稳压二极管详案

稳压二极管详案
稳压二极管详案

稳压二极管

见到大家,我很高兴,特地带来了一件礼物。这-----是一朵鲜艳的大红花——不过是塑料的;它能发出耀眼的光芒——但,要通电。同学们,想不想让我给你们展示一下。(想!)好!你看,它流光溢彩。多美啊。

(电压变化),怎么啦,一闪一闪啦?呵!是电压不很稳定……不好,灯泡烧坏啦。要是电压能够稳定该多好啊,那就可以继续让同学们一饱眼福。同学们,你们想想看,要使电压稳定,应该加一个什么东西?——稳压器。它主要对交流电稳压——要对直流电稳压,那该用什么器件呢?

嗯,有啦!前面我们学了普通二极管的伏安特性曲线(这个样子),我们知道普通二极管主要工作在正向导通区和反向截止区,那我们能不能对反向击穿区来开发利用呢?你看这段线比较陡,它对应的横坐标――电压基本不变。那就意味着二极管一旦反向击穿,击穿后的电流可以变化很大,而两端的反向电压只变化一点点,可以认为基本不变。那我们何不利用二极管击穿后电压基本稳定这一特性,作为稳压器件呢?但是普通二极管击穿曲线不是很陡,稳压性能并不是很好,要是将二极管工艺改进一下,使这一段线更陡,使它的稳压性能更好,不就可以制成具有稳压功能的二极管了吗?当年,科学家就是通过这样思考发明了一种稳压器件―――稳压二极管◎。

现在我们已明白稳压二极管的功能是:q ( 工作于反向击穿状态,能够稳压)

(,可见稳压二极管要能够稳压需要满足一定的条件)

2、稳压基本条件:

从上面分析可以看出,要让稳压二极管能够稳压(1)首先要保证它工作在反向击穿区域,即稳压二极管两端电压要大于其击穿电压。打个比方,如果要将水库的坝口冲开,坝内水位这下又麻烦拉,洪水汹涌直下,会造成很大损害,同样,如果二极管一旦击穿,电流会很大,也会带来损坏,那就会烧坏二极管。因而要保证二极管不被损坏,必须要加适当措施限制击穿后的电流。常常利用电阻限流。简而言之,要使稳压二极管稳压,1,要反向击穿,2。要限制电流。两个条件都要满足,缺一不可。继续

讲了这么久,有些同学可能在想:稳压二极管本领不小,可到底是什么样子呢?

我、这里就有几个(层层剥开纸)就这么一丁点儿。个头小,看不清?——那就请看这里!

图上就是稳压二极管家族,这是爷爷,是以前的老产品,体积大、性能差,现在很少用啦;这是孙子,体积小,性能好,玻璃壳的,是红色的,现在最常用的就是这种。你看它们都有一个共同的特征,带了一个“项圈”,这里一个,这里一个,其实,这是一个识别标记,和前面学的普通二极管一样,表明上端是二极管的什么极啊?------负极

这个实物图,画起来肯定很复杂,我们想到利用一个简单的符号来表示。◎

3、符号:

×稳压二极管首先是一个二极管,它有二极管的共性---单向导电性。这是我们前面学过的二极管的符号,表示它只能让电流沿箭头的方向流过,反过来就会被PN结这个档板挡住,对着箭头的方向只能为了表示它和普通的二极管不同,这里加了一条线。理解符号(档板)

[示错]:讲到这里,我想起有些同学想呀,那好,我可以难复读机电源加一个稳压电路,于是将二极管直接并于输出线两端,结果稳压二极管一下冒了烟。

知道了稳压二极管的符号,现在我们就可以根据稳压的两个基本条件,来设计稳压电路。

4.稳压电路:(是一种并联型稳压电路)

电路图:这是一个直流电源,接有两根电源输出线,上端是正极线,下端是负极,为了使输出电压稳定,稳压二极管应该正接还是反接?

根据稳压基本条件1,首先要反向击穿(反接);2。要限制电流,采用串联电阻限流,可串联在那个位置呢?电阻应该串联在输入端.。这样就满足了两个条件,这个电路应该就能够稳压拉。

那这个电路又是怎样稳压的呢?

工作原理:同学们,你们仔细看看电路,发现稳压二极管和负载是什么连接方式?对!是并联的,它们的电压一定相等。而我们知道稳压二极管击穿后能够稳压,那么,输出到负载两端电压也就能够稳定咯,从而达到稳压的目的。当然这只是笼统的理解。至于它的具体工作过程讲起来比较复杂,不如,让我们先来看一个动画片,或许对你们理解稳压原理很有启发。

动画:(木桶效应)

[讲解]:这是一个普通的木桶,但它有一个缺陷,这个地方有个缺口。现在打开龙头往木桶里放水,桶内水位上升,――水位不稳定;但当水漫至缺口位置时,水从缺口处流了出来,而水位不再上升,基本稳定,再把水龙头开大,流出来的水增多,而水位仍然不上升。这就是著名的“木桶效应”,它的寓意是指人和事物往往因为某项不足而制约着发展。所以现在我用推行素质教育,促进学生身心的全面发展正是基于此理。同学们!你们能不能从“木桶效应”和稳压电路中找到某种联系呢?

你们想:桶内水位之所以稳定,是因为缺口将多余的水放出,流到地上去了。稳压电路是不是也是这样呢?电路中哪个元件相当于缺口起泄放作用呢?看看电路中到地的只有稳压二极管呢?看来只有稳压二极管咯!有言道实践是检验真理的唯一标准,不如我们用实验来验证一下这个假设。

结论:1。当稳压二极管没有击穿时,输出电压随输入电压变化而变化―――不稳压

2. 当稳压二极管击穿后,输出电压基本稳定

现在我们回过头来类比一下:

动画一,

结论:1。当稳压二极管没有击穿时,它不起作用,输入电压升高而输出电压也升高―――输出电压不稳压。这相当于水位没有达到缺口位置,往桶里放水,水位升高――不稳定。

动画而:

2.当稳压二极管击穿后,二极管导通,输出电压基本稳定

这相当于水位达到缺口位置,缺口将多余的水泄放到地,水位稳定。(动画)

小结:通过实验和分析发现我们的假设是正确的,也发现稳压电路工作过程和木桶效应有着惊人的相似,同学们一木桶效应来理解是不是觉得容易的多啊?

设问:同学们,你们想想看:在稳压过程中,输入电压变化,稳压二极管的内阻会不会变化?(反过来考虑)

,通过学习,我们发现,二极管稳压电路非常简单,只有两个元件。那我们何不为复读机电源增加一个稳压电路呢?这样可以使复读机工作更稳定,还可以防止电压过高烧坏复读机呢!

这就是一个复读机外接电源,(拆开)其实它里面主要有一个变压器,将220v降为安全电压以内,这仍然是交流,要把它变为直流,要――整流,整流之后,波动较大,还要加?―――滤波电路,为了便于了解电源是否接触好,最好增加一个指示电路――用LED,为了使输出电压稳定,还要加入稳压电路,设计而成啦。你看!一个看似复杂的电路其实是由多个简单电路组合而成,有这一个电路,就将整个第二章的知识整合起来啦。要做成稳压电源,其实只要在原来的基础上增加一个稳压电路。一个6v稳压电路。

有些同学会问:老师,我想做,你还没有告诉我元件的参数啊。我给你提供一个网上下载的厂家资料。请看!

自己知道选吗,这些字母代号能看懂吗?(不能)

看来,我们还必要来了解一下稳压二极管的主要参数:◎

⑸.主要参数:(用鞋子尺码说明参数意义)

【解释代号】:

1.稳定电压(Vz):指稳压二极管在正常工作状态下其两端的电压值。

2.稳定电流(Iz):指稳压二极管在稳定电压下的工作电流。

【举出反例】:(太大了――?太小了―――?)

耗散功率(PzM):

指稳压二极管在正常工作状态下,所允许消耗的最大功率,二极管的实际功率不能超过最大耗散功率,不然会烧坏稳压二极管,一般讲来,二极管体积越大,耗散功率越大,常用规格有

回过头来,现在同学们再来试试看?应该会选用了吧。

小结:同学们,学到这里,我们对稳压二极管了解的也不少了,下面上我们回过头来梳理一下,。请同学们按照老师的提示,快速回顾一下。

我们学习稳压二极管,就是在了解它的基础上,能够选用或使用它。可以用它来服务于我们的生活。

譬如:在同学们中流行着一种随身听电源,它内部其实是一个小蓄电池(2-3格)。这种电池充电电路很简单,常因充电过头,而使电池过早夭折。这样既浪费金钱,又污染环境。那我们能不能在电路上想点办法,改进一下呢?

要解决问题,首先要分析问题所在。看看电路

采取措施:要限制电压上升(以水塘口类比提示)

改进方案:加入稳压电路

元件参数选择:(表上)

三端稳压集成电路LM317工作原理

LM317工作原理分析

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是由R1提供的,1R I 的大小也没有任何限制.是否可以使R1的阻值趋于无穷大,使1R I 的电流值趋向于无穷小如果可以这样做的话,就可以去掉R1,只用可变电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算,0V =(1+ R2/R1)。仅仅从公

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

齐纳二极管

齐纳二极管 齐纳二极管(又叫稳压二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。 肖特基二极管 肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电

路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。电路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。 我知道的一个应用是在BJT的开关电路里面, 通过在BJT上连接Shockley二极管来箝位,使得晶体管在导通状态时其实处于很接近截至状态.从而提高晶体管的开关速度.这种方法是74LS,74ALS, 74AS等典型数字IC TTL内部电路中使用的技术. 稳压二极管是应用在反向击穿区的特殊的面接触型硅晶体二极管。稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图1所示。稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的部分。这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。 (a)符号(b)伏安特性(c)应用电路图1 稳压二极管的伏安特性

三端稳压器工作原理(精华)

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压 222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是

由R1提供的, I的大小也没有任何限制.是否可以使R1的阻值趋于无穷大, R 1 使 I的电流值趋向于无穷小?如果可以这样做的话,就可以去掉R1,只用可变R 1 电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算, V=1.25(1+R2/R1)。仅 仅从公式本身看,R1、R2的电阻值可以随意设定。然而作为稳压电源的输出电压计算公式,R1和R2的阻值是不能随意设定的。首先LM317稳压块的输出电压变化范围是 V=1.25——37V(高输出电压的LM317稳压块如LM317HV A、 LM317HVK等,其输出电压变化范围是V o=1.25——45V),所以R2/R1的比值范围只能是0——28.6V。其次是LM317稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。最小稳定工作电流的值一般为1.5mA。由于LM317稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA。当LM317稳压块的输出电流小于其最小稳定工作电流时,LM317稳压块就不能正常工作。当LM317稳压块的输出电流大于其最小稳定工作电流时,LM317稳压块就可以输出稳定的直流电压。 要解决LM317稳压块最小稳定工作电流的问题,可以通过设定R1和R2阻值的大小,而使LM317稳压块空载时输出的电流大于或等于其最小稳定工作电流,从而保证LM317稳压块在空载时能够稳定地工作。此时,只要保证 V/(R1 +R2)≥1.5mA,就可以保证LM317稳压块在空载时能够稳定地工作。上式中的1.5mA为LM317稳压块的最小稳定工作电流。当然,只要能保证LM317稳 V/(R1+R2)的值也可以设定为大于1.5mA 压块在空载时能够稳定地工作, 的任意值。

分析稳压二极管的工作原理及其限流电阻的公式推导

分析稳压二极管的工作原理及其限流电阻的公式推导 一、二极管主要参数 在实际应用中选择适当的二极管对电路的设计很重要,不同用途的二极管有不同的结构,有不同的参数要求:不同用途的二极管对二极管参数的要求也不同。二极管的主要参数如下: 1、最大整流电流;二极管的最大整流电流是指在规定测试温度下,二极管允许通过的最大平均大流。二极管在正常工作时,平均工作电流不应超过此值,二则会损坏二极管。 2、最大反向峰值电压:最大反向峰值电压是指在二极管工作时允许承受的最大反向电压 3、最大正向浪涌电流:最大正想浪涌电流时二极管允许流过的过量的正向电流,表示二极管承受非正常工作电流(浪涌电流不是经常出现,只是偶然出现)的能力。一般测试时,规定一个50Hz的浪涌电流。 4、反向电流:指二极管在未击穿是的反向电流(后续会介绍),一般规定在是温度25°C时进行测试。 5、反向恢复时间:当二极管两端电压从正向电压变为反向电压时,理想情况是电流能瞬时截止,但是实际要延迟一段时间,这段时间久成为反向恢复时间。 不同用途的二极管对各种参数的要求不同,表(1-1)和表(1-2)列出了二极管的参数,以供参考 二、极管的种类 二极管的种类有很多,出了普通的二极管和整流二极管外,还有利用特殊工艺制造的具有各种不同用途的二级管,如稳压管(齐纳二极管)、光敏二极管,发光二极管等。 下面,主要介绍的是在电路中最常见的二极管的一种——稳压二极管 三、稳压二极管及其工作原理 我们都知道,二极管加反响偏置电压时,如果反向电压达到UBR,则二极管会产生击穿。击穿时反向电流迅速增加,但是此时二极管两端的电压变化很小。稳压就是根据PN结的这一特性,经特殊工艺制造的。稳压管又称齐纳二极管。使用稳压管可以提供一个较为固定的稳定电压。

稳压二极管分类

就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它. 4、串联型稳压电路(如图5):在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用Transient Voltage Suppressors(TVS)瞬态电压抑制二极管 概述 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的特性及其参数(参数表见附表) https://www.360docs.net/doc/f14940928.html,S的特性 如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。

但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS的全部特性。这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA 突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。 2、TVS的参数 TVS在电路中和稳压管一样,是反向使用的,图2所示为单向TVS的工作曲线图。各参数说明如下: A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。 B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。一般情况下IT取1MA。 C.反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。此参数也可被认为是所保护电路的工作电压。 D.最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。 E.最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。 F.最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。最大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为1.2~1.4。 G.峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。 最大峰值脉冲功率:最大峰值脉冲功率为:PN=VC·IPP。显然,最大峰值脉冲功

1N系列稳压二极管参数及应用

1N系列稳压二极管参数

常用1N系列稳压二极管参数与代换 型号功率(W) 稳压(V) 最大电流(mA) 可代换型号 1N5236/A/B 0。5 7。5 61 2CW105-7。5V,2CW5236 1N5237/A/B 0。5 8。2 55 2CW106-8。2V,2CW5237 1N5238/A/B 0。5 8。7 52 2CW106-8。7V,2CW5238 1N5239/A/B 0。5 9。1 50 2CW107-9。1V,2CW5239 1N5240/A/B 0。5 10 45 2CW108-10V,2CW5240 1N5241/A/B 0。5 11 41 2CW109-11V,2CW5241 1N5242/A/B 0。5 12 38 2CW11O-12V,2CW5242 1N5243/A/B 0。5 13 35 2CW111-13V,2CW5243 1N5244/A/B 0。5 14 32 2CW111-14V,2CW5244 1N5245/A/B 0。5 15 30 2CW112-15V,2CW5245 1N5246/A/B 0。5 16 28 2CW112-16V,2CW5246 1N5247/A/B 0。5 17 27 2CW113-17V,2CW5247 1N5248/A/B 0。5 18 25 2CW113-l8V,2CW5248 1N5249/A/B 0。5 19 24 2CW114-19V,2CW5249 1N5250/A/B 0。5 20 23 2CW114-20V,2CW5250 1N5251/A/B 0。5 22 21 2CW115-22V,2CW5251 1N5252/A/B 0。5 24 19。1 2CW115-24V,2CW5252 1N5253/A/B 0。5 25 18。2 2CW116-25V,2CW5253 1N5254/A/B 0。5 27 16。8 2CW1l7-27V,2CW5254 1N5255/A/B 0。5 28 16。2 2CW118-28V,2CW5255 1N5256/A/B 0。5 30 15。1 2CW119-30V,2CW5256 1N5257/A/B 0。5 33 13。8 2CW120-33V,2CW5257 1N5730 0。4 5。6 65 2CW752 1N5731 0。4 6。2 62 2CW753,RD6。2EB 1N5732 0。4 6。8 58 2CW754,2CW957 1N5733 0。4 7。5 52 2CW755,2CW958

三端集成稳压器的工作原理

三端集成稳压器的工作原理

————————————————————————————————作者:————————————————————————————————日期:

三端集成稳压器的工作原理 现以具有正电压输出的78L××系列为例介绍它的工作原理。 电路如图1所示,三端式稳压器由启动电路、基准电压电路、取样比较放大电路、调整电路和保护电路等部分组成。下面对各部分电路作简单介绍。

(1)启动电路 在集成稳压器中,常常采用许多恒流源,当输入电压VI接通后,这些恒流源难以自行导通,以致输出电压较难建立。因此,必须用启动电路给恒流源的BJT T4、T5提供基极电流。启动电路由T1、T2、DZ1组成。当输入电压VI高于稳压管DZ1的稳定电压时,有电流通过T1、T2,使T3基极电位上升而导通,同时恒流源T4、T5也工作。T4的集电极电流通过DZ2以建立起正常工作电压,当DZ2达到和DZ1相等的稳压值,整个电路进入正常工作状态,电路启动完毕。与此同时,T2因发射结电压为零而截止,切断了启动电路与放大电路的联系,

从而保证T2左边出现的纹波与噪声不致影响基准电压源。 (2)基准电压电路 基准电压电路由T4、DZ2、T3、R1、R3及D1、D2组成,电路中的基准电压为 式中VZ2为DZ2的稳定电压,VBE为T3、D1、D2发射结(D1、D2为由发射结构成的二极管)的正向电压值。在电路设计和工艺上使具有正温度系数的R1、R2、DZ2与具有负温度系数的T3、D1、D2发射结互相补偿,可使基准电压VREF基本上不随温度变化。同时,对稳压管DZ2采用恒流源供电,从而保证基准电压不受输入电压波动的影响。 (3)取样比较放大电路和调整电路 这部分电路由T4~T11组成,其中T10、T11组成复合调整管;R12、R13组成取样电路;T7、T8和T6组成带恒流源的差分式放大电路;T4、T5组成的电流源作为它的有源负载。

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

稳压二极管原理及应用

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到 它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发 射极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

三端稳压管

三端稳压管 三端稳压管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。稳压管在反向击穿时,在一定的电流范围内(或者说在一定功率损耗范围内),端电压几乎不变,表现出稳压特性,因而广泛应用于稳 压电源与限幅电路之中。 三端稳压管的分类 三端稳压管,主要有两种,一种输出电压是固定的,称为固定输出三端稳压管,另一种输出电压是可调的,称为可调输出三端稳压管,其基本原理相同,均采用串联型稳压电路。 三端稳压管的原理 因为固定三端稳压器属于串联型稳压电路,因此它的原理等同于串联型稳压电路。 其中R1、Rp、R2组成的分压器是取样电路,从输出端取出部分电压UB2作为取样电压加至三极管T2的基极。稳压管Dz以其稳定电压Uz作为基准电压,加在T2的发射极上。R3是稳压管的限流电阻。三极管T2组成比较放大电路,它将取样电压UB2与基准电压Uz加以比较和放大,再去控制三极管T1的基极电位。输入电压Ui加在三极管T1与负载RL相串联的电路上,因此,改变T1集电极间的电压降UCE1便可调节RL两端的电压Uo。也就是说,稳压电路的输出电压Uo可以通过三极管T1加以调节,所以T1称为调整管。由于调整元件是晶体管管,而且在电路中与负载相串联,故称为晶体管串联型稳压电路。电阻R4和T1的基极偏置电阻,也是T2的集电极负载电阻。 当电网电压降低或负载电阻减小而使输出端电压有所下降时,其取样电压UB2相应减小,T2基极电位下降。但因T2发射极电位既稳压管的稳定Uz保持不变,所以发射极电压UBE2减小,导致T2集电极电流减小而集电极电位Uc2升高。由于放大管T2的集电极与调整管T1的基极接在一起,故T1基极电位升高,导致集电极电流增大而管压降UCE1减小。因为T1与RL串联,所以,输出电压Uo基本不变。 同理,当电网电压或负载发生变化引起输出电压Uo增大时,通过取样、比较放大、调整等过程,将使调整调整管的管压降UCE1增加,结果抑制了输出端电压的增大,输出电压仍基本保持不变。 调节电位器Rp,可对输出电压进行微调。调整管T1与负载电阻RL组成的是射极输出电路,所以具 有稳定输出电压的特点。 在串联型稳压电源电路的工作过程中,要求调整管始终处在放大状态。通过调整管的电流等于负载电流,因此必须选用适当的大功率管作调整管,并按规定安装散热装置。为了防止短路或长期过载烧坏调整管,在直流稳压器中一般还设有短路保护和过载保护等电路。 三端稳压管使用注意事项 在使用时必须注意:(VI)和(Vo)之间的关系,以7805为例,该三端稳压管的固定输出电压是5V,而输入电压至少大于7V,这样输入/输出之间有2-3V及以上的压差。使调整管保证工作在放大区。但压差取得大时,又会增加集成块的功耗,所以,两者应兼顾,即既保证在最大负载电流时调整管不进入饱和,又不 致于功耗偏大。 另外一般在三端稳压管的输入输出端接一个二极管,用来防止输入端短路时,输出端存储的电荷通过稳 压器,而损坏器件。 ------------------------------------------------------------------------------------------------------------

稳压二极管参数大全

稳压二极管参数大全 稳压二极管的主要参数 (1)稳定电压Vz:稳定电压就是稳压二极管在正常工作时,管子两端的电压值。这个数值随工作电流和温度的不同略有改变,既是同一型号的稳压二极管,稳定电压值也有一定的分散性,例如2CW14硅稳压二极管的稳定电压为6~7.5V。 (2)耗散功率PM:反向电流通过稳压二极管的PN结时,要产生一定的功率损耗,PN结的温度也将升高。根据允许的PN结工作温度决定出管子的耗散功率。通常小功率管约为几百毫瓦至几瓦。 最大耗散功率PZM:是稳压管的最大功率损耗取决于PN结的面积和散热等条件。反向工作时,PN结的功率损耗为:PZ=VZ*IZ,由PZM和VZ可以决定IZmax。 (3)稳定电流IZ、最小稳定电流IZmin、大稳定电流IZmax 稳定电流:工作电压等于稳定电压时的反向电流;最小稳定电流:稳压二极管工作于稳定电压时所需的最小反向电流;最大稳定电流:稳压二极管允许通过的最大反向电流。 (4)动态电阻rZ:其概念与一般二极管的动态电阻相同,只不过稳压二极管的动态电阻是从它的反向特性上求取的。rZ愈小,反映稳压管的击穿特性愈陡。

rz=△VZ/△IZ (5)稳定电压温度系数:温度的变化将使VZ改变,在稳压管中,当|VZ| >7 V时,VZ具有正温度系数,反向击穿是雪崩击穿。 当|VZ|<4V时,VZ具有负温度系数,反向击穿是齐纳击穿。 当4V<|VZ|<7V时,稳压管可以获得接近零的温度系数。这样的稳压二极管可以作为标准稳压管使用。 稳压二极管1N992B 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:5每 10KΩ的温度系数--TempC11 齐纳电压--Vz(Nom):200 Vz取值为每一项时的齐纳电流--Iz:650μ 最大功率--Pdmax:400m 基准电压的容限率--Tol:5 每10KΩ的温度系数--TempC11 稳压二极管1N992A 齐纳电压--Vz(Nom):200Vz取值为每一项时的齐纳电流--Iz:650μ最大功率--Pdmax:400m基准电压的容限率--Tol:10每10KΩ的温度系数--TempC 齐纳电压--Vz(Nom):200

三端稳压电路图集分析

三端稳压电路图集(六祖故乡人汇编2013年9月8日) LM317可调稳压电源电路图: LM317是可调稳压电源中觉的一种稳压器件,使用也非常方便。LM317 是美国国家半导体公司的三端可调正稳压器集成电路。很早以前我国和世界各大集成电路生产商就有同类产品可供选用,是使用极为广泛的一类串连集成稳压器。LM317 的输出电压范围是1.25V —37V(本套件设计输出电压范围是 1.25V—12V),负载电流最大为 1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性率和负载率也比标准的固定稳压器好。LM317 内置有过载保护、安全区保护等多种保护电路。 为保证稳压器的输出性能,R应小于240欧姆。改变RP阻值稳压电压值。D5,D6用于保护LM317。 输出电压计算公式:Uo=(1+RP/R)*1.25 下面是LM317可调稳压电源电路图的元器件清单: 下面是LM317可调稳压电源电路图:

三端集成稳压可调电源电路设计: 如图所示,此电路的核心器件是W7805。W7805将调整器,取样放大器等环节集于一体,内部包含限流电路、过热保护电路、可以防止过载。具有较高的稳定度和可靠性。W7805属串联型集成稳压器。其输出电压是固定不变的,这种固定电压输出,极大的限制了它的应用范围。如果将W7805的公共端即3脚与地断开,通过一只电位器接到-5V左右的电源上,就可以在改变电位器阻值的同时,使集成稳压器的取样电压及输出电压都随之改变。图中RP1就是为此而设计的。只要负电压的大小取得合适便能使输出电压从0V起连续可调,输出电压的最大值由W7805的输入电压决定,本稳压器0V-12V可调。VD3整流,C2滤波,VD4稳压后提供5V负电压。 元件选择:变压器应选用5V A,输出为双14V;二极管VD1-VD4选用1N4001;VDW 选用稳压值为5-6V的2CW型稳压管;RP1用普通电位器;RP2为微调电阻。IC用7805;其它元件参数图中已注明,无特殊要求。 电路调试:元件焊接无误后可通电调试,首先测b点对地电压,空载时应在18V左右;d点电压大约为-5.5V--6V,如不正常,可重点检查VD3,C2,R1,VDW,RP2等元件,然后再测量输出电压,旋动RP1,万用表指针应能在较大范围变动,说明稳压器工作正常;最后

稳压二极管的原理

稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz 稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。 (4) 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。

稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V 电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz 前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.360docs.net/doc/f14940928.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

三端稳压管电路

三端稳压器扩流电路 2007-02-07 18:43 经典的电源电路(7805扩流) 上图为在非常流行的经典电路上做小许改动的电路图.电路目的: 1)+24V 转换为+5V +/-5% 2)可提供+2A以上的电流. 主要元件: TIP32C (ST) L7805CV (ST)

图中的R62,在实际应用中已经更改为22 OHM. 功率元件TIP32C已经加散热片 ---------------------------------- ----------- 此电路是极为常见的一个线性三端稳压器扩流电路,我们在实际使用的时候,遇到一些由于没有考虑周全或者说是低级错误的故障,故而开贴让坛子里面的朋友讨论,让以后用到此电路的朋友不至于重蹈覆辙. 1. 首先说此电源的缺点吧: 1.1 此电源是线性稳压电路,所有有其特有的内部功率损耗大,全部压降均转换为热量损失了,效率低.所以散热问题要特别注意. 1.2 由于核心的元件7805的工作速度不太高,所以对于输入电压或者负载电流的急剧变化的响应慢.

1.3 此电路没有加电源保护电路,7805本身有过流和温度保护但是扩流三极管TIP32C没有加保护,所以存在一个很大的缺点,如果7805在保护状态以后,电路的输出会是Vin-Vce, 电路输出超过预期值,这点要特别注意. 2. 电源的优点. 2.1 电路简单,稳定.调试方便(几乎不用调试). 2.2 价格便宜,适合于对成本要求苛刻的产品. 2.3 电路中几乎没有产生高频或者低频辐射信号的元件,工作频率 低,EMI等方面易于控制. 3. 说说电路工作原理吧. Io = Ioxx + Ic. Ioxx = IREG – IQ ( IQ 为7805的静态工作电流,通常为4-8mA) IREG = IR + Ib = IR + Ic/β (β为TIP32C的电流放大倍数) IR = VBE/R1 ( VBE 为 TIP32的基极导通电压) 所以 Ioxx = IREG – IQ = IR + Ib – IQ = VBE/R1 + IC/β- IQ 由于IQ很小,可略去,则: Ioxx = VBE/R1 + IC/β 查TIP32C手册,VBE = 1.2V, 其β可取10 Ioxx = 1.2/R + Ic/β = 1.2/22 + Ic/10 = 0.0545 + Ic/10 (此处

稳压二极管原理及故障

稳压二极管原理及故障 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号1N47281N47291N47301N47321N47331N47341N47351N47441N47501N47511N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V15V27V30V75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。

(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

相关文档
最新文档