圆周运动的临界问题

合集下载

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态,分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2 r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.例、如图所示,质量相等的A、B物体置于粗糙的圆盘上,圆盘的摩擦因数为μ,A、B通过轻绳相连,随圆盘一起做圆周运动且转动的角速度ω由0逐渐增大,A的转动半径为r,B的转动半径为2r,重力加速度为g,分析:①A、B滑动的临界角速度大小;①此时若A、B间轻绳被拉断,分析A、B的运动情况.【解析】①方法一:整体法:2μmg=mrω2+m·2r·ω2方法二:等效质点法:质心在AB的中点处【例题】如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑最大静摩擦力提供向心力:2μmg =2m·32r·ω2,故临界角速度:ω=μg 3r. ①绳断瞬间:A 的向心力小于最大静摩擦力,故仍做圆周运动;B 的向心力大于最大静摩擦力,B 做离心运动.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例、如图所示,用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,重力加速度为g ,分析:F T 随ω2变化的图像.【解析】情况一:a ≤g tan θ,小球与锥面接触,对小球受力分析,将向心加速度分解到沿绳方向和垂直绳方向.则有:T =m g cos θ+ml sin 2θω2,N =mg sin θ-12ml sin2θω2情况二:a >g tan θ,小球离开锥面,绳力T =mlω2 故T 与ω2的函数图像如图所示.【例题】一转动轴垂直于一光滑水平面,交点O 的上方h 处固定一细绳的一端,细绳的另一端固定一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动,并在光滑水平面上做匀速圆周运动,如图所示,要使小球不离开水平面,转动轴的转速的最大值是(重力加速度为g )( )A.12πg hB.πghC.12πg l针对训练题型1:摩擦力有关的临界问题1.如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g 取10m/s2)(多选)2.如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω<时,绳子没有弹力B.当ω>时,A、B仍相对于转盘静止C.ω在<ω<范围内时,B所受摩擦力大小不变D.ω在0<ω<范围内增大时,A所受摩擦力大小先不变后增大(多选)3.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆外C.此时圆盘的角速度为D.此时烧断绳子,A仍相对盘静止,B将做离心运动4.如图所示,表面粗糙的水平圆盘上叠放着质量相等的两物块A、B,两物块到圆心O的距离r=0.2m,圆盘绕圆心旋转的角速度ω缓慢增加,两物块相对圆盘静止可看成质点.已知物块A与B间的动摩擦因数μ1=0.2,物块B与圆盘间的动摩擦因数μ2=0.1,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,则下列说法正确的是()A.根据f=μF N可知,B对A的摩擦力大小始终等于圆盘对B的摩擦力大小B.圆盘对B的摩擦力大小始终等于B对A的摩擦力大小的2倍C.圆盘旋转的角速度最大值ωmax=rad/sD.如果增加物体A、B的质量,圆盘旋转的角速度最大值增大(多选)5.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg的A、B两个物块,B物块用长为0.25m的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计。

圆周运动——临界问题

圆周运动——临界问题
当v>v0,杆对球有向下的拉力。
mg
F1
此时最低点的速度为:
问:当v2的速度等于0时,杆对球的支持力为多少?
F支=mg
此时最低点的速度为:
结论:使小球能做完整的圆周运动在最低点的速度
拓展:物体在管型轨道内的运动
如图,有一内壁光滑、竖直放置的管型轨道,其半径为R,管内有一质量为m的小球有做圆周运动,小球的直径刚好略小于管的内径。
四、圆周运动的周期性 利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。
例:长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,则下列说法中正确的是:( ) A.小球过最高点时速度为零 B.小球开始运动时绳对小球的拉力为m C.小球过最高点时绳对小的拉力mg D.小球过最高点时速度大小为
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A、B的质量均为m,它们到转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求: (1)当细线上开始出现张力,圆盘的角速度; (2)当A开始滑动时,圆盘的角速度
思考:在最高点时,什么时候外管壁对小球有压力,什么时候内管壁对小球有支持力什么时候内外管壁都没有压力?小球在最低点的速度v至少多大时,才能使小球在管内做完整的圆周运动?

21圆周运动中的临界问题

21圆周运动中的临界问题

§21圆周运动中的临界问题【知识要点】在竖直平面内的圆周运动,是典型的变速圆周运动,对于物体在竖直平面人内的做变速圆周运动的问题,中学物理中主要是研究物体通过最高点和最低点的情况,并且经常出现临界状态。

1、圆周运动中的临界问题的分析方法:首先选定,其次明确,正确对研究对象受力分析,然后确定列出。

由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。

2、特例:(1)没有物体支承的物体,在竖直平面内做圆周运动通过最高点的情况:(a)临界条件:。

(b)能过最高点条件:。

(c)不能最高点的条件:。

问:在最低点能否出现这样的情况呢?(2)有物体支承的物体,在竖直平面内做圆周运动通过最高点的临界条件:。

(3)如图所示,图中的小球过最高点时(或者圆形管道),管道或圆环对球的产生力的情况:(a)当v= ,杆对球表现为。

大小。

(b)当,杆对球表现为。

大小。

(c)当v= ,杆对球表现为。

大小。

(d)当v> ,杆对球表现为。

大小。

【例题解析】1、绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量为m=0.5kg,绳长l=60cm,求:(1)最高点水不流出的最小速率?(2)水在最高点速率v=3m/s时,水对桶底的压力?2、如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内的作圆周运动,求:(1)小球在最高点时速率v A为多大时,才能使杆对小球m的作用力为零?(2)如m=0.5kg,L=0.5m,v A=0.4m/s,则在最高点A和最低点B时,杆对小球m的作用力各是多大?是推力还是拉力?(3)当小球在最高点时的速度为4m/s时,杆对球的作用力是多大?是推力还是拉力?3、如图所示,光滑圆形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量为m,半径比r略小的光滑小球以水平初速度v0射入圆管,(1)若要小球能从C端出来,初速度v0多大?(2)在小球从C端出来瞬间,对管壁压力有哪几种典型情况,初速度v0各应满足什么条件?4、如图所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?【例题解析】1、所示,滑雪者滑到圆弧形的山坡处,圆弧的半径为R ,长度是圆周长的1/4。

圆周运动中的临界问题专题(最新整理)

圆周运动中的临界问题专题(最新整理)

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

2.2.2圆周运动的临界问题

2.2.2圆周运动的临界问题

v2 mg± FN=m R v= 0 即 F 向=0 FN=mg v≥ 0
过最高点 的条件
在最高点的速度 v≥ gR
竖直面内圆周运动类问题的解题技巧 (1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高 点的临界条件不同。 (2)确定临界点: 抓住绳模型中最高点 v≥ gR及杆模型中 v≥0 这 两个临界条件。 (3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和 最低点的运动情况。 (4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛 顿第二定律列出方程,F 合=F 向。 (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态 联系起来列方程。
物理情景 实例
最高点无支撑 球与绳连接、水流星
管道中运动等
图示
受力
异 同 点 受力 示意图 特征
除重力外,物体受到 除重力外,物体受到的弹 的弹力方向:向下或 力方向:向下、等于零或 等于零 向上
力学 方程 异同点 临界 特征
v2 mg+FN=m R F N= 0 v2 min mg=m R 即 vmin= gR
圆周运动的临界问题
• 突破一 •
水平面内圆周运动的临界问题
水平面内圆周运动的临界极值问题通常有两类,一类
是与摩擦力有关的临界问题,一类是与弹力有关的临界问
题。
1.与摩擦力有关的临界极值问题 练习册P3212题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到 mv 2 最大静摩擦力, 如果只是摩擦力提供向心力, 则有 Fm= r , 静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其 他力,如绳两端连物体,其中一个在水平面上做圆周运动 时,存在一个恰不向内滑动的临界条件和一个恰不向外滑 动的临界条件,分别为静摩擦力达到最大且静摩擦力的方 向沿半径背离圆心和沿半径指向圆心。

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。

如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。

2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。

(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。

a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。

例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。

当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。

解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。

(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

圆周运动中的临界问题

圆周运动中的临界问题

答案:C
图 D40
图 Z4-3
(1)当 v1= g6L时,求细线对小球的拉力大小.
(2)当 v2= 3g2L时,求细线对小球的拉力大小. 解:小球离开圆锥面的临界条件为圆锥体对小球的支持力
FN=0,如图 Z4-4 甲所示,设此时小球的线速度为 v0,则 F=mvr02=mLsivn0230°=mgtan 30°
解得 v0=
FT′sin α=Lmsivn22α
FT′cos α=mg
解得
FT′=2mg
FT
1 2
mg舍去
.
【触类旁通】 1.(多选)如图 Z4-5 所示,叠放在水平转台上的物体 A、B、 C 能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为 3m、2m、m,A 与 B、B 和 C 与转台间的动摩擦因数都为μ,A 和 B、C 离转台中心的距离分别为 r、1.5r.设本题中的最大静摩
圆周运动中的临界问题
突破一 水平面内的匀速圆周运动中的临界问题
水平面内圆周运动的临界极值问题通常有两类,一类是与 摩擦力有关的临界问题,一类是与弹力有关的临界问题.
1.与摩擦力有关的临界极值问题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到 最大静摩擦力. 如图 Z4-1(a)所示:汽车转弯时,只由摩擦力提供向心力,
Ffm=mrv2.
图(b):绳两端连物体,其中一个在水平面内做圆周运动时, 存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界 条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离 圆心和沿半径指向圆心.
图(c):两个物体分处转动中心两侧时,临界条件为两物体 同时发生相对滑动,且摩擦力方向同向.
A.a 绳的张力不可能为零 B.a 绳的张力随角速度的增大而增大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动的临界问题
圆周运动的临界问题
1.圆周运动中的临界问题的分析方法
首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.
2.竖直平面内作圆周运动的临界问题
竖直平面内的圆周运动是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。

(注意:绳对小球只能产生拉力)
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用
mg =2
v m R
v 临界
(2)小球能过最高点条件:v
(当v
(3)不能过最高点条件:v
(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。

)(1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力)(2)当0< v
F 随v 增大而减小,且mg > F > 0(F 为支持力)(3)当v
时,F =0
(4)当v
F 随v 增大而增大,且F >0(F 为拉力)
注意:管壁支撑情况与杆一样。

杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.(3)拱桥模型
如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v =rg 时,F N =0,物体将飞离最高点做平抛运动。

若是从半圆顶点飞出,则水平位移为s =
2R 。

a b
图6-11-2 b
竖直平面内作圆周运动的临界问题
(1)绳模型
1、如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能()
A .是拉力
B .是推力
C .等于零
D .可能是拉力,可能是推力,也可能等于零
2、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直
平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取
10m/s 2
,求:
(1) 在最高点时,绳的拉力? (2) 在最高点时水对小杯底的压力?
(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?
(2)杆模型
1、长度为L =0.5 m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g 取10m/s 2,则此时细杆OA 受到()
A.6.0N 的拉力
B.6.0N 的压力
C.24N 的拉力
D.24N 的压力
2、如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正
确的有:
A .小球通过最高点的最小速度为
B .小球通过最高点的最小速度为零
C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力
D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力
3、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,
为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .
g mr m M + B .g mr m
M + C .
g mr m M - D .
mr
Mg
(3)拱桥模型
1、如图4-3-1所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球,当汽车以某一速率在水平地面上匀速行驶时弹簧长度为L 1;当汽车以同一速度匀速率通过一个桥面为圆弧形凸形桥的最高点时,弹簧长度为L 2,下列答案中正确的是( ) A .L 1=L 2 B .L 1>L 2 C .L 1<="">
2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,
如图所示。

今给小物体一个水平初速度0v )
A.沿球面下滑至 M 点
B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动C.按半
径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动
3、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的3
4 。

如果使汽车驶至桥顶时对
桥恰无压力,则汽车的速度为()
A 、15 m /s
B 、20 m /s
C 、25 m /s
D 、30m /s
3.水平面内作圆周运动的临界问题
在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。

这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。

水平面内作圆周运动的临界问题
1、火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是( ) A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损
D.以上三种说法都是错误的
2、如图所示,光滑的水平圆盘中心O 处有一个小孔,用细绳穿过小孔,绳两端各系一个小球A 和B ,两球质量相等,圆盘上的A 球做半径为r=20cm 的匀速圆周运动,要使B 球保持静止状态,求A 球的角速度ω应是多大
径为R 的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为()
4、如图所示,物块在水平圆盘上,与圆盘一起绕固定轴飞速转动,下列说法中正确的是( )
A .物块处于平衡状态
B .物块受三个力作用
C .在角速度一定时,物块到转轴的距离越远,物块越不容易脱离圆盘
D .在物块到转轴距离一定时,物块运动周期越小,越不容易脱离圆盘
5、在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m .A 、B 离转轴均为r ,C 为2r .则()
A .若A 、
B 、
C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大B .若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小 C .当转台转速增加时,C 最先发生滑动
D .当转台转速继续增加时,A 比B 先滑动
6、如图所示,在水平转台上放有A 、B 两个小物块,它们距离轴心O 分别为rA=0.2m ,rB=0.3m ,它们与台面间相互作用的静摩擦
力的最大值为其重力的0.4倍,g 取10 m/s2,
(1)当转台转动时,要使两物块都不发生相对于台面的滑动,求转台转动的角速度的范围;(2)要使两物块都对台面发生滑动,求转台转动角速度应满足的条件。

7、如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:
⑴当转盘角速度ω1=μg
2r
时,细绳的拉力T1。

⑵当转盘角速度ω2=3μg
2r
时,细绳的拉力T2。

8、一圆盘可以绕其竖直轴在图2所示水平面内转动,圆盘半径为R 。

甲、乙物体质量分别是M 和m (
9
使小球在桌面上做匀速圆周运动.求若使小球不离开桌面,其转速最大值是( )
A .h g π21
B .gh π
C .l g π21
D .
g l π
2
10、如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,若要小球离开锥面,则小球的角速度至少为多少?
11、如图所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad/s 时,上、下两绳拉力分别为多大?。

相关文档
最新文档