七年级数学尖子生培优竞赛专题辅导专题15 几何证明
七年级数学尖子生培优竞赛专题辅导专题16 折叠问题

专题16 折叠问题专题解读】折叠问题是近几年来中考出现频率较高的一类题型,同学们往往由于对折叠的本质理解不够透彻,因此难以找到解题的方向.折叠是现实生活常见的操作活动,而初中几何学习中,以折叠为活动载体的问题很多,这类问题一般都要经历操作、观察、比较、概括、交流、猜想、推理等过程.研究折叠问题,可以帮助学生提高观察能力、动手能力、想象能力、综合运用知识的能力,发展合情推理和演绎推理能力.思维索引】例1.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小明在草稿纸上画了一条数轴进行操作研究:操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-2表示的点与表示的点重合;操作二:(2)折叠纸面,使1表示的点与-3表示的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经折叠重合,则A、B两点表示的数分别是、;操作三:(3)在数轴上剪下9个单位长度(从-1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图所示),若这三条线段的长度之比为1:1:2,求折痕处对应的点所表示的数?例2.如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,画出相应的图形.素养提升1.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( ) A .24° B .25° C .30° D .35°21FE C'B'BA F OD CBA2.如图,将△ABC 沿DE 、EF 翻折,顶点A 、B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =98°,则∠C 的度数为( )A .40°B .41°C .42°D .43°3.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF /∥AD ,FN //DC ,则∠D 的度数为( )A .115°B .105°C .95°D .85°4.如图,四边形ABCD 纸片中,已知∠A =160°,∠B =30°,∠C =60°,四边形ABCD 纸片分别沿EF ,GH ,OP ,MN 折叠,使A 与A'、B 与B'、C 与C'、D 与D'重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7-∠8的值是( )A .600°B .700°C .720°D .800°5.如图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE =18°,则图2中∠AEF 的度数为( )A .108°B .114°C .116° D .120°图 1 图 2 图 3DCBA6.一根长30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,MA 的长应为 cm .BM A7.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处,若∠1+∠2=140°,则∠B +∠C = .21D 11NM D CBA8.如图1,ABCD 是长方形纸带,∠DEF =23°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的∠CFE 的度数是 .图 a 图 b 图 cCFED CBA9.如图,△ABC 中,∠A =30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB =82°,则原三角形中的∠B 的度数为 .ED CBAE DACBA10.如图1,在长方形ABCD 中,E 点在AD 上,并且∠ABE =30°,分别以BE 、CE 为折痕进行折叠并压平,如图2.若图3中∠AED=n °,则∠BCE 的度数为 (用含n 的代数式表示).11.如图1,把△ABC纸片沿DE折叠,点A落在四边形BCDE内部,我们知道∠A与∠1、∠2之间有一定的数量关系;(1)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC纸片沿DE折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(2)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC纸片沿DE折叠,使点A与点H重合,试探究∠BHC与∠1+∠2的关系,并证明你的结论.12.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分:将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC是平分线AB1折叠,则等腰三角形的两个点B与点C 重合(因为等腰三角形的两个底角是相等的);情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,写出探究过程.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系是;应用提升(3)在三个角都不相等的三角形中,小丽找到一个三角形,三个角分别为4,16°,160°,发现此三角形的三个角都是好角.你能尝试再构造两组三个角都不相等,并且都是好角的三角形吗?写出具体角度即可.专题16折叠问题.思维索引】例1.(1)2; (2)-5,3 ; (3) 72,198,378; 例2.(1)40°; (2)不能,大于12; (3)略;素养提升】1.B ; 2.B ; 3.C ; 4.A ; 5.B ; 6.10.5; 7.110°; 8.111°; 9.78; 10.30+2n ; 11.(1)∠BIC =122.5°; (2)∠BHC =180°-5(∠1+∠2); 12.(1)是; (2)∠B =3∠C ;∠B =n ∠C ;(3)答案不唯一,只需要满足三点:和为180°,各不相等,以及任意两个角之间都存在整数倍关系;。
初一几何竞赛试题及答案

初一几何竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是矩形的性质?A. 对角线相等B. 对边平行且相等C. 四个角都是直角D. 所有选项都是答案:D2. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B3. 如果一个角是另一个角的两倍,且它们的和为180度,那么较小的角是多少度?A. 60度B. 90度C. 120度D. 30度答案:A4. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C二、填空题(每题5分,共20分)1. 一个等腰三角形的底角是50度,那么它的顶角是______度。
答案:80度2. 如果一个圆的直径是10厘米,那么它的半径是______厘米。
答案:5厘米3. 一个平行四边形的对角线互相平分,那么这个平行四边形是______。
答案:矩形4. 一个正三角形的每个内角是______度。
答案:60度三、解答题(每题15分,共30分)1. 已知一个直角三角形的两个直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度c可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中a和b是直角边的长度。
将3厘米和4厘米代入公式中,得到:\[ c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \text{厘米} \]2. 一个等腰三角形的底边长为6厘米,底边上的高为4厘米,求等腰三角形的周长。
答案:首先,我们需要求出等腰三角形的两个等边的长度。
由于底边上的高将底边平分,我们可以将等腰三角形分为两个直角三角形,每个直角三角形的底边长为3厘米(6厘米的一半),高为4厘米。
根据勾股定理,我们可以求出等边的长度:\[ a = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \text{厘米} \]因此,等腰三角形的两个等边的长度都是5厘米。
七年级数学尖子生培优竞赛专题辅导第二十讲 点共线与线共点(含答案)

第二十讲 点共线与线共点趣题引路】例1 证明梅涅劳斯定理:如图20-1,在△ABC 中,一直线截△ABC 的三边AB 、AC 及BC 的延长线于D 、E 、F 三点。
求证:1=⋅⋅DBADEA CE FC BF 解析:左边是比值的积,而右边是1,转化比值使其能约简,想到平行线分线段成比例作平行线即可. 证明过点C 作CG /∥EF 交AB 于G . ,,BF BD EC DGCF DG AE AD∴== ∴1=⋅⋅=⋅⋅BDADAD DG DG BD BD AD EA CE FC BF例2 证明塞瓦定理:如图20-2,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与BC 、CA 、AB 相交于D 、E 、F ,求证:1=⋅⋅FBAF EA CE DC BD 证明,,.BCP ACPABP ACP BAP BCPS S S BD CE AF DC S EA S FB S ∆∆∆∆∆∆===∴1=⋅⋅=⋅⋅∆∆∆∆∆∆BCPACPABP BCP ACP ABP S S S S S S FB AF EA CE DC BD知识拓展】1.证明三点共线和三线共点的问题,是几何中常遇到的困难而有趣的问题,解这类问题一定要掌握好证三点共线和三线共点的基本方法。
2.证明三点共线的方法是:(1)利用平角的概念,证明相邻两角互补、 (2)当AB ±BC =AC 时,A 、B 、C 三点共线。
(3)用同一方法证明A 、B 、C 中一点必在另两点的连线上。
(4)当AB 、BC 平行于同一直线时,A 、B 、C 三点共线。
(5)若B 在PQ 上,A 、C 在P 、Q 两侧,∠ABP =∠CBQ 时,A 、B 、C 三点共线. (6)利用梅涅劳斯定理的逆定理. 3.证明三线共点的基本方法是:(1)证明其中两条直线的交点在第三条直线上 (2)证明三条直线都经过某一个特定的点.(3)利用已知定理,例如任意三角形三边的中垂线交于一点,三条内角平分线交于一点,三条中线交于一点以及三条高所在直线交于一点等。
七年级数学培优竞赛训练 :角 含答案

角【知识纵横】角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.【例题求解】例1.如图1 是一个3×3 的正方形,则图中∠1+∠2+∠3+…+∠9 的度数是.思路点拨除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.图1 图2例2.如图2.A、O、B 在一条直线上,∠1 是锐角,则∠1 的余角是( ).1 1 A.∠2 一∠l B.2 23∠2 一21∠1 C.21(∠2 一∠l)D.3(∠2+∠1)思路点拨∠1 的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.1例 3.已知∠1 和∠2 互补,∠3 和∠2 互余,求证∠3=2(∠l 一∠2).思路点拨依据互补、互余的概念得到含∠l、∠2、∠3 的两个等式,盯住所要达到的目的,恰当处理两个等式.1 例4.如图3,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE= ∠2 EOC,∠DOE= 72°,求∠EOC 的度数.图3思路点拨设∠AOB=x 度,∠BOC= y 度,建立x、y 的方程组,用代数方法解几何问题是一种常用的方法.例 5.(1)如图4,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分之∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.图 4例 6.钟面上从2 点到4 点有几次时针与分针的夹角为60°?分别是几点几分?思路点拨:时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为 0.5°/分,分针为 6°/分,秒针为 360°/分.※巩固训练※1.一个角的补角与这个角的余角的度数比为3:l,则这个角是度.2.钟表时间是2 时15 分时,时针与分针的夹角是.3.由O 点引出的7 条射线如图,若OA⊥OE,OC⊥OC,∠BOC>∠FOC,则图中以O 为顶角的锐角共有个.4.如图,O 是直线AB 上一点,∠AOD=120°,∠AOC=90°,OE 平分∠BOD,则图中彼此互补的角有对.5.如图,∠AOB=180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠BOD=α,则与α的余角相等的角是( ).A.∠OOD B.∠ODE C.∠DOA D.∠COA6.如图,在一个正方体的2 个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( ).A.60°B.75°C.90°D.135°注:解钟表上的问题,常用到以下知识:(1)钟表上相邻两个数宇之间有 5 个小格,每个小格表示 1 分钟,如与角度联系起来,每小格对应 6°.(2)秒钟每分钟转运 360°,分针每分钟转过 6°,时钟每分钟转过 0.5°.(3)画示意图把这类问题看成是行程问题中的追及问题来解决.7.将一长方形纸片按如图的方式折叠,BC、BD 为折痕,则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°18.如图,∠1>∠2,那么∠2 与(∠1 一∠2)之间的关系是( ).2A.互补B.互余C.和为45°D.和为22.5°9.如图,已知A、O、E 三点在一条直线上,OB 平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.10.(1)一副三角板由一个等腰直角三角形和一个含30°角的直角三角形组成.利用这副三角板构成15°角的方法很多,请你画出其中三种不同构成的示意图,并在图上作出必要的标注,不写作法.(2)一个长方形和一个正方形摆放如图,试找出除直角外的互余的角和互补的角.111.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ) 的值时,有三15位同学分别算出了23 °、24 °、25 °这三个不同的结果,其中确有一个是正确的答案,则α+β+γ.12.如图,O 是直线AB 上一点,∠AOE=∠FOD=90°,OB 平分∠COD,图中与∠DOE 互余的是,与∠DOE 互补的角是.13.以∠AOB 的顶点O 为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=15°,则∠AOC 的度数是.14.光线以图所示的角度α照射到平面镜I 上,然后在乎面镜I、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,则∠γ=.4 15.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是3 1 个平角,则∠β是∠α的( ).A.25倍B.5 倍C.11 倍D.无法确定倍数16.4 点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数) .A.60 B.30 C.40 D.3317.如图,从点 O 引出6 条射线OA、OB、OC、OD、OE、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE =∠DOE,∠EOF=140°,求∠COD 的度数.18.过点 O 任作 7 条直线,求证:以 O 为顶点的角中必有一个小于 26°.19.(1)现有一个 19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出 1°的角来.(2)现有一个 17°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?(3)用一个 21°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?对于(2)、(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.参考答案。
初一几何奥林匹克数学竞赛真题

初一几何奥林匹克数学竞赛真题1.已知在梯形ABCD中,AD∥BC,∠B=40°,∠C=50°,点E,F,M,N分别为四条边的中点,求证:BC=EF+MN。
【简单】2.已知在平行四边形ABCD中,对角线AC与BD相交于点O,P为平行四边形ABCD外一点,且∠APC=∠BPD=90°,求证:平行四边形ABCD为矩形。
【简单】3.已知在三角形ABC中,AB=AC,CD⊥AB于D,P为BC上一点,PE⊥AB于E,PF⊥AC 于F.求证:PE+PF=CD。
【简单】4.已知在等腰三角形ABC中,AB=AC,CD⊥AB,AH⊥FH,EF⊥AB,求证:EF=CD+FH。
【简单】5.已知三角形ABC和三角形BDE都是等腰直角三角形,连结AD,延长CE交AD与F,求证:CF⊥AD。
【简单】6.已知三角形ABC和三角形BDE都是正三角形,连结AD交BE于F,连结CE交AB于G,连结FG,求证:FG∥CD。
【简单】7.已知三角形ABC为正三角形,内取一点P,向三边作垂线,交AB于D,BC于E,AC 于F,求证:PD+PE+PF=三角形的高。
【简单】8.已知三角形ABC为正三角形,AD为高,取三角形外一点P,向三边(或边的延长线)作垂线,交AB的延长线AE于M,交AC的延长线AF于N,交BC于Q,求证:PM+PN-PQ=AD。
【中等】9.已知在矩形ABCD中,对角线AC,BD相交于O,DE平分∠ADC交AC于F,若∠BDE=15°,求∠COE的度数。
【中等】10.已知三角形ABC是直角三角形,∠BAC=90°,AD⊥BC,AE平分∠CAD,BF平分∠ABC,交AD于G,交AE于H,连结EG,求证:EG∥AC。
【中等】11.已知三角形ABC和三角形BDE都是正三角形,连结AE,CD,取AE的中点N,取CD的中点M,连结BM,BN,MN.求证:三角形BMN是等边三角形。
【中等】12.已知在正方形ABCD中,作对角线AC的平行线EG,作BC=CH,连结BE,延长HG 交BE于F,连结CF,求证:BC=CF。
图形的平移专项提升训练(重难点培优)-【拔尖特训】七年级数学下册尖子生培优必刷题(解析版)【苏科版】

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】专题7.3图形的平移专项提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•启东市期中)下列生活现象中,属于平移的是()A.升降电梯的上下移动B.荡秋千运动C.把打开的课本合上D.钟摆的摆动【分析】根据平移的性质,即可解答.【解答】解:A、升降电梯的运动,属于平移现象,故A符合题意;B、荡秋千运动,不属于平移现象,故B不符合题意;C、把打开的课本合上,不属于平移现象,故B不符合题意;D、钟摆的摆动,不属于平移现象,故D不符合题意;故选:A.2.(2022春•仓山区校级期中)如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为2,CE=4,则BF=()A.4 B.6 C.8 D.10【分析】根据平移的性质,对应点连接的线段相等,求得BE和CF的长,再结合图形可直接求解.【解答】解:∵将△ABC沿CB方向平移到△DEF的位置,点A,D之间的距离为2,∴BE=CF=2,∵CE=4,∴BF=CF+BE+CE=2+2+4=8,故选:C.3.(2022春•增城区期中)下列A、B、C、D四幅图案中,不能通过平移图案得到的是()A.B.C.D.【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,找各点位置关系不变的图形.【解答】解:观察图形可知,B图案不能通过平移图案得到.故选:B.4.(2022春•碑林区校级月考)如图,Rt△ABC沿直角边AB所在的直线向下平移得到△DEF,下列结论中不一定正确的()A.∠DEF=90°B..AD=BD C..AD=BE D..S1=S2【分析】根据平移的性质逐一判断即可.【解答】解:∵Rt△ABC沿直线边AB所在的直线向下平移得到△DEF,∴AD=BE,△ABC≌△DEF,∴∠DEF=∠ABC=90°,S△ABC=S△DEF,∴S四边形ADHC=S四边形BEFH,故选:B.5.(2021秋•雁峰区期末)如图,将△ABC沿BC方向向右平移到△A′B′C′的位置,连接AA′.已知△ABC的周长为22cm,四边形ABC′A′的周长为34cm.则这次平移的平移距离为()A.6cm B.7cm C.8cm D.9cm【分析】由题意可得平移的距离为:AA'=CC',由平移的性质得AC=A'C',再利用已知的周长即可求解.【解答】解:由题意得:平移的距离为AA’或CC'的长度,且AA'=CC',∵将△ABC沿BC方向向右平移到△A'B'C'的位置,∴AC=A'C',∵△ABC的周长为22cm,四边形ABC'A'的周长为34cm,∴AB+BC+AC=22cm,AB+BC+CC′+A′C′+AA′=34cm,∴AB+BC+CC′+AC+AA′=34cm,则2AA′=12cm,解得:AA'=6cm,故选:A.6.(2022秋•南溪区期中)小芳和小亮在手工课上各自制作楼梯模型,如图,则他们所用的周长()A.亮亮的长B.小芳的长C.一样长D.不确定【分析】利用平移的性质,进行计算即可解答.【解答】解:由平移得:小芳制作楼梯模型的周长=2×(5+8)=2×13=26(cm),小亮制作楼梯模型的周长=2×(5+8)=2×13=26(cm),所以,他们所用的周长一样长,故选:C.7.(2021秋•黔东南州期末)一个木匠想用一根40米长的木条来围花圃,他考虑用下列一种花圃设计,以下设计不能用40米长的木条围出来的是()A.B.C.D.【分析】根据平移的性质以及直角三角形的边长关系逐项进行判断即可.【解答】解:A.通过平移可将选项A中的图形周长转化为长为12米,宽为8米的长方形的周长,因此选项A不符合题意;B.如图过点A作AC⊥BC于C,则AC=8米,AB>AC,所以这个平行四边形的周长要大于40米,因此选项B符合题意;C.这个长方形的周长为(12+8)×2=40米,因此选项C不符合题意;D.通过平移可将选项D中的图形周长转化为长为12米,宽为8米的长方形的周长,因此选项D不符合题意;故选:B.8.(2022秋•东莞市期中)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第15个图案中,小菱形的个数是()A.238 B.450 C.470 D.550【分析】认真审题,根据第(1)(2)(3)个图形所含有的小菱形的个数可以得到规律,即第(n)个图形含有小菱形2n2个,再将n=8代入,即可得解.【解答】解:第(1)个图形小菱形的个数是:2=2×1=2×12;第(2)个图形小菱形的个数是:8=2×4=2×22;第(3)个图形小菱形的个数是:18=2×9=2×32;…第n个图形小菱形的个数是2n2,∴第15个图形含有小菱形的个数为:2×152=450(个),故选:B.二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2021秋•奉贤区期末)已知线段AB的长为6厘米,将它向左平移2厘米,点A平移到A',点B平移到B',得到线段A'B',那么线段BB'=2厘米.【分析】根据对应点的连线的长等于平移的距离直接写出答案即可.【解答】解:∵线段AB的长为6厘米,将它向左平移2厘米,点A平移到A',点B平移到B',得到线段A'B',∴BB'=AA′=平移的距离=2厘米,故答案为:2.10.(2022秋•五峰县期中)如图,已知在△ABC中,BC=5,将△ABC向右平移2个单位得到△DEF,则线段EC=3.【分析】根据平移的性质得EF=BC=5,BE=CF=2,从而可得线段EC的长.【解答】解:∵△ABC沿直线BC向右平移2个单位得到△DEF,∴EF=BC=5,BE=CF=2,∴EC=EF﹣CF=5﹣2=3.故答案为:3.11.(2022秋•姜堰区期中)如图,△ABC经过平移得到△A'B'C',连接BB'、CC',若BB'=1.2cm,则CC'= 1.2cm.【分析】根据平移的性质即可得到结论.【解答】解:∵△ABC经过平移得到△A'B'C',连接BB'、CC',BB'=1.2cm,∴CC'=BB′=1.2cm,故答案为:1.2.12.(2022春•云阳县校级月考)如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为242平方米.【分析】通过平移可得,草坪可以看作长为(24﹣2)米,宽为(13﹣2)米的矩形,再根据矩形的面积计算即可.【解答】解:草坪的面积为:(24﹣2)×(13﹣2)=242(平方米).故答案为:242平方米.13.(2022春•曲阳县期中)如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移线段BE的距离,就得到此图形,下列结论正确的是①②③.(填序号)①AC∥DF;②HE=5;③CF=5;④阴影部分面积为.【分析】根据平移的性质、梯形的面积公式计算,判断即可.【解答】解:由平移的性质可知,AC∥DF,DE=AB=8,EF=BC,∴HE=8﹣3=5,CF=BE=5,∴①②③结论正确,S阴影部分=(5+8)×5=,∴④结论错误,故答案为:①②③.14.(2022春•东莞市校级期中)如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯,其侧面如图所示,则需地毯8米.【分析】根据平移可得地毯的长为2.7+5.3即可.【解答】解:由平移的性质可知,所需要的地毯的长度为2.7+5.3=8(m),故答案为:8.15.(2022•南京模拟)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为300m,且桥宽忽略不计,则小桥总长为150m.【分析】根据平移的性质可得:小桥总长就等于长方形荷塘的长与宽的和.【解答】解:由平移的性质得,小桥总长=长方形周长的一半,∵300÷2=150(m),∴小桥总长为150m.故答案为:150.16.(2022春•孝义市期末)如图是一块长方形的场地ABCD,AB=18m,AD=11m,从A,B两处入口的小路的宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为160平方米.。
七年级数学几何证明题(典型)

EDC BAEODCBA七年级数学几何证明题1.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:(1)DE=AB ,(2)∠EDB=60°2.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。
求证: ∠FAC=∠B3.已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30∠C=50°求:(1),求∠DAE 的度数。
(2) 试写出 ∠DAE 与 ∠C - ∠B 有何关系?(不必证明) 4、一个零件的形状如图,按规定∠A=90o ,∠ C=25o,∠B=25o ,检验已量得∠BDC=150o ,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
CDA B5、如图,已知DF ∥AC,∠C=∠D,你能否判断CE ∥BD?试说明你的理由6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 若∠BDC = 140°,∠BGC = 110°,则∠A ?8、如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证BAC 。
EB A 3219、如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F , 若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数. 10、如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB11、如图,将两块直角三角尺的直角顶点C 叠放在一起. (1)若∠DCE=350,求∠ACB 的度数; (2)若∠ACB=1400,求∠DCE 的度数;(3)猜想:∠ACB 与∠DCE 有怎样的数量关系,并说明理由 12、已知:直线AB 与直线CD 相交于点O ,∠BOC=45,(1)如图1,若EO ⊥AB ,求∠DOE 的度数; (2)如图2,若EO 平分∠AOC ,求∠DOE 的度数. 13、已知AOB ,P 为OA 上一点.(1)过点P 画一条直线PQ ,使PQ ∥OB ;(2)过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ;BA CD213FDCBH EG A(3)若︒=∠40AOB ,则=∠PMO ?14、如图。
初一数学七下几何证明题

第3题填空完成推理过程:1、如图,∵AB∥EF(已知)∴∠A +=1800()∵DE∥BC(已知)∴∠DEF=()∠ADE=()2、已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.3、已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.4、已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______4321AC DB5、已知:如图4,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数6、直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.ACDEFBD EB CAHG21EDC BA7、如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.8、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9、如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
ABCDE第19题10、已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数11、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba341212、已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.14、如图,AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.E DC BA15、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.16、如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,请你从所得的四个关系中任选一个加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)17、如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.NMG F EDC BA18、如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.19、如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.20、如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA21、如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.AB CDE第18题图ENMCD BA 第19题图图5-24F E21DCBA22、如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .BC23、如图5-27,已知:AB ∥CD ,AB =CD ,求证:AC 与BD 互相平分.B24、如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2ABECFD H G125、如图5-28,已知:在∆A B C 中,∠=︒C 90,AC=BC ,BD 平分∠CBA ,D EA B ⊥于E ,求证:AD+DE=BE . 图5-25图5-26图5-26ADEEABCD26、如图5-29,已知:AB ∥CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD27、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.28、如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = .又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥.所以∠BAC + = 180°. 又因为∠BAC = 70°, 所以∠AGD =.29、如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.GFEDA CFE DA30、AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数31、∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与∠CBA 的外角平分线AG 所在的直线交于一点D ,(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题15 几何证明专题解读】几何证明题的一般结构由已知条件和求证目标两部分组成.解答几何证明题的一般步骤如下:审题,寻找证明的思路,书写证明过程,最终实现求证目标.几何证明是初中数学学习的重要组成部分,也是学好初中数学的重要一环.要学好几何证明,不但需要我们具有扎实的基础、科学的方法、良好的数学学习习惯,还需要具有敢于尝试、不怕挫折的勇气,更需要有吃苦耐劳、持之以恒的精神.思维索引】例1.△ABC中,三个内角的平分线交于点O,过点O作∠ODC=∠AOC,交边BC于点D.B图1 图2(1)如图1,求∠BOD的度数;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=50°,求∠BAC的度数;③若∠F=∠ABC=40°,将△BOD绕点O顺时针旋转一定角度后得△B'OD'(0°<<360°),B'D'所在直线与FC平行,请直接写出所有符合条件的旋转角度的值.例2.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且 GH EG ,求证:PF /∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.CA图1 图2 图3例3.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=_______,∠CDE=______;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.BD①②③素养提升1.如图,AB CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( ) A .122°B .151°C .116°D .97°CA(第1题) (第2题) (第3题)2.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上.若∠1=25°,则∠2的度数为( ) A .20°B .35°C .44°D .67°3.如图,在正方形网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( ) A .2个B .4个C .5个D .6个4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则图中∠1的度数是( ) A .15°B .22.5°C .30°D .45°5.如图,AB ∥CD ,OE 平分∠BOC ,,OFOE OP CD ,∠ABO =,则下列结论:①∠BOE =1902;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF ,其中不正确的个数有( ) A .1个B .2个C .3个D .4个CDA(第4题) (第5题) (第6题)6.如图,长方形ABCD 中,AB =4cm ,BC =3cm ,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A →B →C →E 运动,最终到达点E .若点P 运动的时间为x 秒,那么当x =_______时,△APE 的面积等于5.7.各边长度都是整数、最大边长为8的三角形共有_______个.8.如图,点A 、C 、F 、B 在同一直线上,CD 平分∠ECB ,FG //CD .若∠ECA 为a ,则∠GFB 为 .GDEB C DPC NEMABP 8P 7P 6P 5P 4P 3P 2P 1(第8题) (第9题) (第10题)9.如图,∠ABC =∠ACB ,BD 、CD 、BE 分别平分△ABC 的内角∠ABC 、外角∠ACP 、外角∠MBC .以下结论:①AD //BC ;②DB ⊥BE :③∠BDC +∠ABC =90°;④∠A +2∠BEC =180°;⑤DB 平分∠ADC .其中正确的结论有: (填序号).10.如图,若平面内有点P 1、P 2、P 3、P 4、P 5、P 6、P 7、P 8,连接P 1P 3、P 2P 4、P 3P 5、P 4P 6、P 5P 7、P 6P 8、P 7P 1、P 8P 2,则∠P 1+∠P 2+∠P 3+∠P 4+∠P 5+∠P 6+∠P 7+∠P 8的度数是 .11.在△ABC 中,∠ACB =90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点(不与A 、D 、C 三点重合),过点P 作PQ ⊥AB ,垂足为Q ,交直线BD 于E . (1)如图1,当点P 在线段AC 上时,说明∠PDE =∠PED .(2)作∠CPO 的角平分线交直线AB 于点F ,则PF 与BD 有怎样的位置关系?画出图形并说明理由.图 1 图 2CBAE DQP CBA12.探究与发现:如图1,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试探究∠BAD 与∠CDE 的数量关系;(3)深入探究:如图2,若∠B =∠C ,但∠C ≠45°,其它条件不变,试继续探究∠BAD 与∠CDE 的数量关系.图 1 图 2ABCDE EDCBA13.如图,AC⊥CB,垂足为C点,AC=CB=8cm,点Q是AC的中点,动点P由B点出发,沿射线BC 方向匀速移动.点P的运动速度为2cm/s.设动点P运动的时间为t s.为方便说明,我们分别记三角形ABC 面积为S,三角形PCQ的面积为S1,三角形P AQ的面积为S2,三角形ABP的面积为S3.(1)S3= cm2(用含t的代数式表示);(2)当点P运动几秒,S1=1S,说明理由;4(3)请你探索是否存在某一时刻,使得S1=S2=S3?若存在,求出t值;若不存在,说明理由.AQC B14.某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;……现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1、P2三等分边AB,R1、R2三等分边AC.经探究知四边,请证明.形P1P2R2R1的面积恰为△ABC的面积的13问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1、Q2三等分边DC.请探究四边形P1Q1Q2P2的面积与四边形ABCD的面积之间的关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求四边形P2Q2Q3P3的面积.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S₂,S3,S4.请直接写出含有S1,S₂,S3,S4的一个等式.专题15几何证明思维索引】例1.(1)∠BOD =90°; (2).①略 ②∠BAC =2∠F =100° ③x =30°,210° 例2.略例3.(1)64°,32° (2)∠BAD =2∠CDE (3)∠BAD =2∠CDE 素养提升】1.B ; 2.A ; 3.C ; 4.A ; 5.A ; 6.103或5;7.20;8.90°-2α:9.①②③④;10.720°; 11.(1)略; (2)当P 在线段AC 上时,此时PF ∥BD ,当P 在线段AC 的延长线上时,PF ⊥BD ; 12.(1)30°; (2)∠EDC =12∠BAD ; (3)∠EDC =12∠BAD ; 13.(1)8t ; (2)当点P 运动2秒或6秒时,S 1=14; (3)当43t =时,S 1=S 2=S 3; 14.(1) 122113ABC P P R R S S =△四边形; (2) 11223ABCD PQ Q P S S =四边形四边形; (3) 22331155P Q Q P ABCD S S ==四边形四边形; (4)S 2+S 3=S 1+S 4.。