用比例解决问题
用比例解决问题练习题带答案.doc

用比例解决问题练习题带答案1、张大妈家上个月用了8吨水,水费是12. 8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m, 15天可以修完。
结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5 itf需要方砖120 块,照这样计算,再铺32 m2,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5: 4*4二X: 8016X-2000X-2000/16X-125需要125块9、制作一批零件,甲单独完成要8小时,己知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?己知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3, o设乙的效率为x。
则:x-4:3可求得x=*3/4=3/32则乙单独工作需要时间为2/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?X5-1200-150x=304x=1201200/120-10用比例解决问题1、张大妈家上个月用了8吨水,水费是12. 8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m, 15天可以修完。
六年级下册数学—14用比例解决问题(有解释)

(3-0.6)x=3×96
2.4x÷2.4=288÷2.4
x=120
答:这堆煤现在可以烧120天。
【点睛】本题考查了用反比例解决问题,积一定是反比例关系。
6.444千米
【分析】设A、B两城相距x千米,根据路程÷时间=速度(一定),列出正比例算式,解答即可。
【详解】解:设A、B两城相距x千米。
(3)在(2)成立的基础上,若圆柱的底面半径为10厘米,则放入7块铁块后,容器内有水多少毫升?
40.学校图书馆有科技书、文艺书和故事书,其中科技书与文艺书的比是4∶9,科技书与故事书的比是2∶3,故事书有900本,文艺书有多少本?
41.某部队行军演习,4小时走了22.4km,照这样的速度又走了6小时,一共走了多少km?(用比例知识来解)
34.机械厂工人8小时加工440个机器零件,照这样计算,要加工1100个需要多少小时。
35.某车队往四川运送一批救灾物资。原计划每小时行60千米,6.5小时到达,实际每小时行了78千米。照这样计算,行完全程需要多少小时?(用比例解)
36.生产一批零件,计划20天完成任务,由于实际每天比原计划多生产150个,结果提前5天完成任务,这批零件有多少个?(列方程解)
37.学校发起“圆贫困地区孩子一个读书梦”爱心捐书公益活动,短短一周时间,就收到了同学们捐赠的大量书籍。学校决定将书打包后邮寄,现要求每包内装书的本数相同,用这批书的 打包了14份还多42本,剩下的书连同第一次余下的刚好又打包了11份。这批书共有多少本?
38.大华把3米长的竹竿直立在地上,测得它的影子长是1.5米,同时测得一棵树影子长3.8米,求这棵树的高?
(4)解:设需要药液 ,需要水 ;
50x=816-x
《用比例解决问题》数学教案

《用比例解决问题》数学教案用比例解决问题篇一:概述一、教学目标:1. 理解比例的概念,并能够用比例解决实际问题;2. 学会比例的相似性质;3. 掌握比例中的常用计算方法。
二、教学重点:掌握比例中的常用计算方法。
三、教学难点:理解比例的相似性质。
四、教学方法:课堂教学、合作学习、问题解决法。
五、教学辅助工具:教学板、教学PPT。
六、教学过程:1.导入(15分钟)老师通过提问的方式引入本节课的主题:你们知道什么是比例吗?为什么要学会用比例解决问题?带着这些问题,让学生们展开讨论。
然后,老师给出比例的定义和应用场景,并提供一些生活中常见的例子,如计算物体的放大缩小比例、解决食谱问题等。
2.探究(45分钟)老师将学生分成小组,每个小组选择一个自己感兴趣的实际问题。
然后,引导学生用比例的方法解决问题。
学生可以通过绘图、列式、图表等方式解决问题,并进行讨论和比较。
3.总结(10分钟)在学生完成探究任务后,老师与学生一起对比例的解决方法进行总结,并强调比例的相似性质。
同时,老师提供一些常用的计算方法,如比例乘法、比例除法等,及时纠正学生可能存在的错误观念。
4.拓展(15分钟)为了巩固和拓展学生的知识,老师提供一些拓展问题,让学生应用比例解决。
例如:假设手机屏幕宽度是6cm,现在要将其等比例缩小为4cm,请问缩小后的屏幕高度是多少?5.练习(20分钟)老师布置一些练习题,让学生在课堂上完成,然后进行讲解和订正。
题目可以包括比例计算、应用题等。
6.作业(5分钟)布置相应的作业,让学生在家进行完成,并鼓励他们多多应用比例解决问题。
篇二:课堂示范一、教学目标:1. 理解比例的概念,并能够用比例解决实际问题;2. 学会比例的相似性质;3. 掌握比例中的常用计算方法。
二、教学重点:掌握比例中的常用计算方法。
三、教学难点:理解比例的相似性质。
四、教学方法:课堂教学、合作学习、问题解决法。
五、教学辅助工具:教学板、教学PPT。
用比例解决问题 《比例的应用》教学设计(优秀8篇)

用比例解决问题《比例的应用》教学设计(优秀8篇)作为一名老师,可能需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果较优的原则吗,是课件开发质量高低的关键所在。
教学设计应该怎么写才好呢?它山之石可以攻玉,如下是作者人美心善的小编为大伙儿收集整理的8篇《比例的应用》教学设计,欢迎阅读。
《用比例解决问题》教学反思篇一用比例解决问题是在学生学习正比例、反比例关系的基础上来解决归一、归总应用题。
通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。
成功之处:1、抓住用比例解决问题的关键,体会用比例解决问题的优势。
在教学中着重让学生找出题目中两种相关联的量,判断这两种量是否成比例,成什么比例。
在例5中根据8吨水的水费是12、8元,可以得出每吨水的单价一定,所以水费和用水的吨数这两种量成正比例。
也就是说,两家的水费和用水吨数的比值相等。
因此可以写成y/x=y/x的形式。
而在例6中根据每包20本和18包,可以得出总本数一定,所以包数和每包的本数成反比例。
也就是说,每包的本数和包数的乘积相等,因此可以写成xy=xy的形式。
2、理清思路,归纳概括解题步骤。
在教学完两个例题之后,让学生思考怎样用比例来解决问题,步骤是怎样的。
通过学生的归纳总结得出:一是解设未知数x。
二是找到两种相关联的量,判断它们是否成比例,成什么比例。
三是列出比例式子形如:y/x=y/x(成正比例)xy=xy(成反比例)。
四是解比例检验。
不足之处:1、学生对于算术法掌握的较牢,有的'学生不愿意接受用比例来解决问题,没有体会到用比例解决问题的优势,主要受定势思维的影响。
2、个别学生没有掌握住用正比例解决问题用y/x=y/x的形式,用反比例解决问题用xy=xy 的形式,导致不会列式子。
用比例解决问题教研记录(3篇)

第1篇一、教研背景比例是数学中重要的概念之一,对于培养学生的逻辑思维能力和解决实际问题的能力具有重要意义。
为了提高学生在比例问题解决方面的能力,我校数学教研组于2021年10月15日开展了以“比例解决问题”为主题的教学研讨活动。
本次教研活动旨在通过案例分析、教学策略探讨、课堂实践等方式,提升教师对比例解决问题教学的理解和实施能力。
二、教研内容1. 案例分析(1)案例一:一辆汽车行驶了3小时,行驶了270公里,求这辆汽车的速度。
(2)案例二:一个班级有男生和女生共45人,男生人数是女生的2倍,求男生和女生各有多少人。
2. 教学策略探讨(1)注重基础知识讲解:教师在教学过程中要重视比例的定义、性质以及比例的应用,让学生掌握比例的基本知识。
(2)加强练习:通过设计多样化的练习题,让学生在练习中巩固所学知识,提高解决比例问题的能力。
(3)注重实际应用:将比例问题与实际生活相结合,让学生在解决实际问题的过程中运用比例知识。
(4)引导学生总结归纳:在教学中,教师要引导学生总结归纳比例问题的解题思路和方法,提高学生的思维能力和解决问题的能力。
3. 课堂实践(1)教师组织学生进行小组讨论,分析案例一和案例二,总结比例问题的解题方法。
(2)教师设计一道与实际生活相关的比例问题,让学生进行小组合作,共同解决。
(3)教师针对学生在解决问题过程中遇到的问题进行点评和指导,帮助学生提高解题能力。
三、教研成果1. 教师对比例解决问题教学有了更深入的理解,能够根据学生的实际情况,设计合理的教学方案。
2. 学生在解决比例问题方面的能力得到提高,能够运用比例知识解决实际问题。
3. 教师之间的交流与合作得到加强,共同探讨教学方法和策略,提高教学质量。
四、反思与改进1. 教师在教学中要注重培养学生的逻辑思维能力,引导学生从多角度思考问题。
2. 教师要关注学生的个体差异,因材施教,提高学生的学习兴趣。
3. 教师要善于运用多媒体等教学手段,丰富教学内容,提高教学效果。
六年级数学下册《用比例解决问题》练习题及答案解析

六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
六年级数学下册 《用比例解决问题》练习题

1.小亮半小时能打900个字,照这样的速度,往电脑里输入一篇1500字的文章,小亮需要多长时间?解:设小亮需要x分钟。
半小时=30分1500:x=900:30900x=1500×30x=50答:小亮需要50分钟。
2.某女裤工厂计划生产6500条女裤,3天已经生产了1500条,按照这样的工作效率,剩下的女裤还需要多少天能生产完?解:设剩下的女裤还需要x天能生产完。
6500-1500=5000(条)5000:x=1500:31500x=5000×3x=10答:剩下的女裤还需要10天能生产完。
3.100千克黄豆可以榨豆油13千克,按照这样的出油率,要榨豆油6.5吨,需黄豆多少吨?解:设需黄豆x吨。
100:13=x:6.513x=100×6.5x=50答:需黄豆50吨。
4.小明在100m短跑到达终点时领先小刚10m,领先小华15m。
如果小刚和小华按原来的速度继续跑向终点,那么当小刚到达终点时,小华还差多少米到达终点?解:设当小刚到达终点时,小华还差x米到达终点100-10 100-15=100 100-x18 17=100100-xx=50 9答:当小刚到达终点时,小华还差509米到达终点。
5.一张照片长4厘米,宽3厘米,如果按4∶1的比把这张照片放大,放大后照片的长、宽分别是多少厘米?如果要使放大后照片的宽是9厘米,那么放大后照片的长应是多少厘米?4×4=16(厘米)3×4=12(厘米)解:设放大后照片的长是x厘米4∶3=x∶93x=4×93x=363x÷3=36÷3x=12答:放大后照片的长是16厘米,宽是12厘米。
如果要使放大后照片的宽是9厘米,那么放大后照片的长应是12厘米。
6.客车和货车同时从甲,乙两地相向开出,客车每小时行全程的1 4,货车每小时行60千米,相遇时客车和货车所行路程的比是3∶2。
甲、乙两地相距多少?由分析可得:两车的速度比是3 2客车的速度是:60×32=90(千米/时)甲、乙两地相距:90÷14=360(千米)答:甲、乙两地相距360千米。
人教版数学六年级下册用比例解决问题教学设计(精推3篇)

人教版数学六年级下册用比例解决问题教学设计(精推3篇)〖人教版数学六年级下册用比例解决问题教学设计第【1】篇〗教学设计教学目标1、使学生理解什么叫解比例,掌握解比例的方法,会解比例。
2、使学生能应用解比例的知识解决生活中的数学。
3、使学生感悟数学知识的魅力,感受到数学就在我们身边。
学情分析学生掌握比例的基本性质的基础上学习解比例。
重点难点掌握解比例的方法。
教学过程活动1【导入】导入新课1、上节课我们学习了一些比例的知识,谁能说说我们都学了比例的哪些知识(什么叫比例,比例的基本性质,应用比例的基本性质可以做什么.)2、好,下面我们就用比例的知识来解决一个问题,出示:6:2=( ):3你是怎样想的你的依据是什么师:如果我们知道比例中的任何三项就可以求出比例中的另外一个未知项。
这就是我们今天要研究的内容——解比例(板书课题)。
请同学们打开书第42页,阅读理解第一自然段,什么叫解比例。
(指名回答,并要求学生在书上标注,同时板书意义。
)教学意图:一是唤起学生对已有知识经验的回忆,索取对本节课相关的知识点;二是搭建从已知走向未知的桥梁,为学习新知提供合适的空间。
活动2【讲授】新授内容教学例2:师:有谁知道法国巴黎标志性建筑是什么哪些同学去过那你们知道它大概有多高师:老师告诉你们这座塔的高度是320米,在北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔的高度的比是1:10,同学们想知道这座模型的高是多少米吗出示例 2.那我们就用比例的知识来解决这个问题.(1)学生读题,理解题目里的条件和问题。
(2)学生试做,师生共评,指名板演。
分析:题目中的1:10你是怎样理解的(模型:实物=1:10)列比例需要四项,未知的项要怎样(设未知数X) 怎样用我们学过的知识解比例(先试做再小组交流,然后我们求同存异,总结出你们的方法。
指名板演,老师规范格式,对比方法。
两种方法:利用比例的基本性质改写成等积式;利用求比值方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用比例知识解决问题
1、修一条长12千米的公路,开工3天修了1.5千米。
照这样计算,修完这条路还要多少天?
2、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?
3、亮亮家造了新房,准备用边长是0.4米的正方形地砖装饰客厅地面,这样需要180块,装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?
4、兰州到乌鲁木齐的铁路长约1900千米,在比例尺是1:40000000的地图上,它的长是多少?
5、甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
6、运一批黄沙,计划用7辆车运,每天可运84吨,由于工程任务紧迫,实际运送时,同样的车增加了12辆,现在每天可运多少吨?
7、一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完;实际每天比原计划多铺25%,多少天可铺完这段铁路?
8、工人装一批电线杆,计划每天装12根,30天可以装
完。
实际每天多装6根,几天能完成任务?
9、农具厂生产一批农具,原计划每天生产120件,28天可以完成。
实际每天少生产了
20件,实际几天才能完成?
10、制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。
现在有1590个零件的任务,分配给他们3人,且要求在相同时间内完成,每人应该分配到多少个零件的任务?
11、客车从甲地行驶到乙地需要6小时,货车每小时行驶36千米。
现在客、货两车分别从甲、乙两地同时相向而行,相遇时客车与货车所行路程的比是5﹕3。
求甲、乙两地相距多少千米?。