C51中精确的延时与计算的实现

C51中精确的延时与计算的实现

C51由于其可读性和可移植性很强,在单片机中得到广泛的应用,但在某些时候由于C51编写的程序对在有精确时间要求下,可能就得要用汇编语言来编写,但在C51是否也能实现时间的精确控制呢?答案是肯定的。
在C51中要实现对时间的精确延时有以下几种方法
其一:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒,就插入个这样的函数。
其二:对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。
在选择C51中循环语句时,要注意以下几个问题
第一、定义的C51中循环变量,尽量采用无符号字符型变量。
第二、在FOR循环语句中,尽量采用变量减减来做循环。
第三、在do…while,while语句中,循环体内变量也采用减减方法。
这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。下面举例说明:
unsigned char I;
for(i=0;i255;i++);

unsigned char I;
for(i=255;i0;i--);
其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:
MOV 09H,#0FFH
LOOP: DJNZ 09H,LOOP
指令相当简洁,也很好计算精确的延时时间。
同样对do…while,while循环语句中,也是如此
例:
unsigned char n;
n=255;
do{n--}
while(n);

n=255;
while(n)
{n--};
这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。
其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
unsigned char i,j
for(i=255;i0;i--)
for(j=255;j0;j--);

unsigned char i,j
i=255;
do{j=255;
do{j--}
while(j);
i--;
}
while(i);

unsigned char i,j
i=255;
while(i)
{j=255;
while(j)
{j--};
i--;
}
这三种方法都是用DJNZ指令嵌套实现循环的,由C51编译器用下面的指令组合来完成的
MOV R7,#0FFH
LOOP2: MOV R6,#0FFH
LOOP1: DJNZ R6,LOOP1
DJNZ R7,LOOP2
这些指令的组合在汇编语言中采用DJNZ指令来做延时用,因此它的时间精确计算也是很简单,假上面变量i的初值为m,变量j的初值为n,则总延时时间为:m×(n×T+T),其中T为DJNZ指令执行时间。
同样对于更长时间的延时,可以采用多重循环来完成。只要在程序设计循环语句时注意以上几个问题。
下面给出有关在C51中延时子程序设计时要注意的问题
1、在C51中进行精确的延时子程序设计时,尽量不要或

少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。
2、在延时子程序设计时,采用do…while,结构做循环体要比for结构做循环体好。
3、在延时子程序设计时,要进行循环体嵌套时,采用先内循环,再减减比先减减,再内循环要好。
unsigned char delay(unsigned char i,unsigned char j,unsigned char k)
{unsigned char b,c;
b=j;
c=k;
do{
do{
do{k--};
while(k);
k=c;
j--;};
while(j);
j=b;
i--;};
while(i);
}
这精确延时子程序就被C51编译为有下面的指令组合完成
delay延时子程序如下:
MOV R6,05H
MOV R4,03H
C0012: DJNZ R3, C0012
MOV R3,04H
DJNZ R5, C0012
MOV R5,06H
DJNZ R7, C0012
RET
假设参数变量i的初值为m,参数变量j的初值为n,参数变量k的初值为l,则总延时时间为:l×(n×(m×T+2T)+2T)+3T,其中T为DJNZ和MOV指令执行的时间。当m=n=l时,精确延时为9T,最短;当m=n=l=256时,精确延时到16908803T,最长。

采用软件定时的计算方法

利用指令执行周期设定,以下为一段延时程序:
指令 周期
MOV 1
DJNZ 2
NOP 1
采用循环方式定时,有程序:
MOV R5,#TIME2 ;周期1
LOOP1 MOV R6,#TIME1 ; 1
LOOP2 NOP ; 1
NOP ; 1
DJNZ R6,LOOP2 ; 2
DJNZ R5,LOOP1 ; 2
定时数=(TIME14+2+1)TIM22+4

==============================================================================

[转帖]Keil C51 延时程序的两次研究
51单片机 Keil C 延时程序的简单研究

应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百(us)。有时候还需要很高的精度,比如用单片机驱动DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这种情况下,用计时器往往有点小题大做。而在极端的情况下,计时器甚至已经全部派上了别的用途。这时就需要我们另想别的办法了。 以前用汇编语言写单片机程序的时候,这个问题还是相对容易解决的。比如用的是12MHz晶振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要:
mov r0, #09h loop
djnz r0, loop
51单片机的指令周期是晶振频率的112,也就是1us一个周期。mov r0, #09h需要2个极其周期,djnz也需要2个极其周期。那么存在r0里的数就是(20-2)2。用这种方法,可以非常方便的实现256us以下时间的延时。如果需要更长时间,可以使

用两层嵌套。而且精度可以达到2us,一般来说,这已经足够了。 现在,应用更广泛的毫无疑问是Keil的C编译器。相对汇编来说,C固然有很多优点,比如程序易维护,便于理解,适合大的项目。但缺点(我觉得这是C的唯一一个缺点了)就是实时性没有保证,无法预测代码执行的指令周期。因而在实时性要求高的场合,还需要汇编和C的联合应用。但是是不是这样一个延时程序,也需要用汇编来实现呢?为了找到这个答案,我做了一个实验。
用C语言实现延时程序,首先想到的就是C常用的循环语句。下面这段代码是我经常在网上看到的:
void delay2(unsigned char i)
{ for(; i != 0; i--); }
到底这段代码能达到多高的精度呢?为了直接衡量这段代码的效果,我把 Keil C 根据这段代码产生的汇编代码找了出来:
FUNCTION _delay2 (BEGIN)
SOURCE LINE # 18
---- Variable 'i' assigned to Register 'R7' ----
SOURCE LINE # 19
SOURCE LINE # 20
0000 C0007
0000 EF MOV A,R7
0001 6003 JZ C0010
0003 1F DEC R7
0004 80FA SJMP C0007
SOURCE LINE # 21
0006 C0010
0006 22 RET
FUNCTION _delay2 (END)
真是不看不知道~~~一看才知道这个延时程序是多么的不准点~~~光看主要的那四条语句,就需要6个机器周期。也就是说,它的精度顶多也就是6us而已,这还没算上一条 lcall 和一条 ret。如果我们把调用函数时赋的i值根延时长度列一个表的话,就是:
i delay timeus
0 6
1 12
2 18
...
因为函数的调用需要2个时钟周期的lcall,所以delay time比从函数代码的执行时间多2。顺便提一下,有的朋友写的是这样的代码:
void delay2(unsigned char i)
{
unsigned char a;
for(a = i; a != 0; a--);
}
可能有人认为这会生成更长的汇编代码来,但是事实证明:
FUNCTION _delay2 (BEGIN)
SOURCE LINE # 18
---- Variable 'i' assigned to Register 'R7' ----
SOURCE LINE # 19
SOURCE LINE # 21
---- Variable 'a' assigned to Register 'R7' ----
0000 C0007
0000 EF MOV A,R7
0001 6003 JZ C0010
0003 1F DEC R7
0004 80FA SJMP C0007
SOURCE LINE # 22
0006 C0010
0006 22 RET
FUNCTION _delay2 (END)
其生成的代码是一样的。不过这的确不是什么好的习惯。因为这里实在没有必要再引入多余的变量。我们继续讨论正题。有的朋友为了得当更长的延时,甚至用了这样的代码:
void delay2(unsigned long i)
{
for(; i != 0; i--);
}
这段代码产生的汇编代码是什么样子的?其实不用想也知道它是如何恐怖的$#^%&%$......让我们看一看:
FUNCTION _delay2 (BEGIN)
SOURCE LINE # 18
0000 8F00 R
MOV i+03H,R7
0002 8E00 R
MOV i+02H,R6
0004 8D00 R
MOV i+01H,R5
0006 8C00 R
MOV i,R4
SOURCE LINE # 19
SOURCE LINE # 20
0008 C0007
0008 E4 CLR A
0009 FF MOV R7,A
000A FE MOV R6,A
000B FD MOV R5,A
000C FC MOV

R4,A
000D AB00 R MOV R3,i+03H
000F AA00 R MOV R2,i+02H
0011 A900 R MOV R1,i+01H
0013 A800 R MOV R0,i
0015 C3 CLR C
0016 120000 E LCALL CULCMP
0019 601A JZ C0010
001B E500 R MOV A,i+03H
001D 24FF ADD A,#0FFH
001F F500 R MOV i+03H,A
0021 E500 R MOV A,i+02H
0023 34FF ADDC A,#0FFH
0025 F500 R MOV i+02H,A
0027 E500 R MOV A,i+01H
0029 34FF ADDC A,#0FFH
002B F500 R MOV i+01H,A
002D E500 R MOV A,i
002F 34FF ADDC A,#0FFH
0031 F500 R MOV i,A
0033 80D3 SJMP C0007
SOURCE LINE # 21
0035 C0010
0035 22 RET
FUNCTION _delay2 (END)
呵呵,这倒是的确可以延迟很长时间~~~但是毫无精度可言了。 那么,用C到底能不能实现精确的延时呢?我把代码稍微改了一下:
void delay1(unsigned char i)
{
while(i--);
}
因为根据经验,越简洁的C代码往往也能得出越简洁的机器代码。那这样结果如何呢?把它生成的汇编代码拿出来看一看就知道了。满怀希望的我按下了“Build target”键,结果打击是巨大的:
FUNCTION _delay1 (BEGIN)
SOURCE LINE # 13
---- Variable 'i' assigned to Register 'R7' ----
SOURCE LINE # 14
0000 C0004
SOURCE LINE # 15
0000 AE07 MOV R6,AR7
0002 1F DEC R7
0003 EE MOV A,R6
0004 70FA JNZ C0004
SOURCE LINE # 16
0006 C0006
0006 22 RET
FUNCTION _delay1 (END)
虽说生成的代码跟用for语句是不大一样,不过我可以毫无疑问的说,这两种方法的效率是一样的。似乎到此为止了,因为我实在想不出来源程序还有什么简化的余地。看来我就要得出来这个结论了:“如果需要us级的延时精度,需要时用汇编语言。”但是真的是这样吗?我还是不甘心。因为我不相信大名鼎鼎的 Keil C 编译器居然连 djnz 都不会用???因为实际上程序体里只需要一句 loop djnz r7, loop。近乎绝望之际(往往人在这种情况下确可以爆发出来,哦呵呵呵~~~),我随手改了一下:
void delay1(unsigned char i)
{
while(--i);
}
心不在焉的编译,看源码:
FUNCTION _delay1 (BEGIN)
SOURCE LINE # 13
---- Variable 'i' assigned to Register 'R7' ----
SOURCE LINE # 14
0000 C0004
SOURCE LINE # 15
0000 DFFE DJNZ R7,C0004
SOURCE LINE # 16
0002 C0006
0002 22 RET
FUNCTION _delay1 (END)
天~~~奇迹出现了......我想这个程序应该已经可以满足一般情况下的需要了。如果列个表格的话:
i delay timeus
1 5
2 7
3 9 ...
计算延时时间时,已经算上了调用函数的lcall语句所花的2个时钟周期的时间。 终于,结果已经明了了。只要合理的运用,C还是可以达到意想不到的效果。很多朋友抱怨C效率比汇编差了很多,其实如果对Keil C的编译原理有一个较深入的理解,是可以通过恰当的语法运用,让生成的C代码达到最优化。即使这看起来不大可能,但还是有一些简单的原则可循的:
1.尽量使用unsigned型的数

据结构。
2.尽量使用char型,实在不够用再用int,然后才是long。
3.如果有可能,不要用浮点型。
4.使用简洁的代码,因为按照经验,简洁的C代码往往可以生成简洁的目标代码(虽说不是在所有的情况下都成立)。
5...想不起来了,哦呵呵呵~~~
===============================================================================

C51精确延时程序

C51精确延时程序再抛砖
我看到的地方也是从别的地方转贴,所以我不知道原作者是谁,但相信这么成熟的东西转一下他也不会见意。

看到了个好帖,我在此在它得基础上再抛抛砖!

有个好帖,从精度考虑,它得研究结果是:
void delay2(unsigned char i)
{
while(--i);
}
为最佳方法。


分析:假设外挂12M(之后都是在这基础上讨论)
我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:
delay2(0)延时518us 518-2256=6
delay2(1)延时7us(原帖写“5us”是错的,^_^)
delay2(10)延时25us 25-20=5
delay2(20)延时45us 45-40=5
delay2(100)延时205us 205-200=5
delay2(200)延时405us 405-400=5

见上可得可调度为2us,而最大误差为6us。
精度是很高了!

但这个程序的最大延时是为518us 显然不
能满足实际需要,因为很多时候需要延迟比较长的时间。


那么,接下来讨论将t分配为两个字节,即uint型的时候,会出现什么情况。

void delay8(uint t)
{
while(--t);
}
我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:
delay8(0)延时524551us 524551-865536=263
delay8(1)延时15us
delay8(10)延时85us 85-80=5
delay8(100)延时806us 806-800=6
delay8(1000)延时8009us 8009-8000=9
delay8(10000)延时80045us 80045-8000=45
delay8(65535)延时524542us 524542-524280=262

如果把这个程序的可调度看为8us,那么最大误差为263us,但这个延时程序还是不能满足要求的,因为延时最大为524.551ms。

那么用ulong t呢?
一定很恐怖,不用看编译后的汇编代码了。。。




那么如何得到比较小的可调度,可调范围大,并占用比较少得RAM呢?请看下面的程序:

--------------------------------------------------------------------
程序名称:50us 延时
注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振
例子提示:调用delay_50us(20),得到1ms延时
全局变量:无
返回: 无
--------------------------------------------------------------------
void delay_50us(uint t)
{
uchar j;
for(;t0;t--)
for(j=19;j0;j--)
;
}

我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:
delay_50us(1)延时63us 63-50=1

3
delay_50us(10)延时513us 503-500=13
delay_50us(100)延时5013us 5013-5000=13
delay_50us(1000)延时50022us 50022-50000=22

赫赫,延时50ms,误差仅仅22us,作为C语言已经是可以接受了。再说要求再精确的话,就算是用汇编也得改用定时器了。

--------------------------------------------------------------------
程序名称:50ms 延时
注意事项:基于1MIPS,AT89系列对应12M晶振,W77、W78系列对应3M晶振
例子提示:调用delay_50ms(20),得到1s延时
全局变量:无
返回: 无
--------------------------------------------------------------------
void delay_50ms(uint t)
{
uint j;

可以在此加少许延时补偿,以祢补大数值传递时(如delay_50ms(1000))造成的误差,
但付出的代价是造成传递小数值(delay_50ms(1))造成更大的误差。
因为实际应用更多时候是传递小数值,所以补建议加补偿!

for(;t0;t--)
for(j=6245;j0;j--)
;
}
我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据:
delay_50ms(1)延时50 010 10us
delay_50ms(10)延时499 983 17us
delay_50ms(100)延时4 999 713 287us
delay_50ms(1000)延时4 997 022 2.978ms

赫赫,延时50s,误差仅仅2.978ms,可以接受!

上面程序没有才用long,也没采用3层以上的循环,而是将延时分拆为两个程序以提高精度。应该是比较好的做法了。

本文来自 电子论坛[url]https://www.360docs.net/doc/f16758098.html,[url]电子工程师之家!

相关文档
最新文档