EAD ∠=∠,又∵AB AE AD AD ==,,∴()SAS ABD AED ≌△△,∴BD ED B AED ==,∠∠,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED C EDC ∠=∠+∠,∴EDC C ∠=∠,∴ED EC BD ==,∴AC AE CE AB BD =+=+;(2)解:∵BE AB =,∴BEA BAE ∠=∠,ABE 是等腰三角形,∵BEA BAE ABC +=∠∠∠,∴2ABC BEA =∠∠,又∵272ABE C ==︒∠∠,∴36BEA BAE C ===︒∠∠∠,∴AE AC =,即ACE △是等腰三角形,∵18072BAC C ABC =︒--=︒∠∠∠,AD 平分BAC ∠,∴36BAD CAD ∠=∠=︒,∴36DAC C ∠=∠=︒,∴72ADB C DAC =+=︒∠∠∠,ADC △是等腰三角形,∴72ADB ABD ∠∠==︒,∴ABD △是等腰三角形.【点睛】本题主要考查了等腰三角形的判定,全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义等,灵活运用所学知识是解题的关键.题型12:等角对等边证明边长相等、求边长51.如图,已知12∠=∠,B C ∠=∠,不正确的等式是()A .AB AC=B .BAE CAD ∠=∠C .BE DC =D .BD DE=【答案】D 【分析】根据等腰三角形的判定和全等三角形的判定和性质定理即可得到结论.【解析】解:∵B C ∠=∠,∴AB AC =,故A 选项正确,不符合题意;在ABE 和ACD 中,12B C AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACD ≌,∴BE CD =,BAE CAD ∠=∠,∵BE CD =,∴BE DE CD DE -=-,∴BD CE =,故B 选项、C 选项正确,D 选项错误,故选:D .【点睛】本题考查等腰三角形的判定,全等三角形的判定和性质,掌握等腰三角形的判定是解题的关键.52.如图,ABC 中,BD 平分ABC ∠交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若12AB =,7DE =,则AE 的长为()A .5B .6C .7D .8【答案】A【分析】由角平分线的定义和平行线的性质,得到ABD EDB ∠=∠,则7BE DE ==,即可求出答案.【解析】解:∵在ABC 中,BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴CBD EDB ∠=∠,∴ABD EDB ∠=∠,∴7BE DE ==,∴1275AE AB BE =-=-=;故选:A .【点睛】本题考查了角平分线的定义和平行线的性质,解题的关键是掌握所学的知识进行计算.53.如图,点P 是AOB ∠的角平分线OC 上一点,点Q 是OA 上一点,且PQ OB ∥,若2PQ =,则线段OQ 的长是()A .1.8B .2.5C .3D .2【答案】D 【分析】利用角平分线的定义以及平行线的性质推出QPO QOP ∠=∠,据此即可求解.【解析】解:∵点P 是AOB ∠的角平分线OC 上一点,∴QOP POB ∠=∠,∵PQ OB ∥,∴QPO POB ∠=∠,∴QPO QOP ∠=∠,∴2OQ PQ ==,故选:D .【点睛】本题考查了平行线的性质,等角对等边,掌握“两直线平行内错角相等”是解题的关键.54.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥.若8DE =,5AD =,则AB 的长为()A .13B .12C .10D .9【答案】A 【分析】先根据平行线的性质和角平分线的定义证明DBE DEB ∠=∠,得到8DE DB ==,则13AB AD BD =+=.【解析】解:∵BE 平分ABC ∠,∴DBE CBE ∠=∠,∵DE BC ∥,∴DEB CBE ∠=∠,∴DBE DEB ∠=∠,∴8DE DB ==,∴8513AB AD BD =+=+=,故选A .【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的判定,证明DBE DEB ∠=∠是解题的关键.55.如图,在ABC 中,45AB AC ==,,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB AC ,于M ,N ,则AMN 的周长为()A .8B .9C .10D .不确定【答案】B 【分析】根据角平分线的定义和MN BC ∥可以得出MB ME =,NC NE =,继而可以得出AMN 的周长AB AC =+,从而可以得出答案.【解析】解:∵MN BC ∥,∴∠∠=MEB EBC .∵BE 平分ABC ∠,∴MBE EBC =∠∠,∴MEB MBE ∠=∠.∴MB ME =.同理,NC NE =,∴9AMN C AM ME EN AN AB AC =+++=+=△.故选:B .【点睛】本题考查了等腰三角形的性质,等角对等边,利用角平分线及平行线的性质得出MEB MBE ∠=∠是解题的关键.56.如图,ABC DEF ≌△△,点E 在AC 上,B ,F ,C ,D 四点在同一条直线上.若40,35A CED ∠=︒∠=︒,则下列结论正确的是()A .,EF EC AB FC==B .,EF EC AE FC ≠=C .,EF EC AE FC=≠D .,EF EC AE FC≠≠【答案】C 【分析】根据全等三角形的性质得到ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,则EF EC =,由于D CED ∠≠∠,则CE CD ≠,则AE CF ≠,由此即可得到答案.【解析】解:∵ABC DEF ≌△△,∴ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,∴EF EC =,∵4035D CED ∠=︒≠∠=︒,∴CE CD ≠,∴AE CF ≠,∴四个选项中只有C 选项符合题意,故选C .【点睛】本题主要考查了全等三角形的性质,等腰三角形的判定,熟知全等三角形的性质是解题的关键.57.如图,在ABC 中,AB AC =,AD BC ⊥于点D .(1)若37B ∠=︒,求CAD ∠的度数;(2)若点E 在边AC 上,EF AB ∥交AD 的延长线于点F .求证:AE FE =.【答案】(1)53︒(2)见解析【分析】(1)根据等腰三角形底角相等,再根据直角三角形的性质即可求得CAD ∠;(2)根据两直线平行内错角相等,再根据AD 是BAC ∠的角平分线即可得到DAC F ∠=∠,从而证得AE FE =.【解析】(1)解:AB AC = ,AD BC ⊥,37B C ∴∠=∠=︒,90ADC ∠=︒,9053CAD C ∴∠=︒-∠=︒;(2)证明:E F A B ∥ ,BAF F ∴∠=∠,AB AC = ,AD BC ⊥,AD ∴是BAC ∠的角平分线,BAF DAC ∴∠=∠,DAC F ∴∠=∠,AE FE ∴=.【点睛】本题考查等腰三角形的性质、平行线的性质、直角三角形的性质,解题的关键是熟练掌握等腰三角形、平行线、直角三角形的相关知识.58.如图,在四边形ABCD 中,AD BC ∥,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且GDF ADF ∠=∠.连接EG ,判断EG 与DF 的位置关系,并说明理由.【答案】EG 与DF 的位置关系是EG DF ⊥;理由见解析【分析】证明()AAS ADE BFE ≌△△,得出DE EF =,证明GDF BFE ∠=∠,得出GD GF =,根据垂直平分线的判定得出GE 垂直平分DF ,即可得出答案.【解析】解:EG 与DF 的位置关系是EG DF ⊥;理由见如下:∵AD BC ∥,∴ADE BFE ∠=∠,E 是AB 的中点,AE BE ∴=,又∵FEB DEA ∠=∠,∴()AAS ADE BFE ≌△△,DE EF ∴=,∵GDF ADF ∠=∠,ADE BFE ∠=∠,∴GDF BFE ∠=∠,GD GF ∴=,DE EF = ,∴GE 垂直平分DF ,∴EG DF ⊥.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的判定,垂直平分线的判定,解题的关键是熟练掌握三角形全等的判定方法,得出ADE BFE V V ≌.题型13:直线上与已知两点组成等腰三角形的点59.如图,ABC ,点P 为直线AC 上的一个动点,若使得ABP 是等腰三角形.则符合条件的点P 有()A .1个B .2个C .3个D .4个【答案】D【分析】根据等腰三角形的判定定理即可得到结论.【解析】解:作AB 垂直平分线与AC 的交点,可得22P A P B =,以A 为圆心,AB 为半径画圆,交AC 有两个交点,13P A AB P A ==,以B 为圆心,AB 为半径画圆,交AC 有一个交点,4P B AB =,故选:D .【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.60.如图,线段AB 的一个端点B 在直线m 上,直线m 上存在点C ,使ABC 为等腰三角形,这样的点C 有()A .2个B .3个C .4个D .5个【答案】C 【分析】以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,据此可得答案.【解析】解:如图所示,以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,∴直线m 上存在4个点C ,使ABC 为等腰三角形,故选:C .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,解题的关键在于能够熟练掌握等腰三角形的定义.61.如图,直线a b ,相交于点O ,150∠=︒,点A 在直线a 上,直线b 上存在点B ,使以点O A B 、、为顶点的三角形是等腰三角形,这样的B 点有()A .1个B .2个C .3个D .4个【答案】D 【分析】分别以点O A B 、、为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可;【解析】解:当OA OB =时;以点O 为圆心,OA 的长为半径作圆,与直线b 在O 点两侧各有一个交点,此时B 点有2个;当OA AB =时;以点A 为圆心,OA 的长为半径作圆,与直线b 有一个交点,此时B 点有1个;当OB AB =时;作OA的垂直平分线,与直线b有一个交点,此时B点有1个;∴满足条件的B点总共有4个;故选:D.【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B是解题的关键.题型14:等腰三角形有关的尺规作图62.如图,给出了尺规作等腰三角形的三种作法,认真观察作图痕迹,下面的已知分别对应作图顺序正确的是()①已知等腰三角形的底边和底边上的高;②已知等腰三角形的底边和腰;③已知等腰三角形的底边和一底角.A.①②③B.②①③C.③①②D.②③①【答案】B【分析】根据等腰三角形的性质即可求解.【解析】解:图形①的作图依据是“②已知等腰三角形的底边和腰”;图形②的作图依据是“①已知等腰三角形的底边和底边上的高”;图形③的作图依据是“③已知等腰三角形的底边和一底角”.故选:B .【点睛】本题主要考查尺规作图等腰三角形,掌握等腰三角形的性质,作图的方法是解题的关键.63.如图(1),锐角ABC 中,AB BC AC >>,要用尺规作图的方法在AB 边上找一点D ,使ACD 为等腰三角形,关于图(2)中的甲、乙、丙三种作图痕迹,下列说法正确的是()A .甲、乙、丙都正确B .甲、丙正确,乙错误C .甲、乙正确,丙错误D .只有甲正确【答案】A【分析】根据圆、线段垂直平分线、角的尺规作图进行分析即可.【解析】解:甲图:以点A 为圆心,AC 为半径作弧,交AB 于点D ,∴AD AC =,∴ACD 为等腰三角形,乙图:作AC 的垂直平分线,交AB 于点D ,∴AD DC =,∴ACD 为等腰三角形,丙图:∵所作的A DCA ∠=∠,∴AD DC =,∴ADC △是等腰三角形,∴甲、乙、丙都正确,故选A .【点睛】本题考查等腰三角形的定义、尺规作图−圆、角、垂直平分线,熟练掌握等腰三角形的判定与圆、角和线段垂直平分线的基本作图的方法是解题的关键.64.已知锐角40AOB ∠=︒,如图,按下列步骤作图:①在OA 边取一点D ,以O 为圆心,OD 长为半径画 MN,交OB 于点C .②以D 为圆心,DO 长为半径画 GH, GH 与OB 交于点E ,连接DC 并延长,使DC 的延长【答案】见解析【分析】以AB为腰和底两种情况作图即可.【解析】如图,以AB为腰,AO为对称轴;如图,以AB为底作等腰三角形,CM为对称轴;【点睛】本题考查利用网格作图,掌握等腰三角形的判定定理是解题的关键.66.图1,图2均是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A,B,C均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:=;(1)在图1中,连接MA,MB,使MA MB==.(2)在图2中,连接MA,MB,MC,使MA MB MC【答案】(1)见解析(2)见解析=;【分析】(1)根据勾股定理得MA MB==.(2)连接AC,取AC中点M,MA MB MC【解析】(1)解:如图1正确画图.(2)如图2正确画图.【点睛】本题主要考查尺规作图,熟练根据题意作出符合题意的图形是解题的关键.67.如图,在每个小正方形的边长均为方形的顶点上.(1)在方格纸中画出以AB为底的等腰ABC(2)在方格纸中画出以DE为一边的等腰DEF直接写出DC的长度.【答案】(1)图见解析;(2)图见解析,22DC .(2)如图所示,DEF 即为所求;CD =【点睛】本题考查的是作图:应用与设计作图,根据题意找出符合条件的点是解题的关键.题型16:等腰三角形的性质和判定综合题68.如图,在ABC 中,90BAC ∠=︒,AB 90EDF ∠=︒,下列结论:①BED AFD △≌△积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是(。

2011年中考数学预测压轴题10题及答案

2011年中考数学预测压轴题10题及答案

2011年中考试题专题之----三角形(B )一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选、多选、错选-均不给分)1.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ).(A )4cm (B )5cm (C )9cm (D )13cm2、如图,在△ABC 中,BC 边上的高为( )A. BEB. ADC. BFD. CF3、如图,已知△ABC 中,∠B=45°,∠C=75°,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠DAE=( )。

A 、15° B 、30° C 、45° D 、25°4、满足下列用哪种条件时,能够判定ΔABC ≌ΔDEF ( )(A)AB=DE,BC=EF, ∠A=∠E (B)AB=DE,BC=EF ∠A=∠D(C) ∠A=∠E,AB=DF, ∠B=∠D (D) ∠A=∠D,AB=DE, ∠B=∠E5、下图中全等的三角形是( )A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ6、已知等腰三角形有一个角是50°,那么它腰上的高线和底边的夹角( )A.40°B.25°C.40°或25°D.65°7、在下列条件中:①∠A +∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=900-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个 B 、2个 C 、3个 D 、4个A B D CE8、等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线9、如图,每个小正方形的边长为1,ABC ∆的三边c b a ,,的大小关系式:( )(A )b c a << (B )c b a <<(C )b a c << (D )a b c <<10、如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°ED CA B HF G二、填空题(本题有6小题,每小题5分.共30分)11、等腰三角形“三线合一”是指___________.12、 等腰三角形的一个顶角于一个底角的和为110°,则其顶角的度数为_______________.13、.已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件 .(2)若以“AAS ”为依据,还缺条件 . (3)若以“SAS ”为依据,还缺条件 .14、如果直角三角形的边长分别是x 、6、8,则x 的值可以为 (填一个即可)。

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)一、选择题(每题6分,共30分)1.[2016·中考预测]等腰三角形的一个内角是80°,则它的顶角的度数是(B) A.80°B.80°或20°C.80°或50°D.20°2.[2015·内江]如图23-1,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为(A) A.40°B.45°C.60°D.70°【解析】∵AE∥BD,∴∠CBD=∠E=35°,图23-1∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.[2015·黄石]如图23-2,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=(B)A.36°B.54°图23-2 C.18°D.64°【解析】∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.4.如图23-3,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(D)A.6 B.7C.8 D.9【解析】∵∠ABC,∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB.∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN.∵MN=ME+EN,∴MN=BM+CN.∵BM+CN=9,∴MN=9,故选D.5.[2015·遂宁]如图23-4,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cm B.2 cmC.3 cm D.4 cm【解析】∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7 cm,∴BN+NC+BC=7(cm),图23-3图23-4∴AN +NC +BC =7(cm),∵AN +NC =AC ,∴AC +BC =7(cm), 又∵AC =4 cm ,∴BC =7-4=3(cm). 二、填空题(每题6分,共30分)6.[2014·丽水]如图23-5,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若AB =6,CD =4,则△ABC 的周长是__20__.7.[2015·绍兴]由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图23-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图23-6②,则此时A ,B 两点之间的距离是__18__cm.图23-6【解析】 ∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =OB =18 cm.8.[2015·乐山]如图23-7,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =__15__°. 【解析】 ∵DE 垂直平分AB , ∴AD =BD ,∠AED =90°,∴∠A =∠ABD , ∵∠ADE =40°,图23-5图23-7∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C =12(180°-∠A)=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.9.[2014·益阳]如图23-8,将等边△ABC绕顶点A沿顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°__.图23-8 图23-910.如图23-9,在等边△ABC中,AB=6,点D是BC的中点.将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为__33__.三、解答题(共8分)11.(8分)[2014·衡阳]如图23-10在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:△BED≌△CFD.图23-10证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC.又∵BD=CD,∴△BED≌△CFD(AAS).12.(8分)如图23-11,点D,E在△ABC的边BC上,连结AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作图23-11为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答)__①②⇒③;①③⇒②;②③⇒①__;(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)解:(2)选择①③⇒②,∵AB=AC,∴∠B=∠C,又∵BD=CE,∴△ABD≌△ACE,∴AD=AE.13.(12分)[2015·南充]如图23-12,△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D,E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.图23-12证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B,在△AEF 与△CEB 中, ⎩⎪⎨⎪⎧∠AFE =∠B ,∠AEF =∠CEB ,AE =CE ,∴△AEF ≌△CEB (AAS ); (2)∵AB =AC ,AD ⊥BC , ∴BC =2CD , ∵△AEF ≌△CEB , ∴AF =BC , ∴AF =2CD .14.(12分)[2015·铜仁]已知,如图23-13,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连结DF 并延长交BC 的延长线于点E ,EF =FD . 求证:AD =CE .图23-13证明:如答图所示,作DG ∥BC 交AC 于G ,则∠DGF =∠ECF ,在△DFG 和△EFC 中,第14题答图⎩⎪⎨⎪⎧∠DGF =∠ECF ,∠DFG =∠EFC ,FD =EF ,∴△DFG ≌△EFC (AAS ), ∴GD =CE ,∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°, ∵DG ∥BC ,∴∠ADG =∠B ,∠AGD =∠ACB , ∴∠A =∠ADG =∠AGD , ∴△ADG 是等边三角形, ∴AD =GD , ∴AD =CE .。

初中数学综合复习等腰三角形(含等边三角形)部分4

初中数学综合复习等腰三角形(含等边三角形)部分4

初中数学综合复习等腰三角形(含等边三角形)部分4一、选择题1. 如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°.则∠A等于()A.80°B.90°C.100°D.110°【答案】C2.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是A、85°B、80°C、75°D、70°【答案】A3.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )A.(12)n·75°B.(12)n-1·65°C.(12)n-1·75°D.(12)n·85°【答案】C4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A1A2A3A4CBDEF…第11题图第10题图AB CDEA .2B .3C .4D .5分析:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.解:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P . ∴∠DPF =∠AKC =∠CHA =90°. ∵AB =BC , ∴∠BAC =∠BCA . 在△AKC 和△CHA 中。

2011全国各地中考数学试题分类汇编考点18-1 二次函数的应用(代数)

2011全国各地中考数学试题分类汇编考点18-1 二次函数的应用(代数)

二次函数的应用(代数)一、选择题 1. 2. 3. 4. 5.二、填空题1. 2. 3. 4. 5.三、解答题1. (2011广东河源,22,本题满分9分) 如图11,已知抛物线243y x x=-+与x 轴交于两点A 、B ,其顶点为C .(1)对于任意实数m ,点M (m ,-2)是否在该抛物线上?请说明理由; (2)求证:△ABC 是等腰直角三角形;(3)已知点D 在x 轴上,那么在抛物线上是否存在点P ,使得以B 、C 、D 、P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.【答案】(1)假如点M (m ,-2)在该抛物线上,则-2=m 2-4m+3, m 2-4m+5=0,由于△=(-4)2-4×1×5=-4<0,此方程无实数解, 所以点M (m ,-2)不会在该抛物线上;(2)当y=0时,x 2-4x+3=0,x 1=1,x 2=3,由于点A 在点B 左侧,∴A(1,0),B(3,0) y= x 2-4x+3=(x-2)2-1, ∴顶点C 的坐标是(2,-1), 由勾股定理得,AC=2,BC=2,AB=2,∵AC 2+BC 2=AB 2, ∴△ABC 是等腰直角三角形; (3)存在这样的点P.根据对角线互相平分的四边形是平行四边形,因此连接点P 与点C 的线段应被x 轴平分, ∴点P 的纵坐标是1,图11∵点P 在抛物线y= x 2-4x+3上,∴当y=1时,即x 2-4x+3=1,解得x 1=2-2,x 2=2+2, ∴点P 的坐标是(2-2,1)或(2+2,1).2. (2011广东湛江,28,14分)如图,抛物线2y x bx c =++的顶点为(1,4)D --,与y 轴相交点(0,3)C -,与x 轴交于,A B 两点(点A 在点B 的左边).(1)求抛物线的解析式;(2)连接AC ,CD ,AD ,试证明ACD ∆为直角三角形;(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B,E,F 四点为顶点的四边形为平行四边形?若存在,求出满足条件的点F 的坐标;若不存在,请说明理由.【答案】(1)224(1)33b bc c c =⎧-=--+⎧⇒⎨⎨=-=-⎩⎩,所以抛物线的解析式为223y x x =+-; (2)因为223y x x =+-,可得(3,0)A , 所以有222222222(03)(3)18,(13)(4)20,(01)(34) 2.AC AD DC =-+-==-++-==++-+= 所以222AD DC AC =+,所以ACD ∆为直角三角形; (3)可知4AB =,假设存在这样的点F ,设2000(,23)F x x x +-,所以200(1,23)E x x -+-,要使以A,B,E,F 四点为顶点的四边形为平行四边形,只需要4AB EF ==,即0|1|4x +=,所以03x =或05x =-,因此点F 的坐标为(3,12)或(5,12)-。

2011年上海市中考数学真题及答案

2011年上海市中考数学真题及答案

2011年上海市中考数学真题及答案(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。

选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为 A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。

当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠PAQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DC C .∠ACB =∠ACD D .∠ABC =∠ADC 二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7.求值:38-= .AB CD E(图一)ABC A ’ B ’ ·(图二)·APQC (图三)8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= . 10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 . 12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化 为整式方程 . 13.方程13-=++x x 的根是 .14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.(图五)AB (图六)ABC(图七)21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;ABCDME(图八)-2 -1 0 1 2 3 4A NB EFGCM DP(图九)(2)设BE x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边CD 相交于点F .(1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(备用图)A BC DOM(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:PA = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线PA 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.参考答案:一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.xy 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)20.解:由(1)得:x x 432329+-≥- 3≤x …………………………………………………………(3分) 由(2)得:236134->+x x 1->x …………………………………………………………(6分)∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分)定义域为20≤x ≤60……………………………………………………………(3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60…………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分) ∴ME =MD ………………………………………………………………………………(3分) ∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分)23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=-(10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分) 解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4 又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分)(Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分)(Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP ∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE ∴726822=-=BE ∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………(3分) 又∵∠APB =120° ∴∠APF = ∠BPG∴△PAF ≌△PBG ………………………………………………………………………(4分) ∴PA = PB ………………………………………………………………………………(5分) (2)由(1)得:PA = PB ,∠APB =120°∴∠PAB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBC POB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分) (3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75° 作BE ⊥OT 于E∵∠NOT = 30°,OB = 2∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2)此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)O MN T图乙1 PBEO M N T 图乙2 P A B E D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年数学中考试题等腰三角形专题第 1 页 共 5 页
第23章 等腰三角形
一、选择题
1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC中,DE为中位线,则四边
形BCED的面积为( )

(A)32 (B)33 (C)34 (D)36

【答案】B
2. (2011四川南充市,10,3分)如图,⊿ABC和⊿CDE均为等腰直角三角形,点B,C,D
在一条直线上,点M是AE的中点,下列结论:
①tan∠AEC=CDBC;②S⊿ABC+S⊿CDE≧S⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是
( )
(A)1个 (B)2个 (C)3个 (D)4个

M
E

DCB

A

【答案】D
3. (2011浙江义乌,10,3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠
DAE=90°,
四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交
CE于点G,连结BE. 下列结论中:
① CE=BD; ② △ADC是等腰直角三角形;
③ ∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正确的结论有

A
B

C
D
E
F

G

(第7题)
A
B
C
D
E
2011年数学中考试题等腰三角形专题第 2 页 共 5 页
A.1个 B.2个 C.3个 D.4个
【答案】D
4.
(2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别

交AC、
AB

于D、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?

A. 45 B. 52.5 C. 67.5 D. 75
【答案】C
5.
(2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为

△ABC、△DEF
的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十
六)与图(十
七)中,两个三角形重迭区域的面积比为何?

A.2:1 B. 3:2 C. 4:3 D. 5:4
【答案】C
6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此
三角形的周长是
A.15cm B.16cm
C.17cm D.16cm或17cm
【答案】D

7. (2011四川凉山州,8,4分)如图,在ABC△中,13ABAC,10BC,点
D

为BC的中点,DEDEAB,垂足为点E,则DE等于( )
A.1013 B.1513 C.6013 D.7513
2011年数学中考试题等腰三角形专题第 3 页 共 5 页
【答案】C
8.
二、填空题
1. (2011山东滨州,15,4分)边长为6cm的等边三角形中,其一边上高的长度为________.

【答案】33cm
2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边
为 .
【答案】4或6
3. (2011浙江杭州,16,4)在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,
F是l上的一点,且AB=AF,则点F到直线BC的距离为 .

【答案】313122或
4. (2011浙江台州,14,5分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直
线DE翻折,使点B落在点Bˊ处,DBˊ,
EBˊ分别交边AC于点F,G,若∠ADF=80º ,则∠EGC的度数为

【答案】80º
5. (2011浙江省嘉兴,14,5分)如图,在△ABC中,AB=AC,40A,则△ABC的外
角∠BCD= °.

【答案】110
6. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC中,AB=AC,∠B=50°,则
∠A=_______。

(第14题)
A

B
C
D
2011年数学中考试题等腰三角形专题第 4 页 共 5 页
【答案】80°。提示:∠A=180°-2×50°=80°。
7. (2011山东济宁,15,3分)如图,等边三角形ABC中,D、E分别为AB、BC边上

的两个动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则FGAF .

【答案】12
8. (2011湖南怀化,13,3分)如图6,在△ABC中,AB=AC,
∠BAC的角平分线交
BC边于点D,AB=5,BC=6,则AD=__________________.

【答案】4
9. (2011四川乐山16,3分)如图,已知∠AOB=,在射线OA、OB上分别取点OA1=OB1,
连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1 B2= B1 A2,连结A2 B2…
按此规律上去,记∠A2 B1 B2=1,∠3232ABB,…,∠n+11AnnnBB
则⑴1= ; ⑵ n= 。

G
F
E
C
B
A

第15题
D
2011年数学中考试题等腰三角形专题第 5 页 共 5 页
【答案】⑴2180 ⑵
10.(2011湖南邵阳,11,3分)如图(四)所示,在△ABC中,AB=AC,∠B=50°,则
∠A=_______。

【答案】80°。
11. (2011贵州贵阳,15,4分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC
的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,
画第三个等腰Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直
角三角形所构成的图形的面积为______.

(第15题图)
【答案】312
12. (2011广东茂名,14,3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一
直线上,且CG=CD,DF=DE,则∠E= 度.

【答案】15

相关文档
最新文档