我国特高压直流输电技术的现状及发展
特高压输变电技术的现状分析和发展研究

特高压输变电技术的现状分析和发展研究随着电力工业的不断发展,传统的输变电技术已经不能满足现代社会对于电能传输的要求。
为了实现更高效、更可靠、更安全、更环保的电网运行,特高压输变电技术越来越受到重视。
本文将对特高压输变电技术的现状进行分析,并探讨其未来发展的前景。
特高压输变电技术是指输电电压等级达到UHV(Ultra High Voltage)的输电技术。
目前,国际上专业学者普遍认为,UHV的起始电压应为800千伏或更高。
特高压输变电主要包括输电线路技术和变电站技术。
输电线路技术输电线路是电力传输的重要组成部分。
特高压输电线路技术主要包括两种:交流输电和直流输电。
目前,直流输电技术已经成为特高压输电的主要技术路线。
直流输电线路具有输电距离远、输电能力强、输电损耗小等优点。
同时,直流输电线路也具有较高的技术难度,需要克服电气、机械、材料、环保等方面的问题。
变电站技术变电站是实现电能传输、分配、控制的重要设施。
在特高压输电中,变电站技术也面临很多挑战。
特高压变电站需要满足更高的电压等级、更大的容量、更高的可靠性和更严格的环保要求。
同时,特高压变电站还需要运用先进的数字化、自动化、通信等技术,对变电站进行监控及实时调度。
特高压输变电技术的发展可谓是世界范围内的热点。
在我国,特高压输变电技术也是电网建设的现代化方向之一。
首先,特高压输变电技术将进一步改善电网运行质量。
通过特高压输电技术,可以大幅度降低输电损耗,提高电网运行效率,减少电网故障率和停电次数。
其次,特高压输变电技术将促进电源的优化布局。
特高压输电技术可以实现电源与负荷之间任意距离的长距离传输,可以更好地满足新能源、新型负荷等方面的需求。
通过特高压输变电技术,可以实现多区域跨越、多能源协同等新型运行模式。
最后,特高压输变电技术也将对环保带来重要的意义。
随着特高压输变电技术的发展,传统的电力线路建设将逐渐退役,电网排放将逐步降低,使得能源利用更加环保和可持续。
浅谈对我国特高压交直流输电技术分析与研究

浅谈对我国特高压交直流输电技术分析与研究摘要:从世界范围看,特高压输电技术将长期发展。
根据中国电网的发展趋势,特高压电网将由1000kV级交流输电系统和±800kV级直流系统组成。
根据特高压交流和直流2种输电方式不同的技术经济特性,比较分析了两者的适用场合,并对特高压输电线路的防雷保护、可靠性、稳定性、电磁环境、绝缘子选型和交直流配合等技术问题,分别展开比较。
关键词:特高压交流;特高压直流;防雷;可靠性;稳定性;电磁环境;绝缘子;交直流配合一、特高压输电特高压是世界上最先进的输电技术。
交流输电电压一般分为高压、超高压和特高压。
国际上,高压(HV)通常指35-220kV电压。
超高压(EHV)通常指330kV及以上、1000kV以下的电压。
特高压(UHV)定义为1000kV及以上电压。
而对于直流输电而言,高压直流(HVDC)通常指的是±600kV及以下的直流输电电压,±800kV(±750kV)以上的电压称为特高压直流(UHVDC)。
二、我国特高压直流输电技术1、特高压直流输电现状:20 世纪 80 年代前苏联曾动工建设哈萨克斯坦—中俄罗斯的长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW;巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常; 1988到1994 年为了开发亚马逊河的水力资源,巴西电力研究中心和 ABB 组织了包括±800kV 特高压直流输电的研发工作,后因工程停止而终止了研究工作。
2、特高压直流输电技术的特点及适用范围:特高压直流输电工程由于输送容量大,电压等级进入特高压范畴,换流站和线路工程在电磁环境影响、绝缘配合、外绝缘特性、无功补偿配置、换流阀组、直流场接线以及总平面布置等方面均有其自身特点,技术难度大,也是可行性研究阶段的主要技术内容,需要结合工程的自然地理环境和两端电网情况进行深入的研究和论证,初步确定其主要技术原则和方案。
正负 800kV 特高压直流输电工程技术

正负 800kV 特高压直流输电工程技术摘要:随着国民经济的持续发展,我国对电能的需求也日益增加,随之而来的是我国电力装机容量的不断扩大。
但是,我国的电力资源和电力负荷的分布却极为不平衡,如水能资源和煤炭资源作为主要集中在我国西部和北部地区,而电力消耗较多的负荷中心却分布在中部和东部沿海等发达地区。
这就决定了我国必须建设高电压、大容量、远距离的输电网络,将电能大规模的从西部、北部地区运往中、东部的负荷中心,以实现资源优化和提高资源的开发利用效率。
随着直流输电技术和电力电子技术的不断发展,特高压直流输电技术日趋成熟,为 ±800kV 特高压直流输电技术的成功应用提供了可能。
关键词:±800kV;特高压直流输电;工程技术;应用研究1.特高压直流输电技术特点1.1线路造价低三相交流输电的架空输电线路需要三根导线,而直流输电只需要两根,若采用大地或海水作为回路的方式则只需一根,若传输同样容量的电能,直流线路从导线数目、电能损耗和杆塔的结构上面,都要比交流线路少,可以节省投资 30%~40%。
1.2输送容量大交流输电线路会存在介质损耗、电容电流等现象。
而在直流输电线路却不存在。
并且在直流电压下,每毫米厚的绝缘层平均可耐受3~4 万伏电压,这比交流电压下耐受 1 万伏的电压相比,要高很多。
因此同样电流的电能输送,直流电缆输送功率要比交流电缆多 2~3 倍,从而提高了输送功率。
1.3输送距离远交流输电线路由于存在电容电流,且与电缆的长度成正比,所以交流输电的距离不会太长。
而直流输电的距离则不受限制,可以实现远距离的输电,有利于我国电能的优化传输。
1.4可靠性较好交流输电要求三相平衡,其中一相的故障会导致电网的全线停电,且故障电流对高压载流设备会带来影响。
而直流输电线路中,各极是独立调节和工作的,彼此没有影响。
若一极发生故障,则只需停运故障极,另一极与大地构成输电回路,仍可向负载提供不少于一半的功率。
高压直流输电技术的发展趋势

高压直流输电技术的发展趋势在当今能源需求不断增长、能源分布不均衡以及对电力供应质量要求日益提高的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正发挥着越来越重要的作用。
随着科技的不断进步,高压直流输电技术也在持续发展和创新,展现出一系列令人瞩目的发展趋势。
高压直流输电技术具有诸多优点,如能够实现远距离、大容量输电,降低输电损耗,提高输电效率等。
它在实现能源资源的优化配置、促进区域间的电力互济等方面发挥着关键作用。
从技术层面来看,电压等级的不断提高是一个重要的发展趋势。
更高的电压等级意味着能够传输更大的功率,减少输电线路的数量,降低建设成本和土地占用。
目前,特高压直流输电技术已经取得了显著的成就,未来有望进一步提升电压等级,以满足更大规模的电力输送需求。
在换流器技术方面,新型的换流器拓扑结构不断涌现。
传统的基于晶闸管的换流器逐渐被基于绝缘栅双极型晶体管(IGBT)等全控型器件的换流器所取代。
这些新型换流器具有更快的开关速度、更好的控制性能和更低的损耗,能够提高输电系统的效率和稳定性。
直流断路器的研发也是一个关键领域。
快速可靠的直流断路器对于保障直流输电系统的安全运行至关重要。
目前,已经有多种直流断路器的技术方案在研究和试验中,未来有望实现更快速、更可靠、更经济的直流断路器,从而提高直流输电系统的故障处理能力。
随着电力电子技术的发展,多端直流输电系统正逐渐成为现实。
相较于传统的两端直流输电,多端直流输电能够更灵活地实现多个电源和负荷的连接,提高电力系统的可靠性和灵活性。
未来,多端直流输电系统有望在城市电网、区域电网互联等领域得到广泛应用。
在控制保护技术方面,智能化、自适应的控制保护系统是发展的方向。
通过先进的传感器和监测技术,实时获取输电系统的运行状态信息,利用智能算法进行分析和决策,实现对输电系统的精准控制和保护,提高系统的稳定性和可靠性。
在能源转型的大背景下,高压直流输电技术与可再生能源的结合将更加紧密。
国内外特高压输电技术发展情况综述

国内外特高压输电技术发展情况综述1.背景自从电能作为人们生活中廉价而又清洁的能源以来,随着电网的不断发展壮大,输电电压经历高压、超高压两个发展阶段,目前又跨入了特高压输电的新的历史时期。
这种发展标志着我国综合实力的不断提高,电力行业技术水平的提高。
近来,由于石油价格的暴涨,1993年11月在宜昌召开的中国电机工程学会电力系统与电网技术综合学术年会上发表《关于着手开展特高压输电前期科研的建议》以来,各方面的人士对特高压输电技术给予了高度的关注。
那么何谓特高压输电呢?特高压输电系指比交流500kV输电能量更大、输电距离更远的新的输电方式。
它包括两个不同的内涵:一是交流特高压(UHC),二是高压直流(HVDC)。
具有输电成本经济、电网结构简化、短路电流小、输电走廊占用少以及可以提高供电质量等优点。
根据国际电工委员会的定义:交流特高压是指1000kV以上的电压等级。
在我国,常规性是指1000kV以上的交流,800kV以上的直流。
我们国家是在何种情形下进行特高压研究的呢?不妨从如下几个方面来看:从能源利用上来说,看国际上常以能源人均占有量、能源构成、能源使用效率和对环境的影响,来衡量一个国家的现代化程度。
目前我国人均年消耗的能源水平很低,如果在21世纪中叶赶上国际中等发达水平,能源工业将要有大的发展。
据最近召开的世界能源第十七次会议预测,世界能源工业还要进一步发展,到2030年,世界的能源产量将翻一番;到21世纪末再翻一番,其中主要集中在中国、印度、印尼等发展中国家。
我国电力将在未来15~20年内保持快速增长,根据我国电力发展规划,到2003年、2010年、2020年我国电力装机容量将分别达到3.7亿千瓦、6亿千瓦和9亿千瓦。
从世界范围来看,交流特高压和高压直流将长期并存,而交流特高压输变电设备是交流特高压和高压直流的基础。
而新的输电电压等级的出现取决于诸多因素。
首先是长距离、大电量输送方式的增长需求,其次是输电技术水平、经济效益和环境影响等方面的考虑。
高压直流输电技术在电力系统中的应用与优化研究

高压直流输电技术在电力系统中的应用与优化研究摘要:本文着眼于高压直流输电技术在电力系统中的应用与优化研究。
随着电力需求的增长和电力系统的发展,高压直流输电技术作为一种高效、可靠的输电方式受到广泛关注。
本文将探讨高压直流输电技术的应用现状、存在的问题以及优化方向,旨在为电力系统的可靠性和经济性提供有益建议。
关键词:高压直流输电技术;电力系统;应用;优化研究引言:随着电力需求的增长和能源结构的调整,电力系统对输电方式的要求也在不断提高。
高压直流输电技术以其低损耗、远距离传输等优势逐渐成为电力系统中的重要组成部分。
然而,在实际应用过程中,仍存在一些问题需要解决,并且需要不断优化以适应电力系统的发展需求。
本文将围绕高压直流输电技术在电力系统中的应用与优化展开研究。
一、高压直流输电技术应用现状分析1.1 高压直流输电技术概述1.1.1 高压直流输电技术的优势高压直流输电技术相比传统的交流输电方式具有诸多优势。
首先,高压直流输电能够减少输电线路的电阻损耗和电感电抗,降低输电损耗,提高输电效率。
其次,直流输电系统具有较高的稳定性和控制性,能够更好地适应电网的负荷波动和故障情况,提高电网的稳定性和可靠性。
此外,高压直流输电技术还具有较小的电磁影响和谐波产生,对电网和周围环境的影响较小,有利于提高输电线路的安全性和可靠性。
1.1.2 高压直流输电技术在电力系统中的地位和作用高压直流输电技术在电力系统中扮演着重要的角色。
它被广泛应用于长距离、大容量的电力输送中,特别适用于跨越海底、山区、荒漠等特殊地理环境的输电。
高压直流输电技术可以有效解决传统交流输电方式中存在的输电损耗大、距离远、稳定性差等问题,提高电网的输电效率和可靠性。
在当前电力系统中,高压直流输电技术已成为不可或缺的重要组成部分,为电力系统的安全稳定运行提供了有力支撑。
1.2高压直流输电项目应用情况分析高压直流输电项目在电力系统中的应用越来越广泛。
一方面,高压直流输电技术可以有效地解决远距离输电线路的电能传输问题,降低输电损耗;另一方面,高压直流输电具有控制灵活、系统稳定等优势,使其在跨国跨区域电力输送中得到广泛应用。
中国电网现状(超高压)

特高压电压发展现状及相关知识电网输电电压划分“特高压电网”,指1000千伏的交流或±800千伏的直流电网。
输电电压一般分高压、超高压和特高压。
国际上,高压(HV)通常指35~220kV的电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)指1000kV 及以上的电压。
高压直流(HVDC)通常指的是1 600kV及以下的直流输电电压,士600 kV以上的电压称为特高压直流(UHVDC)。
我国目前绝大多数电网来说,高压电网指的是110kV和220kV电网;超高压电网指的是330kV,500kV和750kV电网。
特高压输电指的是正在开发的1000 kV交流电压和1 800kV直流电压输电工程和技术。
特高压电网指的是以1000kV输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电高压直流输电和配电网构成的分层、分区、结构清晰的现代化大电网。
近期,国家电网“十二五”特高压投资规划出台。
国家电网在2010年8月12日首度公布,到2015年建成华北、华东、华中(“三华”)特高压电网,形成“三纵三横一环网”。
据了解,未来5年,特高压的投资金额有望达到2700亿元。
这较“十一五”期间的200亿投资,足足增长了13倍之余。
有分析人士据此指出,我国电网将迈入特高压时代。
这对于发电设备公司来说,无疑是一个令人振奋的消息。
那么,在这场2700亿特高压投资盛宴中,发电设备公司究竟能分得几杯羹呢?电网建设迈入特高压时代国家电网8月12日还宣布,世界上运行电压最高的1000千伏晋东南―南阳―荆门特高压交流试验示范工程已通过国家验收,这标志着特高压已不再是“试验”和“示范”阶段,后续工程的核准和建设进程有望加快。
此前,我国的特高压电网建设也正在逐步推进。
2009年1月16日,国内首条特高压示范工程――晋东南-荆门1000千伏特高压交流输电示范工程正式投运,至今已成功运行1年7个月。
特高压直流输电技术及环保型GIL发展的现状与关键问题分析

特高压直流输电技术及环保型GIL发展的现状与关键问题分析摘要:随着社会经济的全面发展,我国对于电力需求量逐渐增加,为了确保电力系统运行稳定性,我国电网输电电压研究与应用中,实现了特高压与超特高压,而且现代特高压直流输电技术在电力系统中得到了合理运用,具有一定的稳定性与灵活性。
另外,在我国提出“双碳”理念后,实现了特高压直流环保性GIL输电,解决了我国输电需求问题,在降低碳排放量的基础上,实现了长距离输电。
因此,通过对特高压直流输电技术发展必要性加以分析,了解特高压直流环保性GIL输电现状,分析其中所存在的关键性问题,以此为我国后续特高压直流输电技术以及环保性GIL的研究提供良好帮助。
关键词:特高压直流;输电技术;环保性GIL;关键问题前言:输电技术作为电力系统构建的主要技术之一,对提高电力系统运行稳定性奠定了良好基础。
现阶段,我国电力系统逐渐迈向了大容量以及大机组自动方向发展,电力系统运行质量也得到了良好的提高,实现了特高压直流输电技术。
电力输电系统电压等级主要以高压、特高压以及超高压为主,其中直流特高压电压等级则是以±800KV与±1100KV为主,为了确保直流输电系统的稳定性,减少能源消耗,通过研究实现了环保性GIL输电,为直流输电系统运行安全奠定了良好基础。
1发展特高压输电技术的必要性由于我国人口数量众多,每日所需消耗的电力逐渐增加,为了确保电力系统的稳定输电,实现长距离供电,我国加强了低功耗以及大容量电力输电网络建设力度,以为我国电力行业的健康发展奠定良好基础。
1.1促进城镇化以及工业化发展根据相关调查,我国2005年总用电量为2.5万亿kW·h,而到了2020年,总用电量达到了7.5万亿kW·h以上。
电力系统运行以及发电量逐年增多,很容易对电力体统造成符合压力,影响电力运输质量以及安全。
为了可以有效缓解电力运输压力,通过构建特高压输电网络,不仅可以全面提高电网运行符合能力,同时也能够根据电力供应情况,及时调整电网运行荷载力,以此确保电力系统以及输电网络的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国特高压直流输电技术的现状及发展(华北电力大学,北京市)【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。
本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。
【关键词】特高压直流输电,特点,问题,必要性,发展前景0.引言特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。
其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。
特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。
1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。
国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。
随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。
特高压直流输电技术恰好迎合了这一要求。
1.特高压直流输电的技术特点1.1特高压直流输电系统特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。
换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。
特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。
特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。
换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。
换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。
换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。
1.2 特高压直流输电技术的主要特点(1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。
在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。
(2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。
特高压直流输电系统的潮流方向和大小均能方便地进行控制。
(3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。
(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。
(5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。
1.3 与超高压直流输电比较和±600千伏级及600千伏以下超高压直流相比,特高压直流输电的主要技术和经济优势可归纳为以下六个方面:(1)输送容量大。
采用4000安培晶闸管阀,±800千伏直流特高压输电能力可达到640万千瓦,是±500千伏、300万千瓦高压直流方式的2.1倍,是±600千伏级、380万千瓦高压直流方式的1.7倍,能够充分发挥规模输电优势。
(2)送电距离长。
采用±800千伏直流输电技术使得超远距离的送电成为可能,经济输电距离可以达到2500公里甚至更远,为西南大水电基地开发提供了输电保障。
(3)线路损耗低。
在导线总截面、输送容量均相同的情况下,±800千伏直流线路的电阻损耗是±500千伏直流线路的39%,是±600千伏级直流线路的60%,提高输电效率,节省运行费用。
(4)工程投资省。
根据有关设计部门的计算,对于超长距离、超大容量输电需求,±800千伏直流输电方案的单位输送容量综合造价约为±500千伏直流输电方案的72%,节省工程投资效益显著。
(5)走廊利用率高。
±800千伏、640万千瓦直流输电方案的线路走廊为76米,单位走廊宽度输送容量为8.4万千瓦/米,是±500千伏、300万千瓦方案和±620千伏、380万千瓦方案的1.3倍左右,提高输电走廊利用效率,节省宝贵的土地资源;由于单回线路输送容量大,显著节省山谷、江河跨越点的有限资源。
(6)运行方式灵活。
国家电网公司特高压直流输电拟采用400+400千伏双十二脉动换流器串联的接线方案,运行方式灵活,系统可靠性大大提高。
任何一个换流阀模块发生故障,系统仍能够保证75%额定功率的送出。
1.4 与特高压交流输电比较与特高压交流输电相比,±800kV特高压直流输电的特点是:(1)线路中间无落点,直接将大量电力送至负荷中心。
(2)在交/直流并联输电方式时,可利用直流输电的快速可控性来有效抑制区域性低频振荡,提高断面动稳定极限。
(3)解决受端交流电网短路电流过大的问题。
2.特高压直流输电所要解决的问题近期,国家电网公司进行了广泛的技术交流,并开展了关键技术的调研工作。
交流和调研结果表明:虽然特高压直流输电技术在技术上已没有不可逾越的障碍,但仍存在一些需要研究和解决的技术、标准等问题。
主要的问题有:(1)直流场过电压及绝缘水平的确定。
特高压直流输电最根本的问题是过电压及与之相适应的绝缘问题。
特高压过电压包括雷电过电压、工频过电压和操作过电压。
特高压直流输电过电压的现象及原理虽与超高压直流输电类似,但空气绝缘特性却有很大的差异。
由于特高压直流输电的过电压的高低对其绝缘系统的设计和绝缘水平起着决定性作用,因此对特高压直流的过电压必须采取技术措施予以限制,尤其应把操作过电压限制在尽可能低的水平。
(2)主接线问题。
特高压直流输电容量巨大,因而需要研究论证接线方式。
尽管特高压直流输电工程最优设计采用单换流器,但由于输电容量太大,受换流变压器等大型设备运输条件的限制,每极往往需要采用多个换流器。
前苏联的特高压直流设计采用的是双换流器并联。
(3)键元件的参数确定。
晶闸管元件是直流输电的关键部件。
目前世界上比较成熟的技术是5英寸晶闸管。
通过开发可以研制出满足容量为600万千瓦以上的特高压直流输电要求的更大直径的晶闸管元件。
对于640万千瓦的特高压直流输电工程晶闸管元件参数则需要重点研究。
(4)特高压直流输电建设的环境问题。
要发展特高压直流输电,必须解决好其产生的噪声、电磁污染对环境的影响问题。
换流站的设计和设备制造必须满足国家的环保要求。
(5)工程建设的标准。
到目前为止,尚无±800kV直流输电工程的建设和运行经验,也没有可以直接套用的标准,只有通过工程建设和运行,逐步建立起一套科学而且实用的特高压直流输电标准体系,完成一批工程建设急需的特高压直流输电标准。
3, 特高压直流输电在我国发展的必要性3.1 我国能源开发、分配、传输的形势我国是全球第一大煤炭消费国和第二大石油、电力消费国煤炭占全国能源生产和消费资源的比重高达2/3左右.但开发和利用的总体效率还比较低同时.我国生产力发展水平的地区差异很大.一次能源分布严重不均衡能源需求主要集中在东部和中部经济较发达地区.约占需求总量的3/4左右:用于发电的煤炭和水力资源.则主要分布在西部和北部地区这种能源分布与消费的不平衡状况.决定了能源资源必须在全国范围内优化配置.以大煤炭基地、大水电基地为依托.实现煤电就地转换和水电大规模开发.并通过建设特高压电网.实现跨地区、跨流域水火互济.将清洁的电能从西部和北部大规模输送到中东部地区我国用于发电的一次能源、水电约占20%.煤电约占70%.核电和其它可再生新能源在总能源中的比例不到10%我国能源和负荷的地理分布很不均衡要解决2l世纪上半叶的能源供应问题.必须在大力开发西南、西北水电和“三西”煤电的同时建设全国能源传输通道.实现长距离大容量的“电东送和北电南送”。
西南、西北水电东送可需要50~60GW 的输出能力:“三西”煤电的开发有许多制约因素.其规模大小难于准确预测.南送电力可能在30—100GW 的范围总之.我国能源的资源与需求呈逆向分布.客观上需要实现能源的大范围转移。
晋陕蒙宁新大型煤电基地和西南水电富集地区大型水电基地需向能源匮乏的中东部地区远距离、大容量、低损耗输电,优化配置电力输送方式是电力工业发展的必然趋势。
3.2 特高压能解决当前电网问题我国电网存在诸多问题.主要表现在:第一.近年来.我国经济发达地区燃煤电厂发展比较快,而山东、河北、河南等地区的电煤供应日渐短缺。
电煤的供应更多地依靠山西、内蒙古、陕西等北部地区的煤炭基地。
在北电南送能力不足的条件下。
使得北煤南运的数量和运程大大增加。
最终导致近年来我国中部、东部和南部大部分地区电煤因运输“瓶颈”的限制而供应不足。
出现严重缺电的局面;第二.现有500千伏电网输送能力不能满足大范围电力资源优化配置和电力市场的需求;第三.电力负荷密集地区电网短路电流控制困难。
华东、华北电网已经出现有一部分500千伏母线的短路电流水平将超过断路器最大遮断电流能力。
还有就是长链型电网结构动态稳定问题突出。
在东北、华北、华中电网500千伏交流联网结构比较薄弱的情况下.存在低频震荡问题;第四.受端电网存在多直流集中落点和电压稳定问题。
到2020年。
如果西电东送华东电网全部采用直流输电方式。
落点华东电网的直流接流站将超过l0个。
受端电网在严重短路故障的情况下。
电力系统因电压低落发生连锁反应的风险较大;第五.实现“大容量、远距离从发电中心向负荷中心输送电能;强互联.更有效地利用整个电网内各种可以利用的发电资源。
提高互联的各个电网的可靠性和稳定性;减少超高压输电的距离和网损,使整个电力系统能继续扩大覆盖范围。
并更经济、更可靠运行”。
成为国家电网的重要目标而能够担当此任的非特高压莫属。
我国国家电网特高压骨干网架由1 000千伏级交流输电网和±800千伏级直流系统构成国家电网特高压骨干网架的建设符合“规划科学、结构合理、技术先进、安全可靠、运行灵活、标准统一、经济高效”的目标要求。
国家特高压电网网架可为实现跨大区跨流域水火电互济、全国范围内能源资源优化配置提供充分支持。
以满足我国国民经济发展的需求;满足大容量、远距离、高效率、低损耗地实现“西电东送、南北互供”的要求,满足我国电力市场交易灵活的要求;促进电力市场的发展,具有坚强的网络功能;具有电网的可扩展性,可灵活地适应远景能源流的变化;有效解决目前500千伏电网存在的因电力密度过大引起的短路电流过大、输电能力过低和安全稳定性差等系统安全问题4.特高压直流输电在我国的发展前景2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要9 条输电容量为6GW 的±800kV 级特高压直流输电线路。