2016年天津市河北区中考数学一模试卷
2018年河北省石家庄市中考数学一模试卷(解析版)

2018年河北省石家庄市中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.计算:(−3)×(−5)=()A. −8B. 8C. −15D. 15【答案】D【解析】解:(−3)×(−5)=+(3×5)=15,故选:D.根据有理数的乘法法则计算可得.本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.2016年上半年,天津市生产总值8500.91亿元,按可比价格计算,同步增长9.2%,将“8500.91”用科学记数法可表示为()A. 8.50091×103B. 8.50091×1011C. 8.50091×105D. 8.50091×1013【答案】A【解析】解:将8500.91用科学记数法表示为:8.50091×103.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由相同的正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.第1页,共18页【答案】B【解析】解:该几何体的主视图为:故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.使二次根式√x−1有意义的x的取值范围是()A. x≠1B. x>1C. x≤1D. x≥1【答案】D【解析】解:由题意得,x−1≥0,解得x≥1,故选:D.根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.一副三角板按如图所示的位置摆放,则图中与∠1相等的角有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∠1=90∘−60∘=30∘,即与∠1相等的角有∠E,共1个,故选:A.先求出∠1的度数,即可得出选项.本题考查了余角与补角,能求出各个角的度数是解此题的关键.6.若()÷b2a =ba,则()中的式子是()A. bB. 1b C. baD. b3a2【答案】D【解析】解:由题意可知:ba ×b2a=b3a2故选:D.根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7.已知关于x的方程x2−2x+k=0有实数根,则k的取值范围是()A. k<1B. k≤1C. k≤−1D. k≥1【答案】B【解析】解:△=b2−4ac=(−2)2−4k=4−4k≥0,∴k≤1.故选:B.根据方程有实根得出△≥0,求出不等式的解集即可.本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,理解方程x2−2x+k=0有实数根的含义是解此题的关键.8.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→15【答案】D【解析】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A. 1:6B. 1:5C. 1:4D. 1:2【答案】C第3页,共18页【解析】解:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.在调查收集数据时,下列做法正确的是()A. 抽样调查选取样本时,所选样本可按自己的喜好选取B. 在医院里调查老年人的健康状况C. 电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人D. 检测某城市的空气质量,采用抽样调查的方式【答案】D【解析】解:A、抽样调查选取样本时,所选样本可按自己的喜好选取,错误;B、在医院里调查老年人的健康状况,错误;C、电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人,错误;D、检测某城市的空气质量,采用抽样调查的方式,正确.故选:D.直接利用全面调查与抽样调查的意义分别分析得出答案.此题主要考查了全面调查与抽样调查,正确理解抽样调查的意义是解题关键.11.如图,已知直线l及直线外一点P,观察图中的尺规作图痕迹,则下列结论不一定成立的是()A. PQ为直线l的垂线B. CA=CBC. PO=QOD. ∠APO=∠BPO【答案】C【解析】解:由作图方法可得出PQ是线段AB的垂直平分线,则PQ为直线l的垂线,故选项A正确,不合题意;CA=CB(垂直平分线上的点到线段两端点距离相等),故选项B正确,不合题意;无法得出PO=QO,故选项C错误,符合题意;可得PA=PB,PQ⊥AB,则∠APO=∠BPO,故选项D正确,不合题意;故选:C.直接利用线段垂直平分线的性质以及其基本作图,进而分析得出答案.此题主要考查了基本作图,正确掌握线段垂直平分线的性质是解题关键.12.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. 180x −180(1+50%)x=1 B. 180(1+50%)x−180x=1C. 180x −180(1−50%)x=1 D. 180(1−50%)x−180x=1【答案】A【解析】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x −180(1+50%)x=1.故选:A.直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.13.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. √3B. 2√3C. 3√32D. 2√33【答案】C【解析】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60∘=3√32.故选:C.根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.14.如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是()第5页,共18页A. 北偏东30∘B. 北偏东60∘C. 北偏东45∘D. 北偏西60∘【答案】B【解析】解:作AD//BC,如图,由题意,得∠CAB=30∘,∴∠DAC=60∘,甲的航向应该是北偏东60∘,故选:B.根据直角三角形的性质,可得∠BAC,根据余角的定义,可得∠DAC,根据方向角的表示方法,可得答案.本题考查了方向角,利用直角三角形的性质是解题关键,又利用了方向角.15.二次函数y=ax2+bx+c的图象如图所示,则直线y=ax+c不经过的象限是()bA. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:由图象可知抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴对称轴x=−b>0,2a∴b>0;∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0;∵b>0,c>0,∴c>0,b∴一次函数y=ax+cb的图象不经过第三象限.故选:C.先由二次函数的图象确定a 、b、c字母系数的正负,再求出一次函数的图象所过的象限即可.本题考查了二次函数的图象与系数的关系,一次函数的性质,根据二次函数的图象确定二次函数的字母系数的取值范围是解题的关键.16.如图,已知点A(0,6),B(4,6),且点B在双曲线y=kx(k>0)上,在AB的延长线上取一点C,过点C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A. .6≤CE<8B. 8≤CE≤10C. .6≤CE<10D. .6≤CE<2√73【答案】D【解析】解:过D作DF⊥OA于F,∵点A(0,6),B(4,6),∴AB⊥y轴,AB=4,OA=6,∵CD=DE,∴AF=OF=3,∵点B在双曲线y=kx(k>0)上,∴k=4×6=24,∴反比例函数的解析式为:y=24x,∵过点C的直线交双曲线于点D,∴D点的纵坐标为3,代入y=24x得,3=24x,解得x=8,∴D(8,3),当O与E重合时,如图2,∵DF=8,∴AC=16,∵OA=6,∴CE=√AC2+OA2=2√73,当CE⊥x轴时,CE=OA=6,∴6≤CE≤2√73,第7页,共18页故选:D.过D作DF⊥OA于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由DF=8,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当CE⊥x轴时,CE=OA=6,于是求得结果.本题考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共3小题,共10.0分)17.计算:2−1−(2018)0=______.【答案】−12【解析】解:原式=12−1=−12.故答案为:−12.直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是______.(结果保留π)【答案】6π【解析】解:由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:360π×3180=6π.故答案为:6π.直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.此题主要考查了弧长的计算以及菱形的性质,正确得出圆心角是解题关键.19.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是60∘的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA→AB⏜→BC⏜→半径CD→半径DE…”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n秒运动到点K,(n为自然数),则K3的坐标是______,K2018的坐标是______【答案】(32,−√32)(1009,0)【解析】解:设第n秒运动到K n(n为自然数)点,观察,发现规律:K1(12,√32),K2(1,0),K3(32,−√32),K4(2,0),K5(52,√32),…,∴K4n+1(4n+12,√32),K4n+2(n+1,0),K4n+3(4n+32,−√32),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018为(1009,0).故答案为:(32,−√32)(1009,0).设第n秒运动到K n(n为自然数)点,根据点K的运动规律找出部分K n点的坐标,根据坐标的变化找出变化规律“K4n+1(4n+12,√32),K4n+2(2n+1,0),K4n+3(4n+32,−√32),K4n+4(2n+2,0)”,依此规律即可得出结论.本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.三、计算题(本大题共1小题,共8.0分)20.已知:a+b=4(1)求代数式(a+1)(b+1)−ab值;(2)若代数式a2−2ab+b2+2a+2b的值等于17,求a−b的值.【答案】解:(1)原式=ab+a+b+1−ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2−2ab+b2+2a+2b=(a−b)2+2(a+b),∴(a−b)2+2×4=17,∴(a−b)2=9,则a−b=3或−3.【解析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a−b)2+2(a+b)可得(a−b)2+2×4=17,据此进一步计算可得.本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.四、解答题(本大题共6小题,共60.0分)21.为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵第9页,共18页爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80859095人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是______,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是______分,众数是______分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“−2”,“−1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.【答案】40 90 90【解析】解:(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200−(20+48+92)=40,补全统计图如下:故答案为:40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分,故答案为:90、90;(3)列表法:−2−12−2(−2,−2)(−1,−2)(2,−2)−1(−2,−1)(−1,−1)(2,−1)2(−2,2)(−1,2)(2,2)∵第二象限的点有(−2,2)和(−1,2)∴P(点在第二象限)=29.(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD 的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有.(1)求A′到BD的距离;(2)求A′到地面的距离.第11页,共18页【答案】解:(1)如图2,作,垂足为F .∵AC ⊥BD ,;在中,∠1+∠3=90∘;图2 又,∴∠1+∠2=90∘, ∴∠2=∠3; 在△ACB 和中,{∠ACB =∠A′FB ∠2=∠3AB =A′B∴△ACB≌;∵AC//DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.8;∴BC =BD −CD =3−1.8=1.2,,即到BD 的距离是1.2m .(2)由(1)知:△ACB≌∴BF =AC =2m , 作,垂足为H . , ,,即到地面的距离是1m .【解析】(1)作,垂足为F ,根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.23. 如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(−2,0)与动点P(0,t)的直线MP 记做l .(1)若1的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由;(2)当直线1与AD 边有公共点时,求t 的取值范围.第13页,共18页【答案】解:(1)此时点A 在直线l 上; ∵BC =AB =2,点O 为BC 中点, ∴点B(−1,0),A(−1,2),把点A 的横坐标x =−1代入解析式y =2x +4,得 y =2×(−1)+4=2,等于点A 的纵坐标2, ∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(−2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k ≠0), ∴{k +t =2−2k+t=0,解得{k =23t =43∴当直线l 与AD 边有公共点时,t ≤4, 所以t 的取值范围是43≤t ≤4.【解析】(1)把点A 代入解析式,进而解答即可; (2)把点D(1,2),及点M(−2,0)代入解析式解答即可.本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.24. 已知:如图,在矩形纸片ABCD 中,AB =4,BC =3,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF . (1)BD 的长为______; (2)求AE 的长;(3)在BE 上是否存在点P ,使得PF +PC 的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由. 【答案】5【解析】解:(1)∵矩形ABCD , ∴∠DAB =90∘,AD =BC =3,在Rt △ADB 中,DB =√AD 2+AB 2=√32+42=5, 故答案为:5;(2)设AE =x ,∵AB =4,∴BE =4−x , 在矩形ABCD 中,根据折叠的性质知: Rt △FDE≌Rt △ADE ,∴FE =AE =x ,FD =AD =BC =3, ∴BF =BD −FD =5−3=2,在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2, 即x 2+4=(4−x)2,解得:x =32, ∴AE 的长为32; (3)存在,如图3,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC , 则点P 即为所求, 此时有:PC =PG , ∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH//DC , ∴△BFH∽△BDC , ∴FHDC =BFBD =BH BC,即FH 4=25=BH 3,∴FH =85,BH =65, ∴GH =BG +BH =3+65=215,在Rt △GFH 中,根据勾股定理,得 ∴GF =√GH 2+FH 2=√(215)2+(85)2=√5055, 即PF +PC 的最小值为 √5055.(1)根据勾股定理解答即可;(2)设AE =x ,根据全等三角形的性质和勾股定理解答即可;(3)延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形第15页,共18页的判定和性质解答即可.本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.25. 某食品厂生产一种半成品食材,产量p(百千克)与销售价格x(元/千克)满足函数关系式p =12x +8,从市场反馈的信息发现,该半成品食材的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,如下表:已知按物价部门规定销售价格x 不低于2元/千克且不高于10元/千克 (1)求q 与x 的函数关系式;(2)当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x 的取值范围;(3)当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.若该半成品食材的成本是2元/千克. ①求厂家获得的利润y(百元)与销售价格x 的函数关系式;②当厂家获得的利润y(百元)随销售价格x 的上涨而增加时,直接写出x 的取值范围.(利润=售价−成本)【答案】解:(1)设q =kx +b(k,b 为常数且k ≠0), 当x =2时,q =12,当x =4时,q =10,代入解析式得, {4k +b =102k+b=12, 解得:{b =14k=−1,∴q 与x 的函数关系式为:q =−x +14;(2)当产量小于或等于市场需求量时,有p ≤q , ∴12x +8≤−x +14,解得:x ≤4, 又2≤x ≤10, ∴2≤x ≤4;(3)①当产量大于市场需求量时,可得4<x ≤10, 由题意得,厂家获得的利润是:y =qx −2p =−x 2+13x −16=−(x −132)2+1054;②∵当x ≤132时,y 随x 的增加而增加,又∵产量大于市场需求量时,有4<x ≤10, ∴当4<x ≤132时,厂家获得的利润y 随销售价格x 的上涨而增加.【解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案; (2)由题意可得:p ≤q ,进而得出x 的取值范围; (3)①利用顶点式求出函数最值得出答案; ②利用二次函数的增减性得出答案即可.此题主要考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题关键.26. 已知:如图,在Rt △ABO 中,∠B =90∘,∠OAB =30∘,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P(4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60∘.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题 【发现】(1)MN⏜的长度为______; (2)当t =2s 时,求扇形MPN(阴影部分)与Rt △ABO 重叠部分的面积. 【探究】当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.【拓展】当MN⏜与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】π3【解析】解:【发现】 (1)∵P(4,0), ∴OP =4, ∵OA =3, ∴AP =1, ∴MN ⏜的长度为60π×1180=π3,故答案为π3;(2)设⊙P 半径为r ,则有r =4−3=1, 当t =2时,如图1,点N 与点A 重合, ∴PA =r =1,设MP与AB相交于点Q,在Rt△ABO中,∵∠OAB=30∘,∠MPN=60∘,∵∠PQA=90∘.∴PQ=12PA=12,∴AQ=AP×cos30∘=√32∴S重叠部分=S△APQ=12PQ×AQ=√38即重叠部分的面积为√38;【探究】:①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=1,∵∠OAB=30∘,∴AP=2,∴OP=OA−AP=3−2=1;∴点P的坐标为(1,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=1,∴PD//AB,∴∠OPD=∠OAB=30∘,∴cos∠OPD=PDOP,∴OP=1cos30∘=2√33,∴点P的坐标为(2√33,0);③如图4,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP=2√33;∴点P的坐标为(−2√33,0),【拓展】t的取值范围是2<t≤3,4≤t<5,理由:如图5,当点N运动到与点A重合时,MN⏜与Rt△ABO 的边有一个公共点,此时t=2;第17页,共18页当t>2,直到⊙P运动到与AB相切时,由探究①得,OP=1,∴t=4−11=3,MN⏜与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,MN⏜与Rt△ABO的边有两个公共点,此时t=4;直到⊙P运动到点N与点O重合时,MN⏜与Rt△ABO的边有一个公共点,此时t=5;∴4≤t<5,即:t的取值范围是2<t≤3,4≤t<5,发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=1,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出MN⏜和直角三角形的两边有两个交点时的分界点,即可得出结论.此题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解本题的关键.。
天津市河东区2017届中考数学一模试题(pdf,无答案)

2016-2017年度河东区初三一模数学试卷一、选择题(3×12=36)1.计算(2)5--的结果等于( ).A .7-B .3-C .3D .72.tan 60︒的值等于( ).A .12B .3C .2D 3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有( ).A .2个B .3个C .4个D .5个4.国家统计局的相关数据显示,2015年我国国民生产总值(GDP )约为67670000000000元,将67670000000000用科学计数法表示为( ). A .136.76710⨯B .126.76710⨯C .1267.6710⨯D .146.76710⨯5.如图,是由两个相同的小正方形和一个圆锥组成的立体图形,其俯视图是( ).A .B .C .D .6 ).A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.计算b aa b b a+--的结果是( ). A .a b -B .b a -C .1D .1- 8.方程2(21)(3)0+-=x x ( ). A .12和3 B .12-和3C .12和3- D .12-和3-9.如果点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系是( ).-13D CA .a c d b <<<B .b d a c <<<C .b d c a <<<D .d b c a <<<10.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为(090)αα︒<<︒,若1112=︒∠,则α∠的大小是( ).A .68︒B .20︒C .28︒D .22︒11.若11,2M y ⎛⎫- ⎪⎝⎭,21,4N y ⎛⎫- ⎪⎝⎭,31,2P y ⎛⎫⎪⎝⎭三点都在函数(0)k y k x =>的图像上,则1y ,2y ,3y 的大小关系是( ). A .231y y y >>B .213y y y >>C .312y y y >>D .321y y y >>12.如图是抛物线2(0)y ax bx c a =++≠的部分图像,其顶点坐标为(1,)n ,且与x 轴的一个交点在(3,0)和(4,0)之间,则下列结论:①0a b c -+>;②30a b +=;③24()b a c n =-;④一元二次方程21ax bx c n ++=-有两个不相等的实数根.其中正确结论的个数是( ).A .1个B .2个C .3个D .4个二、填空题(3×6=18)13.计算322()x x ⋅-=__________. 14.计算2+=__________.15.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,一面的数字是偶数的概率为__________.16.一次函数(3)2y m x =--的图像经过二、三、四象限,则m 的取值范围是__________. 17.如图,正方形ABCD 中,点E ,F 分别为AB ,CD 上的点,且13AE CF AB ==,点O 为线段EF 的中点,过点O 组直线与正方形的一组对边分别交于P 、Q 两点,并且满足PQ EF =,则这样的直线PQ (不同于EF )有__________条. 18.如图所示,在每个边长都为1的小正方形组成的网格中,点A 、B 、C 均为格点(Ⅰ)线段AB 的长度等于__________.(Ⅱ)若P 为线段AB 上的动点,以PC ,PA 为斜边的四边形PAQC 为平行四边形,点PQ 长最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要证明).F EA BCD________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ABC三、解答题(66分) 19.(8分)解不等式322112x xxx ⎧-<⎪⎨+-⎪⎩≤①②请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得__________. (Ⅱ)解不等式②,得__________.(Ⅲ)把不等式①和②的解集在数轴上表示出来:-1(Ⅳ)原不等式组的解集为__________.20.(8分) 为了解学鞥参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题1.5小时 24%2小时1小时20%0.5小时(Ⅰ)求被抽样调查的学生有多少人?并补全条形统计图.(Ⅱ)每天户外活动时间的中位数是__________小时?(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?21.(10分) 如图,⊙O 的直径6AB =,C 为圆周上一点,3AC =,过点C 做⊙O 的切线l ,过点B 做l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E . (Ⅰ)求AEC ∠的度数;(Ⅱ)求证:四边形OBEC 是菱形.22.(10分) 如图,小东在数学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37︒,旗杆底部B 点的俯角为45︒,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)37°45°ABCD23.(10分)为提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:消费卡 消费方式 普通卡 35元/张白金卡 280元/张,凭卡免费消费10次再送2次 钻石卡560元/张,凭卡每次免费不再收费以上消费卡使用年限为一年,每位顾客只能购买一张卡,且只限本人使用. (Ⅰ)若每年去该健身中心健身6次,应选择哪种消费方式更合算?(Ⅱ)设一年内去该健身中心健身x 次(x 为正整数),所需总费用为y 元,请分别写出选择普通消费和白金卡消费的y 与x 的函数关系式;(Ⅲ)若某位顾客每年去该健身中心健身至少18次,请通过计算帮助这位顾客选择最合算的消费方式.B24.(10分)在我们学习的数学教科书中,有一个数学活动,其具体操作过程是第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图1);第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕MB ,同时得到线段BN (如图2)如图2所示建立直角坐标系,请解答以下问题NMD CBA E F (图2)(图1)F E A BCD(Ⅰ)这直线BM 的解析式为y kx =,求k 的值.(Ⅱ)若MN 的延长线于矩形ABCD 的边BC 交于点P ,设矩形的边AB a =,BC b =.①若2a =,4b =,求P 点的坐标. ②请直接写出a 、b 应满足的条件.25.(10分) 如图,平面直角坐标系中,抛物线22y x x =-与x 轴交于O 、B 两点,顶点为P ,连接OP 、BP .直线4y x =-与y 轴交于点C ,与x 轴交于点D .(Ⅰ)直接写出点B 的坐标;判断OBP △的形状.(Ⅱ)将抛物线沿对称轴平移m 个单位长度,平移的过程中交y 轴于点A ,分别连接CP 、DP .①若抛物线向下平移m个单位长度,当PCD POC S =△△时,求平移后的抛物线的顶点坐标. ②在平移的过程中,试探究PCD S △和POD S △之间的数量关系,直接写出他们之间的数量关系及对应m 的取值范围.图3图2图1。
年天津市河西区中考数学一模试卷含答案(word版)

河西区2016--2017学年度初中毕业生学业考试模拟试卷(一)数学考试时间:2017年5月3日本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷第1页至第3页,第Ⅱ卷第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分)(1)计算(-3)-9的结果等于( )(A)6(B)12 (C)12 (D)6(2)cos300的值是( )(A)(B)(C)(D)(3)下列图案中,可以看作中心对称图形的是( )(4)第十三届全运会将于2017年8月在天津举行,其中足球比赛项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学计数法表示应为( )(A)163×103(B)16.3×104(C)1.63×105(D)0.163×106(5)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )(6)分式方程的解为( )(A)x=1 (B)x=2 (C)x=3 (D)x=-1(7)等边三角形的边心距为,则该等边三角形的边长是( )(A)3(B)6 (C)2(D)2(8)数轴上点A表示a,将点A沿数轴向左移动3个单位得到点B,设点B所表示的数为x,则x可以表示为( )(A)a-3(B)a+3(C)3-a(D)3a+3(9)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5.从中随机摸出一个小球,其标号大于2的概率为( )(A)(B)(C)(D)(10)已知反比例函数y=当1<x<3 时,y的取值范围是( )(A)0<y<1 (B)1<y<2 (C)y<6 (D)2<y<6(11)如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM 的面积之比为( )(A)9:4 (B)12:5 (C)3:1 (D)5:2(12)二次函数y=x2+bx的图象的对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是( ) (A)t≥-1 (B)-1≤t<3 (C)3<t<8 (D)-1≤t<8第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B铅笔)。
天津市河北区2016届九年级初中毕业生第一次模拟考试物理试题(图

答案
(1)当开关S、S1、S2都闭合时,R1、R2、R3并联,此时电路消耗的电功率最大则I并=
1100W
220V
=5A,R并=
(220V)2
1100W
=44Ω
当开关S闭合,S1,S2断开时,R1、R2、R3串联
此时的电流I=
1
10
I并=0.5A
此时的总电阻R串=
220V
0.5A
=440Ω
根据以上计算,可以确定三个电阻应选:88Ω、176Ω、176Ω.电路消耗电功率有四种状态.由P=
U2
R
可知:
在电源电压一定时,电功P的大小只取决于电阻R的大小,
①当开关S、S l、S2都闭合时,电路如图甲;
②当开关S闭合,S1、S2断开时,电路如图乙;
③当开关S、S2闭合,S1断开时,电路如图丙;
④当开关S、S l闭合,S2断开时,电路如图丁.
由图丙、丁看出,若R1=R3,电路只有三种工作状态,
因此R1≠R3不能同时是176Ω,所以R2只能是176Ω.
答:R2的电阻值为176Ω.
(2)电阻连接的顺序只有两种情况:
R1=88Ω,R2=176Ω,R3=176Ω或R1=176Ω,R2=176Ω,R3=88Ω
当开关s闭合,S1、S2断开时,R1、R2、R3串联,
电压表测量的是R1的电压:
当R1=88Ω时:U1=44V
当R1=176Ω时:U1′=88V
因此,电压表示数的可能值是:44V和88V.
答:在开关S闭合,S1、S2断开的状态下,电压表示数可能是44V和88V.。
2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。
第二十四章 圆 试题精选2022-2023学年九年级上册人教版数学 【天津市】

2022-2023年九年级上册人教版数学第二十四章 圆试题精选【天津市】一、单选题(本大题共10小题)1. (天津市河西区2020年数学中考热身数学试卷)一个圆的内接正三角形的边长为23( )A 2B .4C .23D .222. (天津市和平区2019届中考模拟数学试题)如图,⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B ,∠BAC =25°,则∠AMB 的大小为( )A .25°B .30°C .45°D .50°3. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A .6B .3C .9D .124. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,⊙O 是∆ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°5. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,AB 是O 的直径,C ,D 是O 上的两点,连接AC ,CD ,AD ,若75ADC ∠=︒,则BAC ∠的度数是( )A .15°B .25°C .30°D .75°6. (天津市滨海新区2021-2022学年九年级上学期期中数学试题)如图,四边形ABCD为O 的内接四边形,已知140BCD ∠︒=,则BOD ∠的度数为( )A .40°B .50°C .80°D .100°7. (天津市西青区2021-2022学年九年级上学期期末数学试题)如图,OA 是⊙O 的半径,弦BC ⊥OA ,垂足为D .连接AC .若BC =42AC =3,则⊙O 的半径长为( )A .9B .8C .92D .38. (天津市南开区2021-2022学年九年级上学期期末数学试题)如图AB 是O 切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若35ADC ∠=︒,则ABO ∠的度数为( )A .25︒B .20︒C .30D .35︒52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10. (天津市滨海新区2019届九年级第一次模拟试卷数学试题)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .23πB .33πC .323πD .323π 二、填空题(本大题共6小题)11. (天津市南开区2021-2022学年九年级上学期期末数学试题)已知⊙O 的半径为10,直线AB 与⊙O 相切,则圆心O 到直线AB 的距离为 .12. (天津市河北区2021-2022学年九年级上学期期末数学试题)如图,一条公路的转弯处是一段圆弧(图中的AB ),点O 是这段弧的圆心,C 是AB 上一点,OC AB ⊥.垂足为D ,160m AB =,40m CD =,则这段弯路的半径是 m .13. (天津市第七中学、育才中学2021-2022学年九年级上学期期末数学试题)如图,半径为2的O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则劣弧BD 的长为 .PA PB 、切O 于点A B 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点C D 、,则PCD 的周长是 .15. (天津市河北区2021-2022学年九年级上学期期末数学试题)已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16. (天津市河东区2021-2022学年九年级上学期期末数学试题)如图,点C 是半圆AB 上一动点,以BC 为边作正方形BCDE (使BC 在正方形内),连OE ,若AB =4cm ,则OE 的最大值为 cm .三、解答题(本大题共11小题)17. (天津市和平区2022年中考数学二模试题)如图,AB 为⊙O 直径,△ACD 是⊙O 的内接三角形,PB 切⊙O 于点B .(1)如图①,延长AD 交PB 于点P ,若∠C =40°,求∠P 和∠BAP 的度数;(2)如图②,连接AP 交⊙O 于点E ,若∠D =∠P ,弧CE =弧AC ,求∠P 和∠BAP 的度数.18. (天津市津南区2020年中考一模数学试题)已知:ABC 内接于O ,AB AC =,P 是ABC 外一点.(Ⅰ)如图①,点P 在O 上,若78BPC ∠=︒,求CAB ∠和ACB ∠的大小;(Ⅱ)如图②,点P 在O 外,BC 是O 的直径,PB 与O 相切于点B ,若55BPC ∠=︒,求PCA ∠的大小.19. (天津市南开区2020年中考二模数学试题)如图1,AB 是O 的直径,弦CD AB ⊥于G ,过C 点的切线与射线DO 相交于点E ,直线DB 与CE 交于点H ,OG BG =,1BH =.(Ⅰ)求O 的半径;(Ⅱ)将射线DO 绕D 点逆时针旋转,得射线DM (如图2),DM 与AB 交于点M ,与O 及切线CF 分别相交于点N ,F ,当GM GD =时,求切线CF 的长.20. (天津市河东区2021-2022学年中考数学一模试题)已知,四边形ABCD 为菱形,点A ,B ,D 在⊙O 上.(Ⅰ)如图①,若CB ,CD 为⊙O 的切线,求∠C 的大小;(Ⅱ)如图②,BC ,CD 与⊙O 分别交于点E ,点F ,连接BF ,若∠BDC =50°,求∠CBF 的度数.21. (天津市滨海新区2020年中考一模数学试题)如图,△ABC 内接于⊙O .(1)如图①,连接OA ,OC ,若28B ∠=︒,求OAC ∠的度数;(2)如图②,直径CD 的延长线与过点A 的切线相交于点P .若60B ∠=︒,⊙O 的半径为2,求AD ,PD 的长.22. (天津市河西区2019年中考二模数学试题)如图,ABC 中,AB AC = ,以AB 为直径的O 与BC 相交于点D ,与CA 的延长线相交于点E ,O 的切线DF 交EC 于点F .(Ⅰ)求DFC ∠的度数;(Ⅱ)若3AC AE =,12BC = ,求O 的直径AB . 23. (天津市河北区2020年中考一模数学试题)已知AB 是⊙O 的直径,C 为⊙O 上一点,∠OAC =58°.(Ⅰ)如图①,过点C 作⊙O 的切线,与BA 的延长线交于点P ,求∠P 的大小;(Ⅱ)如图②,P 为AB 上一点,CP 延长线与⊙O 交于点Q .若AQ =CQ ,求∠APC 的大小.24. (天津市2019年中考数学试题)已知PA ,PB 分别与O 相切于点A ,B ,80APB ︒∠=,C 为O 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.25. (天津市和平区2019届中考模拟数学试题)已知,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,在CD 的延长线上取一点P ,PG 与⊙O 相切于点G ,连接AG 交CD 于点F .(Ⅰ)如图①,若∠A =20°,求∠GFP 和∠AGP 的大小;(Ⅱ)如图②,若E 为半径OA 的中点,DG ∥AB ,且OA =3PF 的长. 26. (天津市西青区2020年二模数学试题)已知⊙O 是ABC ∆的外接圆, 过点A 作⊙O 的切线, 与CO 的延长线交于点P ,CP 与⊙O 交于点D .(1)如图①, 若ABC ∆为等边三角形, 求P ∠的大小;(2)如图②, 连接AD , 若PD AD =, 求ABC ∠的大小.27. (天津市滨海新区2020年中考二模数学试题)如图①,在O 中,AB 为直径,C 为O 上一点,30A ∠︒=,过点C 作O 的切线,与AB 的延长线相交于点P .(Ⅰ)求P∠的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求F∠的大小;②若O的半径为2,求AF的长.参考答案1. 【答案】D【分析】先根据圆的内接正三角形的边长求出圆的半径,再根据正方形的性质求出圆的内接正方形的边长即可.【详解】根据题意画图如下:过点O作OD⊥BC于D,连接OB,BC=3∴BD=CD=12∵△ABC是等边三角形,∴∠ABC=60°,∴∠OBD=30°,∴OD=1OB,2OB)2=BD2,∴OB2-(12解得:OB=2,即圆的半径为2,∴该圆的内接正方形的对角线长为4,设正方形的边长为x,∴x2+x2=42,解得x=2∴该圆的内接正方形的边长为2故选D.2. 【答案】D【分析】由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC﹣∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数.【详解】解:∵MA切⊙O于点A,AC为直径,∴∠MAC=90°,又∠BAC=25°,∴∠MAB=∠MAC﹣∠BAC=65°,∵MA、MB分别切⊙O于点A、B,∴MA=MB,∴∠MAB=∠MBA=65°,∴∠AMB=180°﹣(∠MAB+∠MBA)=50°,故选D.3. 【答案】A【分析】连接AC,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC.∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.4. 【答案】A【分析】连接OB和OC,证明△OBC为等边三角形,得到∠BOC的度数,再利用圆周角定理得出∠A.【详解】解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.5. 【答案】A【分析】连结BC ,根据直径所对圆周角可得90ACB ∠=︒ ,由同弧所对圆周可求出∠ABC 的度数,利用直角三角形两锐角互余求出∠BAC 的度数即可.【详解】解:连结BC ,∵AB 是O 的直径,90ACB ∴∠=︒,∵∠ABC =∠ADC =75°,909075BAC ABC ∴∠=︒-∠=︒-︒︒=15 ,故选A .6. 【答案】C【分析】由圆内接四边形的对角互补可得∠A =40°,再根据同弧所对的圆心角是圆周角的2倍,即可求出∠BOD 的度数.【详解】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A =180°-∠BCD =180°-140°=40°,∴∠BOD =2∠A =80°,故选C .7. 【答案】C【分析】如图所示,连接OC ,先由BC ⊥OA ,得到∠ADC =∠ODC =90°,1222CD BD BC ===AD =1,设OA OC r ==,则1OD OA AD r =-=-,由勾股定理得到222OD CD OC +=则()(222122r r -+=,由此即可得到答案.【详解】解:如图所示,连接OC ,∵BC ⊥OA ,∴∠ADC =∠ODC =90°,1222CD BD BC === ∴221AD AC CD -=,设OA OC r ==,则1OD OA AD r =-=-,∵222OD CD OC +=,∴()()222122r r -+=, 解得92r =, 故选C .8. 【答案】B【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由35ADC ∠=︒可求出∠AOC =70︒.再由AB 为圆O 的切线,得AB ⊥OA ,由直角三角形的两锐角互余,即可求出∠ABO 的度数,【详解】解:∵AC AC = ,∴223570AOC ADC ∠=∠=⨯︒=︒,∵AB 为圆O 的切线,∴AB ⊥OA ,即∠OAB =90°,∴90907020ABO AOC ∠=︒-∠=︒-︒=︒,故选:B .9. 【答案】C【分析】过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c --,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .10. 【答案】C【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【详解】连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠O AO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B-(S扇形O′OB-S△OO′B)=12×1×3(260?2360π⨯-12×2×3323π.故选C.11. 【答案】10【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案.【详解】解:∵⊙O的半径为10,直线AB与⊙O相切,∴圆心到直线AB的距离等于圆的半径,∴d =10;故答案为:10;12. 【答案】100【分析】设这段弯路的半径是rm ,可得,40,OA r OD r ==- 由垂径定理可得:80,AD = 再由勾股定理建立方程,解方程可得答案.【详解】解:设这段弯路的半径是rm ,40m CD =,则OA=OC=rm ,()40OD r m =-,∵OC ⊥AB , 160m AB = ∴1802AD AB m ==, 在Rt △AOD 中,由勾股定理得:()2228040r r =+-,解得:100r =,则这段弯路的半径是100m .故答案为:100. 13. 【答案】85π##85π 【分析】连接OB ,OD ,根据正多边形内角和公式可求出∠E 、∠A ,根据切线的性质可求出∠OBA 、∠ODE ,从而可求出∠BOD 的度数,根据弧长的公式即可得到结论.【详解】解:连接OB ,OD ,∵五边形ABCDE 是正五边形,∴∠E =∠A =()521801085-⨯︒=︒. ∵AB 、DE 与⊙O 相切,∴∠OBA =∠ODE =90°,∴∠BOD =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,∴劣弧BD 的长为14428=1805,故答案为:85π. 14. 【答案】20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE ====所以PCD ∆的周长为 101020PC PD CD PC AC DB PD PA PB ++=+++=+=+= 15. 【答案】26cm π【分析】如图,连接OC 、OD 、CD ,OC 交AD 于点E ,由点C ,D 是这个半圆的三等分点可得60AOC COD ∴∠=∠=︒,在同圆中,同弧所对的圆周角是圆心角的一半,即可得出1302CAD COD ∠=∠=︒,再根据OA OC OD ==得,AOC △,COD △都是等边三角形,所以60ACM DOM ∠=∠=︒,AC OC OD ==,可证()ACM DOM AAS ≅,故=COD S S 阴扇形,由扇形的面积公式计算即可.【详解】如图所示,连接OC 、OD 、CD ,OC 交AD 于点E ,点C ,D 是这个半圆的三等分点,180603AOC COD DOB ︒∴∠=∠=∠==︒, 1302CAD COD ∴∠=∠=︒, OA OC OD ==,AOC ∴,COD △都是等边三角形,60ACM DOM ∴∠=∠=︒,AC OC OD ==,在ACM △与DOM △中,AMC DMO ACM DOM AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACM DOM AAS ∴≅,ACM DOM S S ∴=,2260()60362=6(cm )360360COD AB S S πππ⨯⨯⨯⨯∴===阴扇形. 故答案为:26cm π.16. 【答案】(222)【分析】如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM ,通过△OCD ≌△OBE (SAS ),可得OE =OD ,通过旋转观察如图可知当DO ⊥AB 时,DO 最长,此时OE 最长,设DO 与⊙O 交于点M ,连接CM ,先证明△MED ≌△MEB ,得MD =BM .再利用勾股定理计算即可.【详解】解:如图,连接OD ,OE ,OC ,设DO 与⊙O 交于点M ,连接CM ,BM , ∵四边形BCDE 是正方形,∴∠BCD =∠CBE =90°,CD =BC =BE =DE ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠BCD +∠OCB =∠CBE +∠OBC ,即∠OCD =∠OBE ,∴△OCD ≌△OBE (SAS ),∴OE =OD ,根据旋转的性质,观察图形可知当DO ⊥AB 时,DO 最长,即OE 最长,∵∠MCB =12∠MOB =12×90°=45°,∴∠DCM =∠BCM =45°,∵四边形BCDE 是正方形,∴C 、M 、E 共线,∠DEM =∠BEM ,在△EMD 和△EMB 中, DE BC MED MEB WE WEE =⎧⎪∠=∠⎨⎪=⎩,∴△MED ≌△MEB (SAS ),∴DM =BM 22OM OB +2222+22(cm ),∴OD 的最大值=2+2,即OE 的最大值=2+2;故答案为:(2)cm .17. 【答案】(1)40︒;50︒(2)60︒;30【详解】解:(1)如图①,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∵在⊙O 中,∠C =∠ABD =40°,∴∠BAD =90°﹣∠ABD =50°. ∵PB 是⊙O 的切线,∴AB ⊥PB∴∠ABP =90°.∴∠P =90°﹣∠BAD =40°.(2)如图②,连接CE 交AB 于点F ,∵∠D =∠P ,在⊙O 中,∠D =∠AEC∴∠P =∠AEC .∴CE //BP .∴∠AFE = ∠ABP =90°.∴AB ⊥CE又∵AB 是⊙O 的直径,∴弧AC =弧AE ,弧BC =弧BE .∵弧CE =弧AC∴弧CE =弧AC =弧AE .∴CE =AC =AE .∴△ACE 是等边三角形∴∠CAE =∠ACE = ∠AEC =60°∴∠P = ∠AEC =60°∵弧BC =弧BE∴∠CAB = ∠BAP =12∠CAE =30°18. 【答案】(Ⅰ)102CAB ∠=︒,39ACB ∠=︒;(Ⅱ)80PCA ∠=︒.【分析】(Ⅰ)根据圆内接四边形的性质可得CAB ∠的度数,根据AB AC =可得AB AC =,再根据等腰三角形的定义、三角形的内角和定理即可得ACB ∠的度数;(Ⅱ)先根据圆周角定理得出90CAB ∠=︒,从而可得45ACB ∠=︒,再根据圆的切线的性质得出90PBC ∠=︒,然后根据直角三角形的性质可得35PCB ∠=︒,最后根据角的和差即可得.【详解】(Ⅰ)∵四边形ABPC 是O 的内接四边形,78BPC ∠=︒∴180102CAB BPC ∠=︒-∠=︒∵AB AC =∴AB AC =∴∠=∠ACB ABC102CAB ∠=︒ ∴()1180392ACB CAB ∠=︒-∠=︒; (Ⅱ)∵BC 是O 的直径∴90CAB ∠=︒由(Ⅰ)知,∠=∠ACB ABC∴45ACB ∠=︒ 又PB 与O 相切∴PB BC ⊥,即90PBC ∠=︒55BPC ∠=︒∴9035PCB BPC ∠=︒-∠=︒∴354580PCA PCB ACB ∠=∠+∠=︒+︒=︒即80PCA ∠=︒.19. 【答案】(Ⅰ)2;(Ⅱ)63+【分析】(Ⅰ)由题意连接OC ,结合圆的切线定理和等边三角形性质以及平行线性质和同弧所对的圆心角与圆周角之间的关系进行分析求解;(Ⅱ)根据题意过点F 作PQ DC ⊥.交DC 延长线于点Q ,并设CQ x =,则2CF x =,3QF x =,利用勾股定理建立方程求解进而得出切线CF 的长.【详解】解:(Ⅰ)连接OC ,∵CE 为O 的切线,∴OC CE ⊥∴90OCH ∠=︒∵CD AB ⊥,OG BG =∴OC CB =,又∵OB OC =∴OB OC CB ==∴BOC 为等边三角形∴460OCB ∠=∠=︒∴906030BCH OCH OCB ∠=∠-∠=︒-︒=︒∵OC BC =,CD OB ⊥ ∴113302OCB ∠=∠=∠=︒ 由同弧所对的圆心角与圆周角之间的关系可知:124302∠=∠=︒ ∴23∠∠=∴//DH OC∴90H ∠=︒在Rt BCH 中,90H ∠=︒,30BCH ∠=︒,1BH =∴22BC BH ==∴2OB BC ==即O 的半径为2.(Ⅱ)如图2,过点F 作PQ DC ⊥.交DC 延长线于点Q ,∴90CFQ FCQ ∠+∠=︒,∵OC FC ⊥,∴90OCG FCQ ∠+∠=︒,∴30CFQ OCG ∠=∠=︒,设CQ x =,则2CF x =,3QF x =,∵GM GD =,MG CD ⊥,∴45MDG ∠=︒,∵FQ QD ⊥,∴9045DFQ MDG MDG ∠=︒-∠=︒=∠,∴QF QD QC CD ==+,∵AB CD ⊥,2OC =,1OG GB ==,又∵22222123CD CG ==-= ∴323x x =+ 解得33x = ∴263CF CQ ==+20. 【答案】(Ⅰ)60︒;(Ⅱ)20︒.【分析】(Ⅰ)如图(见解析),先根据圆的切线的性质可得,OB BC OD CD ⊥⊥,再根据四边形的内角和可得180C BOD ∠+∠=︒,然后根据圆周角定理可得2BOD A ∠=∠,最后根据菱形的性质即可得;(Ⅱ)如图(见解析),先根据菱形的性质、等腰三角形的性质可得50CBD ∠=︒,再根据三角形的内角和定理可得80A C ∠=∠=︒,然后根据圆内接四边形的性质可得100BED ∠=︒,又根据三角形的外角性质可得20CDE ∠=︒,最后利用圆周角定理即可得.【详解】(Ⅰ)如图,连接,OB OD ,,CB CD 为O 的切线,,OB BC OD CD ∴⊥⊥,即90OBC ODC ∠=∠=︒,3609090180C BOD ∴∠+∠=︒-︒-︒=︒,由圆周角定理得:2BOD A ∠=∠,2180C A ∴∠+∠=︒, 又四边形ABCD 为菱形,A C ∴∠=∠,2180C C ∴∠+∠=︒,解得60C ∠=°;(Ⅱ)如图,连接DE ,四边形ABCD 为菱形,,A C BC CD ∴∠=∠=,又50BDC ∠=︒,50BDC CBD ∴=∠=∠︒,00881C CB BDC D ∴∠=︒-∠∠=-︒,80A ∴∠=︒,由圆内接四边形的性质得:180100BED A ∠=︒-∠=︒,1008020CDE BED C ∴∠=∠-∠=︒-︒=︒,由圆周角定理得:20CDE CBF ∠∠==︒.21. 【答案】(1)62OAC ∠=︒;(2)2AD =;2PD =【分析】(Ⅰ)由题意根据圆周角定理和∠B=28°,即可求出∠OAC 的度数;(Ⅱ)根据题意连接OA ,再根据切线的性质和圆周角定理可得△AOD 是等边三角形,进而根据特殊角30度即可求出AD ,PD 的长.【详解】解:(Ⅰ)∵∠AOC=2∠ABC ,28B ∠=︒,∴∠AOC=56°.∵OA=OC ,∴∠OAC=∠OCA . ∴18056622OAC ︒-︒∠==︒. (Ⅱ)连接OA .∵PA 与⊙O 相切于点A ,∴PA OA ⊥.∵∠AOC=2∠ABC ,60B ∠=︒,∴∠AOC=120°.∴∠POA=60°又OA OD =,∴AOD △是等边三角形.∴2AD OA ==.∵∠PAO=90°,∴∠P=30°.在Rt PAO △中,24PO OA ==.∴2PD PO OD =-=.22. 【答案】(Ⅰ)90DFC ∠=︒;(Ⅱ)36AB =【分析】(Ⅰ)连接OD .由切线的性质可知OD ⊥DF .再由AC=AB ,OB=OD 可证明∠ODB=∠C ,从而可证明OD ∥AC ,再由平行线的性质可证明DF ⊥AC ; (Ⅱ)连结BE ,根据直径所对的圆周角为直角得出90AEB =︒∠,设AE k =,根据已知用k 表示出AB 、EC,然后根据勾股定理列出关于k 的方程求解即可.【详解】解:(Ⅰ)连接OD ,∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴ODB C ∠=∠,∴OD AC ,∵DF 是O 的切线∴OD DF ⊥,∴DF AC ⊥,∴90DFC ODF ∠=∠=︒;(Ⅱ)连接BE∵AB 是直径,∴90AEB =︒∠,∵AB AC =,3AC AE = ,∴3AB AE =,4CE AE = ,设AE k =,则3AB k =,3AB AC k ==,4EC k = ,∴在Rt ABE △中,22228BE AB AE k =-=,在Rt BEC △中,222BE EC BC +=.∵12BC =,∴22281612k k +=,∴26k =∴6k (负舍),∴直径336AB AE ==.23. 【答案】(I )∠P =26°;(II )∠APC =48°.【分析】(I )根据等腰三角形中有一底角为58度时,可得∠COA =64°,根据切线的性质得出∠OCP =90°,进而求得∠P 的度数;(II )先由(I )知∠AOC =64°,根据圆周角定理得∠Q =12∠AOC =32°,根据等腰三角形的性质和三角形内角和定理得∠QAC =∠QCA =74°,最后由三角形外角的性质可得结论.【详解】(I )如图①,∵OA =OC ,∠OAC =58°,∴∠OCA =58°∴∠COA =180°﹣2×58°=64°∵PC 是⊙O 的切线,∴∠OCP =90°,∴∠P =90°﹣64°=26°;(II )∵∠AOC =64°,∴∠Q =12∠AOC =32°, ∵AQ =CQ ,∴∠QAC =∠QCA =74°,∵∠OCA =58°,∴∠PCO =74°﹣58°=16°,∵∠AOC =∠QCO +∠APC ,∴∠APC =64°﹣16°=48°.24. 【答案】(Ⅰ)50ACB ︒∠=;(Ⅱ)20EAC ︒∠=.【分析】(Ⅰ)连接OA 、OB ,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°计算;(Ⅱ)连接CE ,根据圆周角定理得到∠ACE=90°,根据等腰三角形的性质、三角形的外角性质计算即可.【详解】解:(Ⅰ)如图,连接OAOB ,. ∵PA PB ,是O 的切线,∴OA PA ⊥,OB PB ⊥.即90OAP OBP ︒∠=∠=.∵80APB ︒∠=,∴在四边形OAPB 中,360100AOB OAP OBP APB ︒︒∠=-∠-∠-∠=.∵在O 中,12ACB AOB ∠=∠, ∴50ACB ︒∠=.(Ⅱ)如图,连接CE .∵AE 为O 的直径,∴90ACE ︒∠=.由(Ⅰ)知,50ACB ︒∠=,∴40BCE ACE ACB ︒∠=∠-∠=.∴40BAE BCE ︒∠=∠=.∵在ABD ∆中,AB AD =, ∴1(180)702ADB ABD BAE ︒︒∠=∠=-∠=. 又ADB ∠是ADC ∆的一个外角,有EAC ADB ACB ∠=∠-∠,∴20EAC ︒∠=.25. 【答案】(Ⅰ)∠GFP =70°,∠AGP =70°;(Ⅱ)PF =4.【分析】(Ⅰ)连接OG ,在Rt △AEF 中,∠A =20°,可得∠GFP =∠EFA =70°,因为OA =OG ,所以∠OGA =∠A =20°,因为PG 与⊙O 相切于点G ,得∠OGP =90°,可得∠AGP =90°﹣20°=70°.;(Ⅱ)如图,连结BG ,OG ,OD ,AD ,证明△OAD 为等边三角形,得∠AOD =60°,所以∠AGD =30°,因为DG ∥AB ,所以∠BAG =∠AGD =30°,在Rt △AGB 中可求得AG =6,在Rt △AEF 中可求得AF =2,再证明△GFP 为等边三角形,所以PF =FG =AG ﹣AF =6﹣2=4.【详解】解:(Ⅰ)连接OG ,∵CD ⊥AB 于E ,∴∠AEF =90°,∵∠A =20°,∴∠EFA =90°﹣∠A =90°﹣20°=70°,∴∠GFP =∠EFA =70°,∵OA =OG ,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∠AOD=30°,∴∠AGD=12∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=3∴∠AGB=90°,AB=3∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.26. 【答案】(1)30︒;(2)60︒【分析】(1)连接AO ,根据ABC ∆为等边三角形得到60ABC ∠=,根据圆周角定理得到2120AOC ABC ∠=∠=,进而求得60AOP ∠=,再由切线的性质的PAO 90∠=,然后根据三角形内角和得到结果.(2))连接AO ,由已知条件证的2∠=∠OAD PAD ,根据切线的性质推出30PAD ∠=,进而求得答案.【详解】(1)连接AOABC ∆∴为等边三角形;60ABC ∴∠=;2120AOC ABC ∴∠=∠=;180AOC AOP ∴∠+∠=;60AOP ∴∠=; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90P AOP ∴∠+∠=;90906030P AOP ∴∠=-∠=-=;(2)连接AOPD AD =;P PAD ∴∠=∠;OA OD =;ADO OAD ∴∠=∠;2ADO P PAD PAD ∠=∠+∠=∠;2OAD PAD ∴∠=∠; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90PAD OAD ∴∠+∠=;290PAD PAD ∴∠+∠=;30PAD ∴∠=;260ADO PAD ∴∠=∠=;即ADC 60∠=;60ABC ADC ∴∠=∠=;27. 【答案】(Ⅰ)30P ∠=︒;(Ⅱ)①30F ∠=︒;②43AF =【分析】(Ⅰ)如图①中,连接OC .利用切线的性质解决问题即可; (Ⅱ)①证明OC ∥BF ,即可解决问题;②证明△OBC 是等边三角形,利用勾股定理即可解决问题.【详解】(Ⅰ)如图,连接OC .∵O 与PC 相切于点C ,∴OC PC ⊥,即90OCP ∠=︒,∵30A ∠=︒,∴260BOC A ∠=∠=︒,在Rt OPC △中,90POC P ∠+∠=︒ ,∴906030P ∠=︒-︒=︒;(Ⅱ)①由(I )得90OCP ∠=︒,又∵BF PC ⊥,即90PEB ∠=︒∴//OC BF∴30F ACO A ∠=∠=∠=︒;②由①F A ∠=∠,∴AB BF =,连接BC ,∵AB 是直径,∴90BCA ∠=︒,即BC AF ⊥,=∴AC CF∵60=,BOC∠=︒,OC OB∴OBC是等边三角形,∴2BC OC==,∴2222-=-=4223 AC AB BC∴43AF=。
2016年全国中考数学真题分类 尺规作图(习题解析)

2016年全国中考数学真题分类
尺规作图
一、选择题
12.(2016湖北宜昌,12,3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()
A.△EGH为等腰三角形 B.△EGF为等边三角形
C.四边形EGFH为菱形 D.△EHF为等腰三角形
【考点】作图—基本作图;线段垂直平分线的性质.
【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,
∴△EGH是等边三角形.
B、错误.∵EG=GF,
∴△EFG是等腰三角形,
若△EFG是等边三角形,则EF=EG,显然不可能.
C、正确.∵EG=EH=HF=FG,
∴四边形EHFG是菱形.
D、正确.∵EH=FH,
∴△EFH是等边三角形.
故选B.
二、填空题
17.(2016湖北荆州,17,3分)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).
【分析】沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.【解答】解:如图所示.
[来源:Z。
xx。
]
AE=BE,DE=EF,AD=CF.
三、解答题
16.(2016陕西17,5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成两个相似三角形。
(保留作图痕迹,不写作法)
解:如图,直线AD即为所作。
……………………(5分)
第17题答案图
第17题图。
2024年河北省保定市竞秀区中考一模数学试题(解析版)

2024年初中毕业生升学文化课模拟考试数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列四个数中,最小的是( )A. B. 0 C.D. 【答案】A【解析】【分析】本题主要考查的是比较有理数的大小,掌握比较有理数的大小的方法是解题的关键.根据正数大于零,零大于负数,两个负数绝对值大的反而小判断即可.【详解】解:,,∵,∴最小的数是,故选:A .2. 如图,点A 位于点O 的北偏东方向,将绕点O 逆时针转得到,则点B 位于点O 的( )A. 北偏西方向 B. 北偏西方向3-()3-- 1.5-()33--= 1.5 1.5-=()30 1.53-<<-<--3-60︒OA 90︒OB 60︒30︒C. 东偏北方向D. 东偏北方向【答案】B【解析】【分析】本题考查方位角,确定的方向是解题的关键.根据题意可得,求出∠1的度数即可确定的方位角,据此即可解答.【详解】解:∵将绕点O 逆时针转得到,∴∴,即B 位于点O 的北偏西方向,故选B .3. 化简的结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式的乘方.利用分式的乘方法则计算即可求解.【详解】解:,故选:D .4. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.在一个不透明的盒子中装了6张关于“二十四节气”的卡片,其中有3张“立春”,2张“立秋”,1张“冬至”,这些卡片除了画面内容外其他都相同,从中随机摸出一张卡片,恰好是“立秋”的可能性为( )A. B. C. D. 30︒60︒OB 90AOB ∠=︒OB OA 90︒OB 90AOB ∠=︒1906030∠=︒-︒=︒30︒32y x ⎛⎫ ⎪⎝⎭53y xy x 6y x 63y x3263y y x x ⎛⎫= ⎪⎝⎭12131615【答案】B【解析】【分析】本题考查了根据概率公式求概率,根据在一个不透明的盒子中装了6张关于“二十四节气”的卡片,其中有2张“立秋”,进行计算即可得出答案,用到的知识点为:概率等于所求情况数与总情况数之比.【详解】解:在一个不透明的盒子中装了6张关于“二十四节气”的卡片,其中有2张“立秋”,从中随机摸出一张卡片,恰好是“立秋”的可能性为,故选:B .5. 人体中枢神经系统中含有数量庞大的神经元.某个神经元的直径约为0.000052米,将这个数据用科学记数法表示为,则 ( )A. 5B. C. 4 D. 【答案】B【解析】【分析】将0.000052写成科学记数法,即可得n 的值.本题考查了科学记数法,其表示形式为,n 是整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,n 是正数;当原数的绝对值小于1时,n 是负数.正确的确定a 和n 的值是解题的关键.【详解】,∴.故选:B6. 将一个矩形纸片沿虚线折叠,围成无上下底的直三棱柱,尺寸如图所示,则m 的值可能是( ).A. 1B. 2C. 3D. 4【答案】D【解析】【分析】本题主要考查了几何体的展开图、三角形的三边关系等知识点,掌握三角形的三边关系是解题的关键.∴2163=5.210n ⨯n =5-4-10(110)n a a ⨯≤<50.000052 5.210-=⨯5n =-根据围成的三棱柱的底面三角形是等腰三角形,再利用三角形的三边关系确定m 的取值范围即可解答.【详解】解:根据题意可知围成的三棱柱的底面三角形是等腰三角形,根据题意可得:,即,则选项D 符合题意.故选D .7. 如图,已知,下列条件中,添加后仍不能判定的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的判定,掌握“”等判定方法是解题的关键,据此逐项分析,即可作答.【详解】解:A 、∵,,,∴不能证明,故该选项是符合题意的;B 、∵,,,∴能证明,故该选项是不符合题意的;C 、∵,,,∴能证明,故该选项是不符合题意的;D 、∵,,,∴能证明,故该选项是不符合题意的;故选:A .8. 如图,,直线m 平移后得到直线n ,则的度数为( )A. B. C. D. 【答案】B【解析】m m +>63m >ACB ACD ∠=∠ABC ADC △≌△AB AD=BC DC =CAB CAD ∠=∠B D∠=∠SSS SAS AAS ASA HL ,,,,AB AD =ACB ACD ∠=∠AC AC =ABC ADC △≌△BC DC =ACB ACD ∠=∠AC AC =()SAS ABC ADC ≌CAB CAD ∠=∠ACB ACD ∠=∠AC AC =()ASA ABC ADC ≌B D ∠=∠ACB ACD ∠=∠AC AC =()AAS ABC ADC ≌1100∠=︒32∠-∠100︒80︒60︒40︒【分析】本题考查了平行线的性质,熟练掌握知识点是解题的关键.由题意得,过点B 作,则,根据两直线平行,同旁内角互补和内错角相等即可求解.【详解】解:由题意得,过点B 作,则∵,,∴,∵,∴,∵,∴,故选:B .9. 若,则表示实数的点会落在数轴的( )A. 段①上B. 段②上C. 段③上D. 段④上【答案】B【解析】【分析】此题主要考查了二次根式的化简,减法运算及估算,先化简二次根式,计算出a 的值,再估算出a 范围,再结合数轴即可得出结果.【详解】解:,即,,,,即,故实数的点会落在数轴的段②上,m n ∥BC m ∥BC n ∥m n ∥BC m ∥BC n∥BC m ∥1100∠=︒180180ABC ∠=︒-∠=︒BC n ∥2CBD ∠=∠3ABC CBD ∠=∠+∠3280ABC ∠-∠=∠=︒a =aa +=a =-∴a ==-=<<12∴<<12a <<a故选:B .10. 如图,根据下面平行四边形中所标注的条件,不能判定其为菱形的是( )A. B. C.D.【答案】D【解析】【分析】本题主要考查了菱形的判定,勾股定理的逆定理,等边三角形的判定,熟练掌握菱形的判定方法,根据菱形的判定方法,逐项进行判定即可.【详解】解:A .∵,,∴为等边三角形,∴,∴为菱形,故A 不符合题意;B .∵,,,∴,∴为直角三角形,,∴,∴为菱形,故B 不符合题意;C .∵四边形平行四边形,为5AB AC ==60BAC ∠=︒ABC AB BC =ABCD Y 3AO =4BO =5AB =222AO BO AB +=AOB 90AOB ∠=︒AC BD ⊥ABCD Y ABCD∴,∴,∵,∴,∴,∴为菱形,故C 不符合题意;D .此选项中的条件不能判定图中的平行四边形为菱形,故D 符合题意.故选:D .11. 如图,将五边形沿虚线裁去一个角,得到六边形,则下列说法正确的是( )A. 外角和减少B. 外角和增加C. 内角和减少D. 内角和增加【答案】D【解析】【分析】本题考查了多边形外角与内角.此题比较简单,熟记多边形的内角和公式是解题的关键.根据n 边形的内角和公式,多边形外角和都是,求解即可.【详解】解:将五边形沿虚线裁去一个角,得到六边形,则五边形的内角和为:六边形的内角和为:,,五边形六边形的外角和都是,将五边形沿虚线裁去一个角,得到六边形,内角和增加,外角和不变,AD BC ∥30ADB CBD ∠=∠=︒30ABD ∠=︒ABD ADB ∠=∠AB AD =ABCD Y ABCDE ABCDGF 180︒180︒180︒180︒()2180n -⨯︒360︒ABCDE ABCDGF ABCDE ()52180540-⨯︒=︒ABCDGF ABCDGF ()62180720-⨯︒=︒720540180∴︒-︒=︒ ABCDE ABCDGF 360︒∴ABCDE ABCDGF 180︒故选:D .12. 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点在同一水平线上,和均为直角,与相交于点D .测得,,,则树高为( )A. B. C. D. 【答案】C【解析】【分析】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意可知:,根据相似三角形的性质即可得到的长.【详解】解:由题意可得,,,,,,,即,解得,树高,故选:C .13. 如图,在边长为a 的正方形正中间剪去一个边长为b 的小正方形(),把剩下的部分按照图中的虚线段分割成四个等腰梯形,将四个等腰梯形拼成一个大平行四边形,边上的高为( ).ABC A B Q ,,ABC ∠AQP ∠AP BC 40cm AB =20cm BD =12m AQ =24cm24m 6cm 6mABD AQP ∽PQ BC PQ ∥40cm AB =20cm BD =12m AQ =ABD AQP ∴ ∽∴AB AQ BD QP=401220QP =6QP =∴6m PQ =a b >ABCD ABA. aB. bC.D. 【答案】C【解析】【分析】本题主要考查了多项式乘法与面积,掌握数形结合思想成为解题的关键.设边上的高为h ,然后根据等面积法求解即可.【详解】解:设边上的高为h ,由题意可得:,即,解得:,所以边上的高为.故选C .14. 小明探究甲、乙、丙、丁四种物质的密度,将测量结果数据绘制成如图所示的图象,则四种物质中密度最大的是( )A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】本题考查了函数的图象.根据密度质量体积,从图象中比较每种物质的质量和体积,即可得到答案.【详解】解:甲和丙的体积相等,甲的质量丙的质量,甲的密度大;乙和丁的体积相等,乙的质量丁的质量,乙的密度大;甲和乙的质量相等,甲的体积乙的体积,a b -a b+AB AB ()22a b a b h -=+()()()a b a b a b h +-=+h a b =-AB a b -=÷>∴>∴<甲的密度大.故选:A .15. 如图,已知及外一定点P ,嘉嘉进行了如下操作后,得出了四个结论:①点A 是的中点;②直线,都是的切线;③点P 到点Q 、点R 的距离相等;④连接,,,,,则.对上述结论描述正确是( )A. 只有①正确B. 只有②正确C. ①②③正确D. ①②③④都正确【答案】C【解析】【分析】由第一步作图痕迹可知直线是的垂直平分线,由此可判断①正确;根据直径所对的圆周角等于,可判断②正确;根据切线长定理可判断③正确;先证明,由此可得,进而可得,因此可判断④错误.【详解】由第一步作图痕迹可知直线是的垂直平分线,因此点A 是的中点,故①正确;∵是的直径,,,,∴直线,都是的切线,的∴O O PO PQ PR O PQ QA PR RO OQ 18PQA PROQ S S =△四边形MN PO 90︒POQ POR ≌POQ POR S S = 1124PQA POQ PROQ S S S == 四边形MN PO PO PO A 90PQO PRO ∴∠=∠=︒PQ OQ ∴⊥PR OR ⊥PQ PR O直线,都是的切线,根据切线长定理,可知 ,故③正确;,,,,∴,∴.∵点A 是的中点,,故④错误.故选:C【点睛】本题主要考查了垂直平分线的尺规作图法、圆周角定理、切线的判定以及切线长定理.熟练掌握以上知识是解题的关键.16. 如图,在平面直角坐标系中,已知抛物线l :,点,是l 上两点,且,将上方抛物线沿向下翻折,翻折后得到一个形如“”的新图像.当这个新图像与直线恰好只有2个公共点时,关于m 的取值范围,甲说:;乙说:;丙说:;丁说:,则( ).A. 甲丁合在一起才正确B. 乙丙合在一起才正确C. 乙丁合在一起才正确D. 甲丙合在一起才正确【答案】C PQ PR O PQ PR =PQ PR = OQ OR =PO PO =POQ POR ∴ ≌POQ POR S S = 12POQ PROQ S S = 四边形PO 1124PQA POQ PROQ S S S ∴== 四边形xOy ()232y x =--+()1,M x m ()2,N x m 12x x <MN MN =2y -2m <-2m =-20m -<≤02m <<【分析】题主要考查了抛物线的变化,根据题意画出各组情况的函数图像成为解题的关键.先画出各种情况的函数图像,函数根据函数图像即可解答.【详解】解:当,可画出如图图像:显然新图像与直线没有交点,即,甲说法错误;当,可画出如图图像:显然新图像与直线有2个交点,即乙说法正确;当,可画出如图图像:显然新图像与直线有4个交点,故丙说法错误;当,可画出如图图像:显然新图像与直线有2个交点,故丁说法正确;综上,乙丁合在一起才正确.故选C.2m <-=2y -2m =-=2y -20m -<≤=2y -02m <<=2y -二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 如图,在平面直角坐标系中,点在反比例函数(为常数,,)的图像上,过点作轴的垂线,垂足为,连接.若的面积为,则______.【答案】【解析】【分析】本题考查反比例函数的图像,反比例函数比例系数的几何意义,根据点在反比例函数的图像上,轴于,由反比例函数比例系数的几何意义得,然后根据的面积为可得出的值.熟练掌握反比例函数比例系数的几何意义是解题的关键.【详解】解:∵点在反比例函数的图像上,轴于, ∴,∴,∵的面积为,∴,∵,∴.故答案为:.18. 甲、乙两地相距19千米,某人从甲地出发去乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍.若设这个人步行的速度为x 千米/小时,(1)这个人步行时间为______小时(用含x 的代数式表示);(2)这个人步行速度为______千米/小时.【答案】① ②. 5【解析】.A k y x=k 0k >0x >A x B OA OAB 5k =10A k y x =AB x ⊥B 12OAB S k =△OAB 5k A k y x =AB x ⊥B 12OAB S k =△2OAB k S =△OAB 510k =0k >10k =107x【分析】本题考查了列代数式,分式方程的应用,解题的关键是找到等量关系,列出方程,分式方程注意检验.(1)根据时间路程速度列代数式即可;(2)此题根据时间来列等量关系,根据等量关系为:步行时间加上骑车时间等于2列出方程求解即可.【详解】解:(1)根据题意得:这个人步行时间为小时,故答案为:;(2)设这个人步行的速度为x 千米/小时,则改骑自行车的速度为千米/小时,根据题意得:解得:,经检验:是原分式方程的解这个人步行的速度为5千米/小时,故答案为:5.19. 大自然中有许多小动物都是“小数学家”,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面均为正六边形.如图是由7个形状、大小完全相同的边长为的正六边形组成的一部分蜂巢巢房.(1)______度;(2)线段的长为______.【答案】①. 120 ②. 【解析】【分析】本题考查多边形的内角和及对角线,解直角三角形,等腰三角形的性质,解答本题的关键是明确正六边形的特点.(1)根据正多边形每个内角都相等,结合多边形的内角和公式即可求解;(2)如图,连接,过点D 作,垂足为E ,根据正六边形的性质得到,再根=÷7x 7x4x 719724x x -+=5x =5x =∴1cm α∠=AB cm ,AC BC DE BC ⊥5cm AC =据等腰三角形的性质得到,推出,进而求出,由勾股定理即可求解.【详解】解:(1)正六边形的内角和为:,正六边形的每一个内角都为:,;(2)如图,连接,过点D 作,垂足为E ,如图,正六边形的中心到每个顶点的距离相等,即,,都是等边三角形,正六边形的边长为,,,,,,,,,30DBC DCB ∠=∠=︒ACBC⊥BC = ()62180720-⨯︒=︒∴7206120︒÷=︒∴120α∠=︒,AC BC DE BC ⊥OF OG OH OI OJ OK =====360606FOG GOH HOI IOJ JOK KOF ︒∠=∠=∠=∠=∠=∠==︒ ,,,,,FOG GOH HOI IOJ JOK KOF ∴ 1cm ∴1cm OF OG OH OI OJ OK ======5cm AC ∴= BD CD =360120120120BDC ∠=︒-︒-︒=︒∴30DBC DCB ∠=∠=︒AC BC ∴⊥ DE BC⊥cos BE BD DBC ∴=⋅∠=,,故答案为:120,.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20. 嘉嘉和琪琪用下图中的A 、B 、C 三张带有运算的卡片做一个“我说你算”的数学游戏,两人约定:一人说数字,并将卡片任意排列;另一人按卡片排列顺序进行计算.例如,嘉嘉说出数字2,并将卡片按的顺序排列,则琪琪的运算顺序为:先对2进行的运算,接着用求得的和,最后用所求得的积.列式为:.(1)嘉嘉说出数字,并将卡片按的顺序排列,请你帮琪琪列式并计算结果;(2)嘉嘉说数字x ,琪琪对x 按的顺序运算后,得到的数恰好等于12,求x .【答案】(1)(2)【解析】【分析】本题考查有理数的混合运算、解一元一次方程,解答本题的关键是明确题意,列出相应的算式,求出x 的值.(1)根据题意,可以写出相应的算式,然后计算即可;(2)根据题意,可以得到关于x 的方程,然后解方程即可.【小问1详解】解:由题意可得,;【小问2详解】解:∵对x 按的顺序运算后,琪琪得到的数恰好等于12,∴,解得,即x 的值是.21. 定义一种新运算,规定,例.(1)已知,,分别求A ,B;∴BC=AB ∴==A B C →→3+()3⨯-2-()()()233253215217+⨯--=⨯--=--=-2-C A B →→C B A →→31-()()()()22334333--+⨯-=-+⨯-=⎡⎤⎣⎦C B A →→()()23312x -⨯-+=1x =-1-(),F a b ab =()1,2122F =⨯=()2,2A F x y x y =+-()4,2B F y x y =-(2)通过计算比较A 与B 的大小.【答案】(1);(2)【解析】【分析】本题考查了整式的乘法运算,加减运算及平方差公式,正确理解题目中给出的运算符号是解题关键.(1)根据题目中给出的新运算符号的意义,进行解答即可;(2)根据题目中给出的新运算符号的意义,算出A 、B 的结果再相减进行比较即可.【小问1详解】解:..【小问2详解】解:,∵,∴.22. 某校德育处为了解学生对法制安全知识的掌握情况,从本校学生中随机抽取20名学生进行了一次测试,测试共10道题,学生答对1题得1分.根据测试结果绘制出下图:(1)求抽取的20名学生得分的中位数、平均数;(2)若再随机抽取3名其他学生进行相同的测试,这23名学生的平均得分会超过8分吗?请通过计算说明.【答案】(1)中位数为分;平均数为分(2)这23名学生的平均得分不会超过8分【解析】【分析】本题考查了条形统计图,平均数,中位数,熟练掌握平均数,中位数的求法是解题的关键.224A x y =-248B xy y =-A B≥()()()222,2224A F x y x y x y x y x y =+-=+-=-()()24,24248B F y x y y x y xy y =-=-=-()()222222448442A B x y xy yx xy y x y -=---=-+=-()220x y -≥A B ≥77.4(1)根据平均数,中位数的求法,即可求解;(2)设后来随机抽取的3名同学的总成绩为x 分,利用平均数的定义列出不等式,求解再比较,即可得出结论.【小问1详解】解:由条形图可知,第10个数据是7分,第11个数据是7分,∴中位数为(分);平均数为(分).【小问2详解】解:设后来随机抽取的3名同学的总成绩为x 分,则根据题意得:,解得:,因为每人满分10分,所以3人最高得分30分,,所以这23名学生的平均得分不会超过8分.23. 如图,已知在平面直角坐标系中,,,连接.(1)求所在直线的表达式;(2)从点处发射激光.①当激光轴时,与交于点Q ,求线段的长度;②已知所在直线的表达式为,请直接写出激光与线段(不含端点)有交点时m 的取值范围.【答案】(1) (2)①;②7772+=527986937.420⨯+⨯+⨯+⨯=52798693823x ⨯+⨯+⨯+⨯+>36x >3630>xOy ()2,2A -()6,6B AB AB ()3,0C CP CP x ⊥CP AB CQ CP ()0y mx n m =+≠CP QB 132y x =+92CQ =m>2【解析】【分析】本题主要考查了运用待定系数法求函数解析式、一次函数的性质等知识点,灵活运用相关知识成为解题的关键.(1)直接运用待定系数法求解即可;(2)由题意可得点Q 的横坐标为3,然后将代入所在直线的表达式可求得点C 的纵坐标即可;②先根据所在直线过C 、B 两点可求得一个临界点m ,在根据当轴时,与交于点Q ,即可取无限大,据此即可解答.【小问1详解】解:设直线的函数解析式为,则有:,解得:,∴设直线的函数解析式为.【小问2详解】解:①如图:∵点处发射激光,轴,与交于点Q ,∴点Q 的横坐标为3,将代入所在直线表达式可得:,∴,∴线段的长度为.②∵所在直线的表达式为,∴,即的3x =AB CP CP x ⊥CP AB m AB y kx b =+2266k b k b =-+⎧⎨=+⎩123k b ⎧=⎪⎨⎪=⎩AB 132y x =+()3,0C CP CP x ⊥CP AB 3x =AB 193322y =⨯+=93,2Q ⎛⎫ ⎪⎝⎭CQ 92CP ()0y mx n m =+≠()3,0C 03m n =+3n m=-∵,,∴当所直线过时,,解得:,由当轴时,与交于点Q ,即可取无限大∴m 的取值范围.24. 某款“不倒翁”的主视图如图1,它由半圆O 和等边组成,直径,半圆O 的中点为点C ,MN 为桌面,半圆O 与相切于点Q ,拨动“不倒翁”后它在桌面上做无滑动的滚动.(1)如图1,,请直接写出的长为______(结果保留根号);(2)如图2,当时,连接.①直接写出的度数,并求点C 到桌面的距离(结果保留根号);②比较与直径的长度;(3)当或垂直于时“不倒翁”开始折返,直接写出从滚动到(图2—图3)过程中,点Q 在上移动的距离.【答案】(1) (2)①;②的长>直径的长 (3)【解析】【分析】(1)如图1:连接,先根据等边三角形及勾股定理求得,三点共线,之间的距离为,最后根据线段的和差即可解答;(2)①如图2:延长交于D ,先说明、可得,进而得到;再说明,最后根据角的和差即可解答;②先说明在93,2Q ⎛⎫ ⎪⎝⎭()6,6B CP ()6,6B 663m m =-2m =CP x ⊥CP AB m m>2PAB 8cm AB =MN MN AB MN ∥PC cm PB MN ⊥OQ OC ,∠COQ MN AQAB PA PB MN PB MN ⊥PA MN ⊥MN ()430COQ ∠=︒ AQAB 4πcm 3,PO OC OP ==,,P O C AB MN ,4OC OB ==QO AP 60ABP ∠=︒DQ PB ∥60AOD ABP ∠=∠=︒60BOQ AOD ∠=∠=︒90BOC ∠=︒,再求出的长,然后比较即可解答;(3)根据(2)可得,进而从滚动到过程中经过的圆心角为,最后根据弧长公式即可解答.【小问1详解】解:如图1:连接,∵等边,∴,∴∵半圆O 与相切于点Q ,半圆O 的中点为点C ,∴重合,,∵,∴,∴三点共线,之间的距离为,∴故答案为:【小问2详解】解:①如图2:延长交于D ,120AOQ ∠=︒ AQ30COQ ∠=︒PB MN ⊥PA MN ⊥OQ60︒,PO OC PAB 1,4,42PO AB OB AB PB AB ⊥====OP ==MN ,O C OC MN ⊥AB MN ∥OC AB ⊥,,P O C AB MN ,4OC OB ==4PC PO OC =+=+4+QO AP∵等边,∴,∵,,∴,∴,∴,∵半圆O 的中点为点C ,∴,∴;②∵,∴的长,∵,∴的长>直径的长【小问3详解】解:如图:当时,PAB 60ABP ∠=︒OQ MN ⊥PB MN ⊥DQ PB ∥60AOD ABP ∠=∠=︒60BOQ AOD ∠=∠=︒90BOC ∠=︒906030COQ BOC BOQ ∠=∠-∠=︒-︒=︒180********AOQ BOQ ∠=︒-∠=︒-︒=︒ AQ 120883603ππ⨯⨯=883π> AQAB PB MN ⊥由(2)可得,∴,∴从滚动到过程中经过的圆心角为,∴点Q 在上移动的距离等于.【点睛】本题主要考查了等边三角形的性质、勾股定理、弧长公式、切线的性质等知识点,正确作出辅助线成为解题的关键.25. 嘉嘉在一块平整场地玩弹力球,并以此情境编制一道数学题:如图,在平面直角坐标系中,一个单位长度为,嘉嘉从点A 处将弹力球(看成点)扔向地面,在地面上的点B 处弹起后其运动路线为抛物线,抛物线在点C 处达到最高,之后落在地面上的点D 处,已知,点C 坐标为.(1)求抛物线的表达式及点D 坐标;(2)弹力球在点D 处再次弹起,其运动路线为抛物线,抛物线与的形状一致且在E 处最高,点E 与点O 的水平距离为,60BOQ ∠=︒30COQ ∠=︒PB MN ⊥PA MN ⊥OQ 60︒MN 6043603ππ⨯8=xOy 1m 1C 1C 0.5m =OB ()2.5,41C 2C 2C 1C 6m①求抛物线与最高点的高度差;②有一竖直放置的隔板高,且,若弹力球沿下落过程中要落在隔板上(含端点),其他条件都不变的情况下,需要将起弹点B 右移n 米,直接写出n 的取值范围.【答案】(1), (2)①最高点的高度差为;②【解析】【分析】本题考查了二次函数的应用,求出函数解析式是解答本题的关键.(1)先用待定系数法求出函数解析式,再令即可求出点D 坐标;(2)①求出抛物线的表达式即可求解;②设平移后再次弹起抛物线的表达式,然后把和分别代入求解即可.【小问1详解】设抛物线的表达式,把代入,得,解得,∴当时,,解得,∴;【小问2详解】①设抛物线的表达式,把代入,得,解得,∴1C 2C MN 0.29m 7.6m ON =2C MN ()22.54y x =--+()4.5,0D 1.75m 0.10.2n ≤≤0y =2C ()26 2.25y x n =---+()7.6,0()7.6,0.291C ()22.54y a x =-+()0.5,0B ()200.5 2.54a =⨯-+1a =-()22.54y x =--+0y =()20 2.54x =--+120.5, 4.5x x ==()4.5,0D 2C ()26y x k =--+()4.5,0D ()20 4.56k =--+2.25k =()26 2.25y x =--+∴抛物线与最高点的高度差为;②设平移后再次弹起抛物线的表达式,当经过点时,,解得,(舍去);当时,解得,(舍去);∴n 的取值范围为.26. 已知矩形纸片中,,,点从点出发,沿做匀速运动.点运动的同时,将沿所在直线折叠,得到.(1)如图1,点运动到中点时,落在矩形内,则______;(2)如图2,点运动到处时,与交于点,求证:;(3)点运动过程中,恰好落在边上时,与的交点为,请在图3中画出的示意图.①求出线段的长.②延伸:若点到达点后继续匀速沿运动,直至到达点停止,设点的速度为1,则点沿运动的整个过程中,直接写出能覆盖点的时长(含边界).(4)设,当时,直接写出点到的距离(用含的式子表示).【答案】(1) (2)详见解析 (3)①;②点运动过程中,能覆盖点的时长(含边界)为6(4)【解析】1C 2C 4 2.25 1.75m -=()26 2.25y x n =---+()7.6,0()207.66 2.25n =---+10.1n =2 3.1n =()7.6,0.29()20.297.66 2.25n =---+10.2n =23n =0.10.2n ≤≤ABCD 6cm AB =8cm BC =E B BC E ABE AE AFE △E BC AF ABCD tan EAF ∠=E C EF AD G AFG EDG △≌△E AF AD EF BD K AFE △DK E C CD D E cm /s E B C D --AEF △K BE n =06n <<F BC d n 232.5cm DK =E AEF △K s 221236n d n =+【分析】(1)根据折叠的性质可得,,,然后由求解即可;(2)利用“”证明即可;(3)根据题意,画出图形;①首先根据勾股定理解得,由折叠的性质可得,,易得四边形为正方形,进而可得,然后由平行线分线段成比例定理求解即可;②当点在段运动时,此阶段不能覆盖点;当点在段运动时,由图形可知,此阶段能覆盖点,求得的值,求得此阶段运动时间;当点在段运动时,在经过点之前,能覆盖点,并求得当经过点时的值,可求得此阶段运动时间,即可获得答案;(4)过点作,交于点,延长交于点,证明,由相似三角形的性质求解即可.【小问1详解】解:∵四边形为矩形,,,∴,当点运动到中点时,则有,由折叠的性质可得,,,,∴.故答案为:;【小问2详解】∵四边形为矩形,∴,,当点运动到点处时,由折叠的性质,可得,,∴,在和中,,6cm AF AB ==4cm EF BE ==90F B ==︒∠∠tan EAF EF AF∠=AAS AFG EDG △≌△10cm BD =6cm AF AB ==90AFE ABC ∠=∠=︒ABEF EF AB ∥E 0BE AEF △K E 0E C AEF △K 0CE E CD AE K AEF △K AE K CE F FH BC ⊥BC H HF AD G AGF FHE △∽△ABCD 6cm AB =8cm BC =90B Ð=°E BC 14cm 2==BE BC 6cm AF AB ==4cm EF BE ==90F B ==︒∠∠42tan 63EF EAF AF ∠===23ABCD 90B D ∠=∠=︒AB CD =E C 90F B ==︒∠∠AFAB =AF CD =AFG EDG △90F D AGF EGD AF CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴;【小问3详解】根据题意,画出图形如下:①∵四边形为矩形,,,∴,,∴,由折叠的性质可得,,,又∵,∴四边形为正方形,∴,,∴,即,解得;②根据题意,点运动过程中,恰好落在边上时,与的交点为,在点在运动的整个过程中,当点在段运动时,如下图,此阶段不能覆盖点;当点在段运动时,如下图,()AAS AFG EDG ≌ABCD 6cm AB =8cm BC =90BAD ABC ∠=∠=︒8cm AD BC ==10cm BD ===6cm AF AB ==90AFE ABC ∠=∠=︒90BAD ∠=︒ABEF 862cm DF AD AF =-=-=EF AB ∥DF DK AD BD =2810DK =2.5cm DK =E AF AD EF BD K E B C D --E 0BE AEF △K E 0E C由图形可知,此阶段能覆盖点,∵四边形为正方形,∴,∴,∴此阶段运动时间为;当点在段运动时,如下图,在经过点之前,能覆盖点,当经过点时,∵四边形为矩形,∴,∴∴,即,解得,∴,∴此阶段运动时间为.综上所述,能覆盖点的时长为;【小问4详解】如下图,过点作,交于点,延长交于点,AEF △K 00ABE F 06cm BE AB ==002cm CE BC BE =-=2cm 1cm /s 2s ÷=E CD AE K AEF △K AE K ABCD AB CD ∥DEK BAK∽DK DE BK AB = 2.510 2.56DE =-2cm DE =624cm CE CD DE =-=-=4cm 1cm /s 4s ÷=AEF △K 246s +=F FH BC ⊥BC H HF AD G则,∴四边形为矩形,∴,,,∴,设,则,由折叠的性质可得,,,,∴,∵,∴,又∵,∴,∴,即,整理可得,解得.【点睛】本题主要考查矩形的判定与性质、折叠的性质、解直角三角形、勾股定理、相似三角形的判定与性质、平行线分线段成比例定理等知识,解题关键是熟练掌握矩形的性质和折叠的性质.90BAD ABC BHG ∠=∠=∠=︒ABHG 90AGF ∠=︒6cm GH AB ==BH AG =EH BH BE AG BE AG n =-=-=-FH d =6GF d =-90AFE ABC ∠=∠=︒EF BE n ==6cm AF AB ==90AFG EFH ∠+∠=︒18090AFG FAG AGF ∠+∠=︒-∠=︒FAG EFH ∠=∠90AGF FHE ∠=∠=︒AGF FHE △∽△AF GF AG FE HE FH ==66d AG n AG n d-==-6126d n nd AG n -==221236n d n =+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年天津市河北区中考数学一模试卷 一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)计算3﹣(﹣6)的结果等于( ) A.﹣9 B.﹣3 C.3 D.9 2.(3分)2cos60°的值等于( ) A.1 B. C. D.2 3.(3分)下列图形中,中心对称图形有( )
A.1个 B.2个 C.3个 D.4个 4.(3分)地球绕太阳公转的速度约是110000千米/时,110000用科学记数法表示为( ) A.0.11×106 B.11×104 C.1.1×105 D.1.1×104 5.(3分)如图所示为某几何体的示意图,该几何体的左视图应为( )
A. B. C. D. 6.(3分)判断的值会介于下列哪两个整数之间( ) A.17,18 B.18,19 C.19,20 D.21,22 7.(3分)计算的值是( ) A.0 B.2 C.﹣1 D.1 8.(3分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为( ) A.30° B.36° C.38° D.45° 9.(3分)若关于x、y的二元一次方程组的解满足x+y>1,则实数k的取值范围是( ) A.k<0 B.k<﹣1 C.k<﹣2 D.k<﹣3 10.(3分)如图,矩形ABCD中,M为CD中点,分别以B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P,若∠PBC=70°,则∠MPC的度数为( )
A.55° B.40° C.35° D.20° 11.(3分)一次函数y1=kx+b(k≠0)与反比例函数y2=,在同一直角坐标系中的图象如图所示,若y1<y2,则x的取值范围是( )
A.﹣2<x<0或x>1 B.x>1 C.x<﹣2或0<x<1 D.﹣2<x<1 12.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点为B,直线y2=mx+n(m≠0)经过A、B两点,下列结论: ①当x<1时,有y1<y2; ②a+b+c=m+n; ③b2﹣4ac=﹣12a; ④若m﹣n=﹣5,则B点坐标为(4,0) 其中正确的是( )
A.① B.①② C.①②③ D.①②③④ 二、填空题:本大题共6小题,每小题3分,共18分.请将答案在试卷后面的答题纸的相应位置. 13.(3分)计算:2x3•(﹣3x)2的结果等于 . 14.(3分)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第 象限. 15.(3分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球50次,其中10次摸到黑球,则估计盒子中大约有白球 个. 16.(3分)命题“对顶角相等”的“条件”是 . 17.(3分)如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,若ED:DC=2:3,△DEF的面积为8,则平行四边形ABCD的面积为 .
18.(3分)如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上. (1)△ABP的面积等于 ; (2)若线段AB水平移动到A′B′,且使PA′+PB′最短,请你在如图所示的网格中, 用直尺画出A′B′,并简要说明画图的方法(不要求证明) . 三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程.请将答案在试卷后面的答题纸的相应位置. 19.(8分)解不等式组,并写出不等式组的整数解. 20.(8分)某教师就中学生对课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤2;B:3≤x≤4;C:5≤x≤6;D:x≥7.请你根据两幅图提供的信息解答下列问题: (1)本次共调查了多少名学生? (2)补全条形统计图,并判断中位数在哪一组; (3)计算扇形统计图中扇形D的圆心角的度数.
21.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C. (1)求证:CB∥PD; (2)若BC=6,sin∠P=,求AB的值. 22.(10分)如图所示,两个建筑物AB和CD的水平距离为51m,某同学住在建筑物AB内10楼M室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.(取1.73,结果保留整数)
23.(10分)某市为美化城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配成A、B两种园艺造型共60个,摆放于主干街道的两侧,搭配每个造型所需花卉数量的情况如下表所示,结合上述信息,解答下列问题: 造型花卉 甲 乙 A 80 40 B 50 70 (1)符合题意的搭配方案有几种? (2)如果搭配一个A种造型的成本为600元,搭配一个B种造型的成本为800元,试说明选用那种方案成本最低?最低成本为多少元? 24.(10分)已知:如图①,在平面直角坐标系xOy中,A(0,5),C(,0),AOCD为矩形,AE垂直于对角线OD于E,点F是点E关于y轴的对称点,连AF、OF. (1)求AF和OF的长; (2)如图②,将△OAF绕点O顺时针旋转一个角α(0°<α<180°),记旋转中 的△OAF为△OA′F′,在旋转过程中,设A′F′所在的直线与线段AD交于点P,与线段OD交于点Q,是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时点P坐标;若不存在,请说明理由.
25.(10分)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连AB、AC,点N在线段BC上运动(不与点B、C重合)过点N作NM∥AC,交AB于点M. (1)判断△ABC的形状,并说明理由; (2)当以点A、M、N为顶点的三角形与以点A、B、O为顶点的三角形相似时,求点N的坐标; (3)当△AMN面积等于3时,直接写出此时点N的坐标. 2016年天津市河北区中考数学一模试卷 参考答案与试题解析
一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)计算3﹣(﹣6)的结果等于( ) A.﹣9 B.﹣3 C.3 D.9 【解答】解:3﹣(﹣6) =3+6 =9 故计算3﹣(﹣6)的结果等于9. 故选:D.
2.(3分)2cos60°的值等于( ) A.1 B. C. D.2 【解答】解:2cos60°=2×=1. 故选A.
3.(3分)下列图形中,中心对称图形有( )
A.1个 B.2个 C.3个 D.4个 【解答】解:第一个不是中心对称图形.故错误; 第二个是中心对称图形.故正确; 第三个是中心对称图形.故正确; 第四个不是中心对称图形.故错误. 故选:B. 4.(3分)地球绕太阳公转的速度约是110000千米/时,110000用科学记数法表示为( ) A.0.11×106 B.11×104 C.1.1×105 D.1.1×104 【解答】解:将110000用科学记数法表示为:1.1×105. 故选:C.
5.(3分)如图所示为某几何体的示意图,该几何体的左视图应为( )
A. B. C. D. 【解答】解:从左边看是一个矩形,中间有一条水平平的虚线, 故选:C.
6.(3分)判断的值会介于下列哪两个整数之间( ) A.17,18 B.18,19 C.19,20 D.21,22 【解答】解:×=, ∵182=324,192=361,172=289,202=400, ∴×在18和19之间, 故选B.
7.(3分)计算的值是( ) A.0 B.2 C.﹣1 D.1 【解答】解:原式=
= =1. 故选D.
8.(3分)如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为( )
A.30° B.36° C.38° D.45° 【解答】解:∵ABCDE是正五边形, ∴∠BAE=(5﹣2)×180°÷5=108°, ∴∠AEB=(180°﹣108°)÷2=36°, ∵l∥BE, ∴∠1=36°, 故选:B.
9.(3分)若关于x、y的二元一次方程组的解满足x+y>1,则实数k的取值范围是( ) A.k<0 B.k<﹣1 C.k<﹣2 D.k<﹣3 【解答】解:由2x+y=k﹣2,得y=k﹣2﹣2x③, 把③代入3x+2y=﹣4,得 3x+2(k﹣2﹣2x)=﹣4.解得x=2k. 把x=2k代入③,得 y=﹣2﹣3k. 由x+y>1,得 2k﹣2﹣3k>1. 解得k<﹣3, 故选:D. 10.(3分)如图,矩形ABCD中,M为CD中点,分别以B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P,若∠PBC=70°,则∠MPC的度数为( )
A.55° B.40° C.35° D.20° 【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点, ∴BP=BC,MP=MC, ∵∠PBC=70°, ∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°, 在长方形ABCD中,∠BCD=90°, ∴∠MCP=90°﹣∠BCP=90°﹣55°=35°, ∴∠MPC=∠MCP=35°. 故选:C.
11.(3分)一次函数y1=kx+b(k≠0)与反比例函数y2=,在同一直角坐标系中的图象如图所示,若y1<y2,则x的取值范围是( )
A.﹣2<x<0或x>1 B.x>1 C.x<﹣2或0<x<1 D.﹣2<x<1 【解答】解:由函数图象可知,当x<﹣2或0<x<1时,一次函数的图象在二次函数图象的下方. 故选C.