方程与整式等式的区别方程的解题技术
《等式与方程》 知识清单

《等式与方程》知识清单一、等式的定义和性质1、等式的定义等式是表示两个数、表达式或算式之间相等关系的数学语句。
例如:3 + 5 = 8,a = b 等。
2、等式的基本性质(1)等式两边同时加上(或减去)同一个整式,等式仍然成立。
比如:若 a = b,则 a + c = b + c,a c = b c。
(2)等式两边同时乘(或除以)同一个不为 0 的整式,等式仍然成立。
假设 a = b,当c ≠ 0 时,ac = bc,a÷c = b÷c。
(3)对称性:若 a = b,则 b = a。
(4)传递性:若 a = b,b = c,则 a = c。
二、方程的定义方程是含有未知数的等式。
方程必须具备两个条件:一是等式,二是含有未知数。
例如:2x + 3 = 7 是方程,而 2 + 3 = 5 不是方程,因为它不含有未知数。
方程中的未知数通常用字母表示,如 x、y、z 等。
三、方程的分类1、按照未知数的个数分类(1)一元方程:只含有一个未知数的方程,如 x + 5 = 9。
(2)二元方程:含有两个未知数的方程,如 x + y = 10。
(3)多元方程:含有三个或三个以上未知数的方程。
2、按照未知数的次数分类(1)一次方程:未知数的最高次数是 1 的方程,形如 ax + b = 0(a ≠ 0)。
(2)二次方程:未知数的最高次数是 2 的方程,如 ax²+ bx + c= 0(a ≠ 0)。
(3)高次方程:未知数的最高次数高于 2 的方程。
四、解方程的步骤1、去分母(如果方程中有分母)在方程两边同时乘以分母的最小公倍数,将分式方程化为整式方程。
2、去括号(如果方程中有括号)使用乘法分配律去掉括号,注意符号的变化。
3、移项将含未知数的项移到方程左边,常数项移到方程右边,移项时要变号。
4、合并同类项将方程中的同类项合并,简化方程。
5、系数化为 1方程两边同时除以未知数的系数,求出未知数的值。
(完整)分式方程概念及解法

分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.要点二:分式方程的解法1。
解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解.2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是( )A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________。
初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。
方程、不等式、多项式知识点总结

方程、不等式(组)、多项式知识点总结一、一元一次方程的概念1、方程 含有未知数的等式叫做方程。
2、方程的解 能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程 只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程),(0为未知数0≠=+a x b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
从实际问题到方程(基础)知识讲解

从实际问题到方程(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及代数式的区别与联系;2. 理解并掌握等式的两个基本性质;3. 掌握方程的变形规则并能解简单的方程.【要点梳理】【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点一、等式1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边都加(或都减去)同一个数或同一个整式,所得结果仍是等式.即:如果,那么 (c表示任意数或整式) .等式的性质2:等式两边都乘(或都除以)同一个数(除数不能是0),所得结果仍是等式.即:如果,那么;如果,c≠0,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立;如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【高清课堂:从算式到方程一、方程的有关概念】要点二、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它(或它们)是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).5.方程的变形规则:方程两边都加(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不等于0的数,方程的解不变.6.移项:在解方程的过程中,等号的两边加上(或减去)方程中某一项的变形过程,相当于将这一项改变符号后,从方程的一边移到另一边.这种变形过程叫做移项.要点诠释:移项通常是指把含有未知数的项移到方程的一边,其他项移到方程的另一边,但无论是移含有未知数的项还是其他项都要改变符号,然后再进行移项. 【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【思路点拨】根据方程的定义来判断.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程C.方程是等式 D.等式是方程【答案】C.2.检验下列各数是不是方程27134x x=+的解.(1)x=12 (2)1213 x=-【答案与解析】解:(1)把x=12分别代入方程的左边和右边,左边21283⨯=,右边7121224=⨯+=.∵左边≠右边,∴ x=12不是方程的解.(2)把1213x=-分别代入方程的左边和右边,左边212831313⎛⎫=⨯-=-⎪⎝⎭,右边7128141313⎛⎫=⨯-+=-⎪⎝⎭.∵左边=右边,∴1213x=-是方程的解.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=【答案】A.类型二、等式的性质3.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1)11;根据等式的性质1,等式两边都加上11;(2)(-by ); 根据等式的性质1,等式两边都加上-by ;(3)916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b.【答案】B.类型三、设未知数列方程4.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【思路点拨】此题可直接设未知数,找到等量关系是所得的分减去扣的分即最后考的80分.【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式. 举一反三:【变式】根据下列条件列出方程.(l)x 的5倍比x 的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.类型四、利用方程的变形规则解方程5.解方程:3x+1=7.【答案与解析】解:两边都减去1得:3x=7-1,两边都除以3得:3x=6,即: x=2.【总结升华】此题主要考查了利用方程的变形规则解一元一次方程,关键是注意此变形规则的依据是等式的基本性质.。
人教版六年级数学下册教案 总复习 式与方程

第课时式与方程1.整理复习用字母表示数、数量关系、计算公式及运算定律,提升学生的自主归纳、整理的能力。
2.理解等式与方程的联系与区别,使学生深刻理解方程的意义,理清解方程的一般步骤,灵活地掌握解方程的方法。
3.在实际问题中掌握列方程解应用题的一般步骤,使学生掌握用方程解决问题,提高学生解决问题的综合实践能力。
【重点】牢固掌握用字母表示数、运算定律及计算公式,灵活解方程。
【难点】利用列方程解应用题的一般步骤解决数学问题。
【教师准备】PPT课件。
【学生准备】课前整理的计算公式、运算定律等知识要点。
考点1用字母表示数、运算定律、计算公式(PPT课件出示)彤彤今年a岁,比妈妈小23岁,2年后彤彤和妈妈的年龄和是多少?(1)指名学生读题,师生思考。
(2)找出题目中的已知条件和问题。
师:读完题以后,谁能说说题目的已知条件和问题是什么?预设生1:已知条件是彤彤今年a岁,比妈妈小23岁。
生2:问题是2年后彤彤和妈妈的年龄和是多少?师:现在就和老师一起根据已知条件和问题来解决问题。
(3)根据问题,必须知道什么才能得出2年后她们的年龄和是多少?预设生:必须知道2年后彤彤和妈妈的年龄分别是多少。
师:分析得真好,就按照你们的分析开始表示出来吧!(学生在练习本上表示出2年以后彤彤和妈妈的年龄分别是多少,教师巡回指导,适当点拨)(4)学生计算后汇报计算结果,明确字母表示数的方法。
结论:2年后彤彤年龄:(a+2)岁,2年后妈妈年龄:(a+23+2)岁,2年后年龄和是:(a+2)+(a+23+2)。
师:这样是最终结果吗?预设生:不是。
师:想想字母表示数应注意什么?小组讨论一下好吗?(小组讨论)预设生1:可以化简。
生2:字母和数字相乘的时候,可以省略乘号。
生3:0不能作除数,不能作分母,也不能作比的后项。
师:根据刚才的汇报结果,化简例1中的式子吧!(学生在练习本上化简(a+2)+(a+23+2),教师适时点拨)师:(学生化简后)现在请你们汇报一下化简结果。
中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)

整式知识点梳理考点01 方程的有关概念一、等式1.等式:用“=”来表示相等关系的式子叫作等式。
2.等式的性质:(1)性质1:等式两边加(或减)同一个数(或式子),结果仍相等(如果b a =,那么c b c a ±=±(c 为一个数或式子))。
(2)性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等(如果b a =,那么bc ac =.如果)(0≠=c b a ,那么cb c a =) 3.等式性质的延伸:(1)对称性:等式左右两边互换,所得结果仍相等,即如果b a =,那么a b =。
(2)传递性:如果b a =,c b =,那么c a =。
二、方程的概念和方程的解1.方程的概念:含有未知数的等式叫作方程。
2.方程与等式的区别:方程是等式,但等式中不一定含有未知数,即等式不一定是方程。
3.方程的解:使方程左右两边相等的未知数的值,叫作方程的解。
4.判断一个数(或一组数)是不是某方程的解,只需看两点:(1)它是方程中的未知数的值.(2)将它分别代入方程的左右两边,若左边等于右边,则它是方程的解,否则不是。
5.解方程:求方程解的过程叫作解方程。
6.方程的解和解方程的区别:方程的解是一个结果,解方程则是得到这个结果的一个过程。
7.一元一次方程:只含有一个未知数(元),并且未知数的次数是1,这样的整式方程叫作一元一次方程。
8.一元一次方程知识拓展:(1)“元”是指未知数,“次”是指未知数的次数.(2)一元一次方程满足3个条件:①是整式方程.②只含有一个未知数.③未知数的次数是1.(3)一元一次方程的标准形式:),0(0是已知数、b a a b ax ≠=+。
考点02 解一元一次方程与一元一次方程的应用一、解一元一次方程1.移项:把等式一边的某项变号后移到另一边,叫作移项,注意移项要变号。
2.解一元一次方程的步骤:(1)去分母:把方程两边都乘以各分母的最小公倍数(去分母时,若分子是多项式,要添括号).(2)去括号:先去小括号,再去中括号,最后去大括号(不要漏乘括号里的项,不要弄错符号).(3)移项:把含有未知数的项移到方程的一边,其他项移到另一边(注意移项要变号).(4)合并同类项:把等号两边的同类项分别合并,化成“b ax =”的形式(0≠a ).(5)系数化为1:方程两边同除以未知数的系数a 得方程的解为ab x =。
人教版九年级数学上册一元二次方程《一元二次方程》示范课教学课件

A
数学化
D
B
CE
如果设梯子底端滑动x m,那么滑动后梯子底端距墙 (x +6) m, 根据题意,可得方程:72+(x+6)2 =102,整理得 x2 +12x-15 =0.
问题3
第二十一章 一元二次方程
21.1 一元二次方程
学习目标
1 理解一元二次方程的概念. 2 了解一元二次方程的一般形式,会将一元二次方程化成一般
形式,并能确定项和系数。 3 了解一元二次方程根的概念 4 理解并灵活运用一元二次方程概念解决有关问题.
复习旧知
★1.什么是方程? 含有未知数的等式叫做方程
总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次 数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的 值.
例3 将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、 一次项和常数项及它们的系数.
解:去括号,得 3x2-3x=5x+10. 移项、合并同类项,得 3x2-8x-10=0.
我们把具有这种形式的方程叫做一元二次方程。
新知讲解
一元二次方程的概念
像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数 的最高次数是2(二次)的方程叫做一元二次方程.
满足的条件: (1) 只含一个未知数; (2) 未知数的最高次数是2; (3) 整式方程.
一元二次方程的一般形式
二次项
解:(1)整理得 5x2-4x-1=0 其中二次项系数是5,一次项系数是-4x,常数项是-1
(2)整理得 3x2-7x+1=0 其中二次项系数是3,一次项系数是-7x,常数项是1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名性别年级学科数学授课教师魏涛上课时间2013年月日第()次课课时:2 课时教学课题方程与整式、等式的区别,方程的解题技巧教学目标结合方程特点进行有技巧的解题教学重点教学难点技巧性解题教学过程一、方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。
等式:用等号来表示相等关系的式子叫做等式。
如,m=n=n+m等都叫做等式,而像-,m2n不含等号,所以它们不是等式,而是代数式。
方程:含有未知数的等式叫做方程。
如5x+3=11,等都是方程。
理解方程的概念必须明确两点:①是等式;②含有未知数。
两者缺一不可。
(2)从是否含有等号来看:方程首先是一个等式,它是用“=”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。
(3)从是否含有未知量来看:等式必含有“=”,但不一定含有未知量;方程既含有“=”,又必须含有未知数。
但整式必不含有等号,不一定含有未知量,分为单项式和多项式。
二、规律方法指导1、判断一个式子是否是一元一次方程:(1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。
(2)当括号内含有分数时,常由外向内先去括号,再去分母。
(3)当分母中含有小数时,可用分数的基本性质化成整数。
(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。
三、经典例题透析四、类型一:一元一次方程的相关概念五、1、已知下列各式:六、①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。
其中方程的个数是( )七、A、5 B、6 C、7 D、8八、思路点拨:方程是含有未知数的等式,根据定义逐个进行判断,显然②③不合题意。
九、总结升华:根据定义逐个进行判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,体现了对概念的理解与应用能力。
举一反三:[变式1]判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)解析:判断是否为一元一次方程需要对原方程进行化简后再作判断。
答案:[变式2]已知:(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。
[变式3]已知3是关于x的方程2x-a=1的解,则a的值是( )A.-5 B.5 C.7 D.2类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。
如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。
1.巧凑整数解方程:2、思路点拨:仔细观察发现,含未知数的项的系数和为,常数项的和故直接移项凑成整数比先去分母简单。
举一反三:[变式]解方程:=2x-52.巧用观察法解方程:3、思路点拨:该方程可化为=3,不难看出,当y=1时,该方程左边三项的值都是1,即左边=右边,因原方程是一元一次方程,故只能有一个解,于是可求得方程的解是y=1。
解:由观察可得y=13.巧去括号解方程:4、思路点拨:含多层括号的一元一次方程,要根据方程中各系数的特点,选择适当的去括号的方法,因为题目中分数的分子和分母具有倍数关系,所以从外向内去括号可以使计算简单。
举一反三:[变式]解方程:4.运用拆项法解方程:5、思路点拨:注意到,在解有分母的一元一次方程时,可以不直接去分母,而是逆用分数加减法法则,拆项后再合并,有时可以使运算简便。
5.巧去分母解方程:6、思路点拨:当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。
为了避免这样的运算。
应把分母化成整数。
化整数时,利用分数的基本性质将分子、分母同时扩大相同的倍数即可。
解:总结升华:应用分数性质时要和等式性质相区别。
可以化为同分母的,先化为同分母,再去分母较简便。
[变式](2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为 (__________________________)去分母,得3(3x+5)=2(2x-1). (__________________________)去括号,得9x+15=4x-2. (____________________________)(____________________),得9x-4x=-15-2. (____________________________)合并,得5x=-17. (合并同类项)(____________________),得x=. (_________________________)6.巧组合解方程:7、思路点拨:按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。
7.巧解含有绝对值的方程:8、|x-2|-3=0思路点拨:解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。
对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|=m,则x=m或x=-m;也可以根据绝对值的几何意义进行去括号。
【变式1】已知方程,那么方程的解是________.[变式3]8.利用整体思想解方程:9、思路点拨:因为含有的项均在“”中,所以我们可以将作为一个整体,先求出整体的值,进而再求的值。
总结升华:解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
类型三、一元一次方程的常见应用题1.优化方案问题10、由于活动需要,78名师生需住宿一晚,,他们住了一些普通双人间和普通三人间,结果每间客房正好住满,且在宾馆给他们打五折优惠的基础上一天一共付住宿费2130元。
请你算一算,他们需要双人普通间和三人普通间各多少间?类型普通(元/间)豪华(元/间)双人房140 300三人房150 400解:设安排普通双人房x间,则可住2x人,费用为140×50%·x元,此时安排普通三人房间,可住(78-2x)人,费用为150×50%×元。
由题意,得140×50%×x+150×50%×=2130。
解得x=9,=20。
即安排三人房20间,双人房9间即可。
举一反三:【变式】某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?解:设租用45座客车x辆,则根据春游学生人数不变,列方程:45x+15=60x-60解得: x=5若租用45座客车,则需用5辆,需花费:250×5=1250元若租用60座客车,则需用4辆,需花费300*4=1200元因为:1250>1200,因此租用60座客车比较合算。
答:租用60座客车更合算,租用4辆车。
2.行程中的追及相遇问题11、甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少?思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲 3 33+90乙 3 3+90 1 3相遇前甲行驶的路程+90=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解:设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得.解这个方程,得=15.检验:=15适合方程,且符合题意.将=15代入,得==45.答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.总结升华:理解相遇前后的等量关系,相遇问题是行程问题中很重要的一种,它的特点是相向而行。
这类问题可以通过画线段图或列表帮助理解、分析。
举一反三:[变式]甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的。
摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?3.日历中的方程12、(1)在2006年8月的日历中(如图(1)),任意圈出一竖列上相邻的三个数,设中间的一个数为a,则用含a的代数式表示这三个数(从小到大排列)分别是___。
(2)现将连续自然数1至2006按图中(如图(2))的方式排成一个长方形阵列,用一个长方形框出16个数。
①图中框出的这16个数的和是___。
②在图(2)中,要使一个长方形框出的16个数之和分别等于2000、2006,是否可能?若不可能,试说明理由;若有可能,请求出该长方形框出的16个数中的最小数和最大数。
思路点拨:(1)通过观察可以发现,一竖列上相邻的三个数,下面的数总比上面的数大7;(2)①经观察不难发现,在这个长方形框里的16个数中,第一个数10与最后一个数34的和为44,第二个数与倒数第二个数,第三个数与倒数第三个数,……,它们的和都是44;②设最小的数为a,由图(2)及(1)可知,这16个数分成8组,每组的两个数之和都是2a+37+3=2a+24。
解:(1)a-7,a,a+7(2)①352②设框出的16个数中最小的一个数为a,则这16个数组成的矩形方框如下图所示。
则这16个数之和为16a+192,当16a+192=2000时,a=113,当16a+192=2006时,a=。
因为a是自然数,所以a=不符合题意,即框出的16个数的和不可能是2006。
由方形阵列的排法可知,a只可能在1,2,3,4列,即a被7除的余数只可能是1,2,3,4。
因为113=16×7+1,即113被7除余1,113在第一列中,所以这16个数的和是2000是可能的,这时,方框中最小的数是113,最大的数是113+24=137。
总结升华:(1)日历中的数量关系①在日历中,每一横排相邻两个数字之间差1。
②在日历中,每一竖排相邻两个数字之间差7。
③在日历中,左上到右下方向相邻两个数字之间差8。