苏教版六年级数学知识点总结

合集下载

苏教版六年级数学上册全部知识点汇总

苏教版六年级数学上册全部知识点汇总

第一单元长方体和正方体1.两个面相交的线叫做棱,三条棱相交的点叫做顶点。

2.名称相同点不同点关系面棱顶点面的形状面的大小棱长长方体6 12 8一般都是长方形,有时也有两个相对的面是正方形。

相对的面完全相同相对的棱长度相等正方体是特殊的长方体正方体6 12 8 六个面都是正方形六个面完全相同12条棱长都相等长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

长方体的12条棱有3组,每组的四条棱长度相等。

长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4长方体放桌面上,最多只能看到3个面。

3.正方体的展开(不能出现田字格)1)“141型”,中间一行4个正方形,上下各个正方形;2)“231型”,中间3个正方形,上下分别有2个和1个正方形。

3)“222”型,两行只能有1个正方形相连。

4)“33”型,两行只能有1个正方形相连。

4.长方体的表面积就是长方体六个面的总面积。

长方体的表面积= 长×宽×2+长×高×2+宽×高×2 正方体的表面积= 棱长×棱长×6 =(长×宽+长×高+宽×高)×25.在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。

(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱、通风管等。

6.体积和容积。

(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积7.常见体积(容积)单位。

(相邻的体积和容积单位的进率时1000)。

常见体积单位:立方厘米、立方分米、立方米;常见容积单位:毫升、升体积与容积单位之间的关系:1立方厘米=1毫升1立方分米=1升8.长方体和正方体的体积。

(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体或正方体的体积=底面积×高第二单元 分数乘法1.分数和整数相乘:用分数的分子和整数相乘的积做分子,分母不变;能约分的要先约分。

苏教版六年级上册数学知识点归纳

苏教版六年级上册数学知识点归纳

一、整数的认识1. 整数的概念2. 整数的比较3. 整数的加减法4. 整数的乘法5. 整数的除法6. 整数的实际应用二、分数的认识1. 分数的基本概念2. 分数的大小比较3. 分数的加减法4. 分数的乘法5. 分数的除法6. 分数的实际应用三、小数的认识1. 小数的基本概念2. 小数的大小比较3. 小数的加减法4. 小数的乘法5. 小数的除法6. 小数的实际应用四、约数和倍数1. 约数的概念2. 倍数的概念3. 最大公约数和最小公倍数4. 约数和倍数在日常生活中的应用五、形状与图形1. 四边形的认识2. 三角形的认识3. 直角三角形、等腰三角形、等边三角形的特点4. 四边形和三角形的周长和面积计算5. 图形的对称性六、数学中的单位1. 长度单位2. 重量单位3. 容积单位4. 时间单位5. 金钱单位七、图表的应用1. 图形的读取与分析2. 柱状图的绘制和分析3. 折线图的绘制和分析4. 饼图的绘制和分析5. 数据的收集和整理八、数学逻辑与推理1. 命题的概念2. 命题的联结词3. 命题的真值表4. 命题的等价变换5. 逻辑推理与实际问题分析以上是苏教版六年级上册数学知识点的主要内容归纳。

在学习这些知识点时,希望同学们能够多加思考和练习,掌握基本概念的同时要能够将其应用到实际问题中去,培养良好的数学思维和解决问题的能力。

祝愿同学们在学习数学的过程中取得优异的成绩,为未来的学习打下坚实的基础。

在学习整数的认识时,我们需要理解整数的概念,掌握整数的比较、加减法、乘法和除法,以及整数在实际应用中的运用。

整数包括正整数、负整数和0,它们构成了数轴上的整数集合。

比较整数大小时,我们可以利用数轴或大小的规律进行推测,从而判断整数的大小关系。

在处理整数的加减法时,我们需要理解负数与正数相加减的规律,了解同号两数相加时数值变大,异号两数相加时数值相减的原理。

而乘法和除法涉及了整数的相乘和相除运算,需要掌握负数相乘的规律以及除法中负数的特殊处理方式。

六年级上册数学苏教版第二单元知识点总结

六年级上册数学苏教版第二单元知识点总结

六年级上册数学苏教版第二单元知识点总结六年级上册数学苏教版第二单元主要包括如下知识点:整数的认识与比较、整数加法和减法的计算、整数的应用以及解决整数问题等。

下面将对这些知识点进行详细总结。

第一节:整数的认识与比较1.整数的概念:整数是正整数、零、负整数的统称。

用数轴表示整数,正整数在零的右边,负整数在零的左边。

2.整数的比较:利用数轴可以进行整数的大小比较。

在数轴上,数越大,位置越靠右;数越小,位置越靠左。

3.相反数的概念:两个数绝对值相等,但符号相反的数称为相反数。

例如,-2和2是一对相反数,-5和5是一对相反数。

第二节:整数加法和减法的计算1.整数加法的运算规则:-两个正整数相加,结果仍为正整数。

-两个负整数相加,结果仍为负整数。

-正整数和负整数相加,结果的符号取决于绝对值大小。

2.整数减法的运算规则:-两个正整数相减,结果可能是正整数、零或负整数。

-两个负整数相减,结果可能是正整数、零或负整数。

-正整数减去负整数,相当于加上这两个数的绝对值。

-负整数减去正整数,相当于将相应的正整数改为负整数,然后进行加法运算。

第三节:整数的应用1.温度计的读数:摄氏度和华氏度都可以用整数表示,摄氏度和华氏度的换算关系是C = 5/9 × (F-32),其中C表示摄氏度,F表示华氏度。

2.海拔的表示:海拔可以用整数来表示,正数表示地面以上的高度,负数表示地面以下的深度。

3.草原上牛群的数量变化:用整数表示牛群的数量,正整数表示牛群增加,负整数表示牛群减少。

4.整数的加减法:在实际问题中,需要运用整数加减法来求解,例如求温度变化、高度变化等。

第四节:解决整数问题1.整数问题的解决过程:-理解问题:仔细阅读、分析题意,明确问题所涉及的内容。

-建立模型:根据问题提出问题的关键要素,建立相应的代数模型或图形模型。

-解决问题:运用相应的数学知识进行计算,得到问题的解。

-检验答案:将解代入原问题,检验是否满足题意。

苏教版六年级数学上册知识点总结

苏教版六年级数学上册知识点总结

苏教版六年级数学上册知识点总结一、数的基本概念1、数的定义:数字的可以代表一定的量或数量的量化事物,有用来记录和表示事物的多少,并进行运算的字符。

2、分数:分数是一个有两个部分构成的数,一部分称为分子,一部分称为分母。

3、整数:整数是能够除以1,而余数是0的数。

它可以在自然界表示为次数,如年份、月份、日期、时间等。

4、序数:序数是表示数字、单位或次序的特殊名称,其末尾加上一个“-th”。

二、四则运算1、加法:加法是指用符号“+”表示的两个数的运算,它的结果是两个加数的和。

2、减法:减法是指用符号“-”表示的两个数的运算,它的结果是被减数减去减数的差。

3、乘法:乘法是指用符号“X”表示的两个数的运算,它的结果是乘数和被乘数的积。

4、除法:除法是指用符号“÷”表示的两个数的运算,它的结果是被除数除以除数的商。

三、小数1、小数的定义:小数是一种由右至左数的数字,由小数点“.”分割开,用以表示一个数的准确度。

2、形式化小数的定义:在数的右边用0补齐的数叫做形式化小数,形式化小数的小数点可以省略不写。

3、近似数的定义:近似数是由小数点后数字的变化来体现的数,它可以代表有效的近似值。

4、定点数的定义:定点数是指将一个小数截取若干位后,以整数的形式表示小数的数值。

四、因式分解1、因式分解:因式分解是指把一个多项式分解为多个项的过程。

它可以用来把一个复杂的表达式简化,从而更容易进行计算。

2、因式分解的方法:因式分解可以通过因式分解法、因数分解法和正则表示法来实现。

其中,因式分解法是将多项式分解为一个或多个因式的科学计算方法,以简单的步骤实现复杂的表达式简化。

五、数轴1、数轴的定义:数轴是由一个数轴中心(原点)和一系列等差数坐标组成的一种坐标系,用以表示和表示数值变化的可视图形。

2、数轴的组成:数轴又可以分为水平数轴和竖直数轴。

水平数轴可以用来表示数字的比较大小;竖直数轴则可以用来表示数字的大小变化情况。

苏教版小学六年级数学上册知识点(最新最全)

苏教版小学六年级数学上册知识点(最新最全)

苏教版小学六年级数学上册知识点(最新最全)苏教版数学六年级上册知识点第一单元:长方体和正方体长方体和正方体是几何体的两种常见形式。

长方体有6个面,其中4个面是长方形,另外2个面是正方形。

正方体有8个面,全部都是正方形。

它们的面、棱和顶点都有特定的特征。

表面积是指长方体或正方体6个面的总面积。

计算长方体表面积的公式是2×(长×宽+长×高+宽×高),计算正方体表面积的公式是6×(棱长的平方)。

体积是指物体所占空间的大小,容积是指所能容纳其他物体的体积。

计算长方体和正方体的体积可以使用公式V=长×宽×高和V=棱长的立方,单位可以是立方米、立方厘米等等。

第二单元:分数乘法分数乘法可以用来表示相加的和或者一个数的几分之几。

与整数相乘时,可以将整数与分数的分子相乘,分数的分母作为分母,最后约分成最简分数。

与分数相乘时,可以用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。

分数连乘可以用分子连乘的积作为分母,分母连乘的积作为分母,计算过程中能约分的先约分,可以使计算简便。

倒数是指乘积为1的两个数互为倒数。

任何整数都可以看作为分母是1的分数。

求一个数的倒数,只要将这个数的分子与分母交换位置。

1的倒数是1.假分数的倒数都小于或等于1(或者说不大于1);真分数的倒数都大于1.第三单元:分数除法分数除法的计算法则是甲数除以乙数(不为0)等于甲数乘乙数的倒数。

分数连除或乘除混合计算可以从左向右依次计算,但一般是遇到除以一个数,把它改写成乘这个数的倒数来计算。

除数大于1时,商小于被除数;除数小于1时,商大于被除数;除数等于1时,商等于被除数。

1.百分数表示一个数是另一个数的百分之几,也称为百分比或百分率。

2.百分数的读法是先写分子,再加上百分号。

注意,百分数后面不带单位。

3.百分数可以与小数互化,方法是去掉百分号并将小数点向左移动两位,或者将小数点向右移动两位并在后面加上百分号。

苏教版六年级数学下册第5单元 确定位置 知识点

苏教版六年级数学下册第5单元 确定位置 知识点
二、根据给出的方向和距离在平面图上表示出物体的位置
根据给出的方向和距离在平面图上画出物体位置的方法:
(1)计算出被观测物体和观测点之间的图上距离。
(2)在平面图上以观测点为顶点画出被观测物体和观测点之间的连线与方向(东、南、西、北)的夹角。
(3)以观测点为起点,量出观测点到被观测物体的图上距离。
(4)用圆点表示被观测物体,单行走路线的方法:
按行走路线,确定观测点、行走方向和路程,用“先……再……再……”等关联词按顺序叙述。
描述某个物体的位置时,要先在观测点上建立四个方向;再看角度,以南或北作夹角的起始边。
确定物体的位置,一要找准方向,二要准确测量出偏离南或北方向的角度;三要利用比例尺正确计算出图上距离;四要标注清楚。

一、根据方向和距离确定物体的位置
根据方向和距离描述物体所在位置的方法:
(1)知道被观测物体和观测点之间的连线与方向(东、南、西、北)的夹角度数。
(2)测量出被观测物体和观测点之间的图上距离,根据比例尺计算出被观测物体和观测点之间的实际距离。
(3)叙述时先说被观测物体,然后说观测点,再说方向,最后说距离。

六年级公式知识点苏教版

六年级公式知识点苏教版

六年级公式知识点苏教版【六年级公式知识点苏教版】一、数的乘法公式在六年级数学中,乘法是一个重要的知识点。

以下是数的乘法公式的几个要点:1. 乘法的交换律:a × b = b × a交换律告诉我们,在进行乘法运算时,两个数的位置可以互换,结果不变。

2. 乘法的结合律:(a × b) × c = a × (b × c)结合律表明,在进行多个数相乘的运算时,可以任意改变计算顺序,结果不变。

3. 分配律:a × (b + c) = a × b + a × c分配律指出,一个数与两个数的和相乘,等于这个数与每个加数分别相乘后的和。

以上这些乘法公式是六年级学生必须掌握的基本知识点,能熟练运用这些公式,对解题非常有帮助。

二、面积和周长的计算公式在学习几何知识时,面积和周长的计算是六年级的重要内容。

下面是常见几何图形的面积和周长的计算公式:1. 矩形的面积和周长:面积公式:面积 = 长 ×宽周长公式:周长 = 2 × (长 + 宽)2. 正方形的面积和周长:面积公式:面积 = 边长 ×边长周长公式:周长 = 4 ×边长3. 三角形的面积:面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积和周长:面积公式:面积= π × 半径 ×半径周长公式:周长= 2 × π × 半径以上是几何图形的面积和周长计算公式,掌握了这些公式,可以迅速计算图形的面积和周长。

三、线段的延长与间断线段的延长与间断是六年级的重要概念之一。

以下是延长与间断的一些知识点:1. 延长线段:将线段的一端或两端延长。

延长线段时,需要保持原线段的方向,延长后的直线仍然是直线。

2. 间断线段:将线段分割为若干段。

间断线段是指将线段分成两段或多段,形成不连续的线段。

延长线段和间断线段的概念对于解决几何问题非常重要,学生在练习时要注意灵活运用。

苏教版 数学 六年级上册 全册知识点总结

苏教版 数学 六年级上册  全册知识点总结

第一单元长方体和正方体1.长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

它有6个面、12条棱和8个顶点;在一个长方体中,相对的面完全相同,相对的棱长度相等。

2.把长方体放在桌面上,无论从哪个角度观察,最多只能同时观察到三个面。

3.正方体,有6个完全相同的正方形,12条棱的长度都相等和8个顶点。

正方体是特殊的长方体。

4.长方体6个面的总面积,叫做它的表面积5.长方体的表面积=长×宽×2+长×高×2+高×宽×2=(长×宽+长×高+高×宽)×26.计算公式为S=(ab+ah+bh)×27.正方体的表面积= 6×棱长×棱长计算公式为S=6×a×a(或6×a2)8.体积的意义:物体所占空间的大小叫做物体的体积。

物体大的,占据的空间大,体积就大;物体小的,占据的空间就小,体积就小。

9.容器所能容纳物体的体积,叫做这个容器的容积。

10.常用的体积单位有:立方厘米、立方分米、立方米11.计量液体的体积,常用升和毫升12.1立方分米=1升1立方厘米=1毫升13.长方体的体积=长×宽×高,公式为:V=abh14.正方体的体积=棱长×棱长×棱长,公式为:V=a×a×a(a3)15.长方体或正方体的体积=底面积×高,公式为:V=Sh16.相邻体积单位间的进率是1000.17.1立方米=1000立方分米;18.1立方分米=1000立方厘米(1升=1000毫升)19.把棱长为几厘米的小正方体涂色后切成棱长为1厘米的小正方体,涂色面的规律:●3面涂色的小正方体个数=正方体的顶点个数=8个●2面涂色的小正方体个数=正方体棱的条数乘棱长减2的差=12×(n-2)●1面涂色的小正方体个数=正方体的面数乘棱长减2的差的平方=6×(n-2)2第二单元分数乘法1.分数乘整数的计算方法,先用分数的分子和整数相乘的积作分子,分母不变,再约分;也可以先约分,再计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【目录】第一部分常用的数量关系第二部分小学数学图形计算公式第三部分常用单位换算第四部分基本概念一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和 -- -个加数=另一个加数5、被减数-减数=差被减数-差=减数;差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。

三角形S—面积 a—底h—高——S =梯形S—面积 a—上底b—下底 h—高——S =圆S—面积 c—周长r—半径 d—直径C = πdC =2πrS =πr2(二)、立体图形的底面积、侧面积、表面积和体积的计算公式名称字母意义底面积侧面积表面积体积长方体a—长 b—宽h—高S=abS侧=(ah+bh)×2S表=(ab+ah+bh)×2V=abh正方体a—棱长S=a2S侧=4a2S表=6a2V=a3圆柱体r—底面半径h—高, C—底面圆周长S底=πr2S侧=chS表=S侧+S底×2 V=s底h圆锥体r—底面半径h—高S底=πr2————V= s底h三、【常用单位换算】换算方法:(1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;四、【基本概念】第一章数和数的运算自然数一、概念 (一)整 数1.自然数、负数和整数(1)、自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

1是自然数的基本单位,任何一个自然数都是由若干个1组成。

0是最小的自然数,没有最大的自然数。

(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。

正整数(1、2、3、4、……)(3)整 数 零 (0既不是正数,也不是负数)负整数(-1、-2、-3、-4……) 2、零的作用(1)表示数位。

读写数时,某个单位上一个单位也没有,就用0表示。

(2)占位作用。

(3)作为界限。

如“零上温度与零下温度的界限”。

3、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除 :整数a 除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。

(1)如果数a 能被数b (b ≠ 0)整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a的因数)。

(2)一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。

(4)个位上是0、2、4、6、8的数,都能被2整除,(5)个位上是0或5的数,都能被5整除,(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,(7)能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

(8)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(9)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

(10)1不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

(11)几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数。

(12)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质。

②相邻的两个自然数互质。

③两个不同的质数互质。

④当合数不是质数的倍数时,这个合数和这个质数互质。

⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

⑦如果两个数是互质数,它们的最大公约数就是1。

(13)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成。

数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

(4)在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数。

例如: 0.25 、 0.368 都是纯小数。

(2)带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、 5.26 都是带小数。

(3)有限小数:小数部分的数位是有限的小数,叫做有限小数。

(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。

(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

(三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

二、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系被除数1、被除数÷除数=除数2、因为零不能作除数,所以分数的分母不能为零。

3、被除数相当于分子,除数相当于分母。

三、应用(这里主要复习分数和百分数的应用)1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。

找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:(1)求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。

“一个数”是比较量,“另一个数”是标准量。

求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。

相关文档
最新文档