用比例解决实际问题(练习题)
用比例解决问题练习题带答案.doc

用比例解决问题练习题带答案1、张大妈家上个月用了8吨水,水费是12. 8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m, 15天可以修完。
结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5 itf需要方砖120 块,照这样计算,再铺32 m2,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5: 4*4二X: 8016X-2000X-2000/16X-125需要125块9、制作一批零件,甲单独完成要8小时,己知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?己知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。
甲乙效率比4:3, o设乙的效率为x。
则:x-4:3可求得x=*3/4=3/32则乙单独工作需要时间为2/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。
如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?X5-1200-150x=304x=1201200/120-10用比例解决问题1、张大妈家上个月用了8吨水,水费是12. 8元。
李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。
如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m, 15天可以修完。
小学6年级数学比例练习题

小学6年级数学比例练习题1. 问题:小明买了一盒饼干,共有4袋饼干,每袋重量相同。
他把两袋饼干分给小红,两袋饼干分给小明的妹妹。
已知小红得到的饼干重量是1.5千克,求小明妹妹得到的饼干重量是多少?2. 解题思路:首先,我们需要知道小明一共买了多少千克的饼干。
由于他买了四袋饼干,每袋重量相同,所以可以设每袋饼干的重量为x千克。
那么,小明一共买了4x千克的饼干。
然后,我们需要知道小红得到的饼干重量与小明买的饼干重量之间的比例关系。
已知小红得到的饼干重量是1.5千克,所以可以写出比例:1.5 / 4x。
最后,根据比例关系,我们可以得到小明妹妹得到的饼干重量与小红得到的饼干重量之间的比例关系,即:2x / 1.5 = ? / 1.5。
通过求解等式,我们可以得到小明妹妹得到的饼干重量。
3. 解题过程:已知比例:1.5 / 4x = 2x / 1.5解方程:1.5 * 2x = 4x * 1.53x = 6x3x - 6x = 0-3x = 0x = 0由此可知,我们得到的解是x = 0,那么小明买的饼干每袋重量为0千克。
由于饼干的重量不可能为0千克,所以无法确定小明妹妹得到的饼干重量。
4. 结论:由于无法确定小明妹妹得到的饼干重量,所以无法回答题目中的问题。
可能存在题目中给定的数据有误,或解题过程中存在错误。
需要重新检查题目或解题思路,找出错误的地方并进行修改。
注意:以上为本文解题过程,通过分析题目中所给的数据和要求,通过数学方法进行推导和计算,并得出结论。
解比例专项练习题六年级

解比例专项练习题六年级比例是数学中非常重要的概念,它能帮助我们解决很多实际问题。
在解比例练习题中,我们需要根据已知条件恢复出这个比例关系。
本文将为大家提供一些六年级解比例专项练习题,通过练习加深对比例的理解和应用。
1. 题目一:小明用了8元钱买了20本故事书,那么他用了多少钱可以买16本相同的故事书?解法:首先我们可以求出每本故事书的价格,即8元/20本 = 0.4元/本。
然后我们可以用相同的方法求出16本故事书的价格,即0.4元/本* 16本 = 6.4元。
因此,小明用6.4元可以买16本相同的故事书。
2. 题目二:书架上有24本英语书和16本数学书,如果再加上8本科学书,那么英语书和科学书的比例是多少?解法:首先我们可以求出英语书和数学书的比例,即24本英语书/16本数学书 = 1.5。
然后我们可以加上科学书,即24本英语书/(16本数学书+8本科学书)= 1。
因此,英语书和科学书的比例是1:1。
3. 题目三:班级里有32名男生和24名女生,如果要求男生和女生的比例是1:2,那么班级一共有多少名学生?解法:假设班级一共有x名学生,根据男生和女生的比例,我们可以得到32/x = 1/3。
通过交叉相乘得到32 * 3 = x,即班级一共有96名学生。
4. 题目四:某种冰激凌的单价是2元,小明买了5个冰激凌,小红买了8个冰激凌,那么小明买的冰激凌数量和小红买的冰激凌数量的比例是多少?解法:首先我们可以求出小明买的冰激凌数量和小红买的冰激凌数量的比例,即5/8。
注意到这个比例不能再进行化简,所以小明买的冰激凌数量和小红买的冰激凌数量的比例是5:8。
5. 题目五:甲、乙两个小组比赛,甲组比赛的时间是2小时,乙组比赛的时间是3小时,如果甲组比赛的时间和乙组比赛的时间的比例是2:3,那么甲组比赛的时间是多少分钟?解法:将甲组比赛的时间转换为分钟数,即2小时 * 60分钟/小时 = 120分钟。
根据甲组比赛时间和乙组比赛时间的比例,我们可以得到120分钟/x = 2/3。
用正比例解决问题练习题

用正比例解决问题练习题
1、判断下面每题中的两种量成什么比例关系?
1)、打字速度一定,打字的总数量和时间;
2)、三角形的面积一定,底和高;
3)、x=3y x和y
4)、每块砖的面积一定,砖的块数和总面积;
5)、速度一定,路程和时间。
综合练习
1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
2、一辆汽车2小时行驶140千米,照这样的速度,甲乙两地之间的公路长350千米,从甲地到乙地需要行驶多少小时?
3、小丽想知道一大捆铁丝的长度,从中截取了5m长的一段,测得其质量为400g。
现称得这捆铁丝的质量为6kg。
这捆铁丝长多少米?
4、小梁在旗杆旁立一根2米高的竹竿,量得竹竿影长为1.2米。
在同时同地,测得旗杆的影长是
6.6米。
求旗杆实际长几米?
发展练习
1、先想一想:下面各题中存在着什么比例关系?再填上条件和问题,并用比例知识解答。
①李明5天看了240页故事书,照这样计算,____ ___?
②王师傅4小时生产了200个零件, ________ ,________ ?
2、、一辆汽车从甲地出发去乙地,2小时行驶140千米,照这样的速度,这辆汽车又行驶3小时到达乙地,甲乙两地之间的相距多少千米?
1 / 1。
六年级数学下册《用比例解决问题》练习题及答案解析

六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
解比例应用题练习题(精选92道应用题)

解比例应用题1、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?2、甲、乙两地相距240 千米,画在比例尺是1 ∶3000000 的地图上,长度是多少厘米?3、在一幅地图上,用 3 厘米的线段表示实际距离600 千米。
量得甲、乙两地的距离是4.5 厘米,甲、乙两地的实际距离是多少千米?4、运来一批纸装订成练习本,每本36 页,可订 40 本,若每本 30 页,可订多少本?5、在一幅比例尺是1: 30000 的地图上,量得东、西两村的距离是12.3 厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120 千米,在一幅比例尺是1:6000000 的地图上,应画多少厘米?7、一幅地图,图上的4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?8、在一幅比例尺是1 :4000 的平面图上,量得一块三角形的菜地的底是12 厘米,高是 8 厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2 小时行驶 130 千米。
照这样的速度,从甲地到乙地共行驶5 小时。
甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行 64 千米, 5 小时到达。
如果要 4 小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360 米,30 天可以修完。
如果要提前5 天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120 米,8 天可以修完;如果每天修150 米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12 千米,开工 3 天修了 1.5 千米。
照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120 米,8 天可以修完;如果每天多修30 米,几天可以修完?(用比例方法解)15、小明买4 本同样的练习本用了 4.8 元,138 元可以买多少本这样的练习本 ?(用比例解答)16、工厂有一批煤,计划每天烧2.4 吨,42 天可以烧完。
六年级数学下册 《用比例解决问题》练习题

1.小亮半小时能打900个字,照这样的速度,往电脑里输入一篇1500字的文章,小亮需要多长时间?解:设小亮需要x分钟。
半小时=30分1500:x=900:30900x=1500×30x=50答:小亮需要50分钟。
2.某女裤工厂计划生产6500条女裤,3天已经生产了1500条,按照这样的工作效率,剩下的女裤还需要多少天能生产完?解:设剩下的女裤还需要x天能生产完。
6500-1500=5000(条)5000:x=1500:31500x=5000×3x=10答:剩下的女裤还需要10天能生产完。
3.100千克黄豆可以榨豆油13千克,按照这样的出油率,要榨豆油6.5吨,需黄豆多少吨?解:设需黄豆x吨。
100:13=x:6.513x=100×6.5x=50答:需黄豆50吨。
4.小明在100m短跑到达终点时领先小刚10m,领先小华15m。
如果小刚和小华按原来的速度继续跑向终点,那么当小刚到达终点时,小华还差多少米到达终点?解:设当小刚到达终点时,小华还差x米到达终点100-10 100-15=100 100-x18 17=100100-xx=50 9答:当小刚到达终点时,小华还差509米到达终点。
5.一张照片长4厘米,宽3厘米,如果按4∶1的比把这张照片放大,放大后照片的长、宽分别是多少厘米?如果要使放大后照片的宽是9厘米,那么放大后照片的长应是多少厘米?4×4=16(厘米)3×4=12(厘米)解:设放大后照片的长是x厘米4∶3=x∶93x=4×93x=363x÷3=36÷3x=12答:放大后照片的长是16厘米,宽是12厘米。
如果要使放大后照片的宽是9厘米,那么放大后照片的长应是12厘米。
6.客车和货车同时从甲,乙两地相向开出,客车每小时行全程的1 4,货车每小时行60千米,相遇时客车和货车所行路程的比是3∶2。
甲、乙两地相距多少?由分析可得:两车的速度比是3 2客车的速度是:60×32=90(千米/时)甲、乙两地相距:90÷14=360(千米)答:甲、乙两地相距360千米。
小学数学解比例问题练习题

小学数学解比例问题练习题解比例问题是小学数学中重要的内容之一,下面是一组关于解比例问题的练习题,希望对学生们的学习有所帮助。
一、填空题1. 若甲队需要 9 天完成一项工作,乙队需要 6 天完成相同的工作,那么乙队比甲队每天多完成的工作量是 ______。
2. 一桶苹果汁由苹果浓缩液与水按比例混合而成,若苹果浓缩液有3 升,水有 2 升,则这桶苹果汁一共有 ______ 升。
3. 一条铁链长 5 米,现将其分成相等的若干段,每段长 0.2 米,共分成了 ______ 段。
4. 一种饲料中混合了大米和小麦,其中大米和小麦的比例为 5:3。
若混合饲料共有 24 千克,其中大米的重量占 ______ 千克。
5. 某种酒精溶液中,酒精和水的比例是 7:3。
若有 100 毫升的这种溶液,其中酒精的体积占 ______ 毫升。
二、计算题1. 甲乙两队比赛,甲队的男生有 15 人,女生有 10 人。
乙队的男生有 18 人,女生有 12 人。
那么甲队男女生人数的比和乙队男女生人数的比相等吗?2. 三个苹果树分别需要 18 天、15 天和 30 天才能结出果实。
如果这三棵树同时开始结果,那么它们几天后能同时结出果实?3. 学校食堂做的冰激凌,酸奶和布丁的售价比为 4:3:2。
如果一份酸奶的价格为 8 元,那么一份冰激凌的价格是多少?4. 某电影院有 480 个座位,根据统计,男性观众与女性观众的比例为 4:3,男性观众的人数占全部观众人数的几分之几?5. 书店陈列了一堆书,其中语文书、数学书和英语书的比例为 2:3:4,如果数学书有 30 本,那么一共陈列了几本书?三、解决问题1. 小明去水果市场买苹果,商贩告诉他,这一籃苹果中,新鲜苹果和烂苹果的比例为3:1,如果小明打开籃子,发现有12 个苹果是烂的,那么苹果籃中共有几个苹果?2. 一艘河轮从 A 地到 B 地需要 3 小时,从 B 地继续到 C 地又需要2 小时,而且两段航程的速度是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例知识应用题
1、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?
2、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?
3、用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?
4、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?
5、一块长方形钢板,长与宽比是5:3,已知长是75厘米,宽是多少厘米?
6、一种农药,药液与水重量的比是1:1000。
①30克药液要加水多少克?
②如果用4000克水,要用多少克药液?
7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?
8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?
9、小新用积蓄的钱买铅笔,买9分钱一支的正好买8支,买6分钱一支的可以买多少支?
10、工人师傅制造一批器零件,每个零件所用的时间由原来的8分钟减少到2.5分钟,过去每天生产这种零件60个,现在每天能生产多少个?
11、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?
12、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?
13、一艘轮船从甲地开往乙地每小时航行20千米,15小时到达,从乙地返回甲地每小时航行25千为,需要多少小时?
14、用一批纸装成同样大小的练习本,如果每本18而,可装订200本,如果每本16而,可以装订多少本?
15、一间房五铺地砖,用面只是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?
16、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?
17、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?
18、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?
19、.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?
20、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?。