水池计算方法

水池计算方法
水池计算方法

举例来说,按悬壁计算的实例:

一.设计资料

1. 几何信息: (单位: 除注明外,均为mm)

梁号1: 跨长= 6000 B×H = 300 × 1000

2. 荷载条件:

均布恒载标准值=0.00kN/m ;活载准永久值系数=0.50

均布活载标准值=0.00kN/m ;支座弯矩调幅系数=100.0%

梁容重=25.00kN/m3 ;计算时不考虑梁自重:

恒载分项系数=1.20 ;活载分项系数=1.40

说明: 各梁跨的附加荷载参见[几何及荷载标准值简图]

3.配筋信息:

抗震等级:非抗震;

纵筋种类:HRB400 ;fyk=400 N/mm2

混凝土强度等级:C25 ;fc=11.9 N/mm2 ;ft= 1.27 N/mm2;

箍筋种类:HPB235 ;fyk=235 N/mm2

配筋调整系数=1.0 ;

上部保护层厚度=25mm ;as'=25+10 = 35mm

下部保护层厚度=25mm ;as=25+10 = 35mm

最大裂缝限值=0.400mm ;挠度控制系数C=200

二.计算结果:

单位说明: 弯矩:kN.m 剪力:kN 纵筋面积:mm2 箍筋面积:mm2/m

裂缝:mm 挠度:mm 尺寸:mm

内力计算采用有限元计算方法截面配筋方式:单筋

-----------------------------------------------------------------------

梁号1: 跨长= 6000 B×H = 300 × 1000

左中右弯矩(-) : -332.749 -31.250 0.000

弯矩(+) : 0.000 0.000 0.000

剪力: 181.500 37.500 0.000

上部纵筋: 1011 600 600

下部纵筋: 600 600 600

箍筋Asv: 435 435 435

上纵实配: 4E20(1257) 4E16(804) 4E16(804)

下纵实配: 4E16(804) 4E16(804) 4E16(804)

箍筋实配: [url=mailto:4d8@250(804]4d8@250(804[/url]) [url=mailto:4d8@250(804]4d8@250(804[/url])

[url=mailto:4d8@250(804]4d8@250(804[/url])

腰筋实配: 10d10(785) 10d10(785) 10d10(785)

上实配筋率: 0.42% 0.27% 0.27%

下实配筋率: 0.27% 0.27% 0.27%

箍筋配筋率: 0.27% 0.27% 0.27%

裂缝: 0.378 0.014 0.000

挠度: 0.000 4.296 10.957

最大裂缝: 0.378mm<0.400mm

最大挠度: 10.957mm<30.000mm(6000/200)

按双向板考虑:

3.3 荷载计算

3.3.1 池壁荷载计算:

(1)池外荷载:

主动土压力系数Ka= 0.33

侧向土压力荷载组合(kN/m2):

部位(标高) 土压力标准值水压力标准值活载标准值基本组合准永久组合

池壁顶端(5.400) 0.00 0.00 0.00 0.00 0.00

地面(0.000) 0.00 0.00 3.33 3.81 1.33

地下水位处(-0.500) 3.00 0.00 3.33 7.62 4.33

底板顶面(-0.600) 3.33 1.00 3.33 9.31 5.67

(2)池内底部水压力: 标准值= 55.00 kN/m2, 基本组合设计值= 69.85 kN/m2

3.3.2 底板荷载计算(池内无水,池外填土):

水池结构自重标准值Gc= 2287.80kN

基础底面以上土重标准值Gt= 144.00kN

基础底面以上水重标准值Gs= 14.40kN

基础底面以上活载标准值Gh= 248.94kN

水池底板以上全部竖向压力基本组合:

Qb = (2287.80×1.20+144.00×1.27+14.40×1.27+248.94×1.27×0.90)/84.360 = 38.30kN/m2

水池底板以上全部竖向压力准永久组合:

Qbe = (2287.80+144.00+14.40×1.00+1.50×69.960×0.40+10.00×14.400×0.40)/84.360 = 30.18kN/m2

板底均布净反力基本组合:

Q = 38.30-0.400×25.00×1.20

= 26.30 kN/m2

板底均布净反力准永久组合:

Qe = 30.18-0.400×25.00

= 20.18 kN/m2

3.3.3 底板荷载计算(池内有水,池外无土):

水池底板以上全部竖向压力基本组合:

Qb = [2287.80×1.20+(6.000×10.000×5.500)×10.00×1.27]/84.360 = 82.22kN/m2

板底均布净反力基本组合:

Q = 82.22-(0.400×25.00×1.20+5.500×10.00×1.27) = 0.37kN/m2

水池底板以上全部竖向压力准永久组合:

Qbe = [2287.80+(6.000×10.000×5.500)×10.00]/84.360 = 66.24kN/m2

板底均布净反力准永久组合:

Qe = 66.24-(0.400×25.00+5.500×10.00) = 1.24kN/m2

3.4 内力,配筋及裂缝计算

弯矩正负号规则:

池壁:内侧受拉为正,外侧受拉为负

底板:上侧受拉为正,下侧受拉为负

荷载组合方式:

1.池外土压力作用(池内无水,池外填土)

2.池内水压力作用(池内有水,池外无土)

3.池壁温湿度作用(池内外温差=池内温度-池外温度)

(3)L侧池壁内力:

计算跨度: Lx= 6.300 m, Ly= 6.000 m , 三边固定,顶边自由

池壁类型: 普通池壁,按双向板计算

基本组合作用弯矩表(kN.m/m)

部位池外土压力池内水压力温湿度作用基本组合

内侧-水平跨中 4.08 - - 4.08

水平边缘- 78.64 - 78.64

竖直跨中2.62 - - 2.62

竖直上边缘- 0.00 - 0.00

竖直下边缘- 94.38 - 94.38

外侧-水平跨中- -30.60 -18.48 -49.08

水平边缘-10.49 - -21.71 -32.20

竖直跨中- -19.67 -16.74 -36.41

竖直上边缘0.00 - 0.00 -0.00

竖直下边缘-12.58 - -21.20 -33.79

准永久组合作用弯矩表(kN.m/m)

部位池外土压力池内水压力温湿度作用准永久组合

内侧-水平跨中 2.48 - - 2.48

水平边缘- 61.92 - 61.92

竖直跨中1.60 - - 1.60

竖直上边缘- 0.00 - 0.00

竖直下边缘- 74.31 - 74.31

外侧-水平跨中- -24.10 -16.17 -40.27

水平边缘-6.38 - -19.00 -25.38

竖直跨中- -15.49 -14.64 -30.13

竖直上边缘0.00 - 0.00 -0.00

竖直下边缘-7.66 - -18.55 -26.21

(4)B侧池壁内力:

计算跨度: Lx= 10.300 m, Ly= 6.000 m , 三边固定,顶边自由

池壁类型: 普通池壁,按双向板计算

基本组合作用弯矩表(kN.m/m)

部位池外土压力池内水压力温湿度作用基本组合

内侧-水平跨中 4.66 - - 4.66

水平边缘- 117.57 - 117.57

竖直跨中4.63 - - 4.63

竖直上边缘- 0.00 - 0.00

竖直下边缘- 177.89 - 177.89

外侧-水平跨中- -34.98 -19.39 -54.37

水平边缘-15.68 - -20.02 -35.70

竖直跨中- -34.72 -12.87 -47.59

竖直上边缘0.00 - 0.00 -0.00

竖直下边缘-23.72 - -20.53 -44.25

准永久组合作用弯矩表(kN.m/m)

部位池外土压力池内水压力温湿度作用准永久组合

内侧-水平跨中 2.84 - - 2.84

水平边缘- 92.58 - 92.58

竖直跨中2.82 - - 2.82

竖直上边缘- 0.00 - 0.00

竖直下边缘- 140.07 - 140.07

外侧-水平跨中- -27.54 -16.96 -44.51

水平边缘-9.54 - -17.52 -27.06

竖直跨中- -27.34 -11.26 -38.60

竖直上边缘0.00 - 0.00 -0.00

竖直下边缘-14.43 - -17.96 -32.39

(5)底板内力:

计算跨度:Lx= 6.300m, Ly= 10.300m , 四边简支+池壁传递弯矩

按双向板计算.

1.池外填土,池内无水时,荷载组合作用弯矩表(kN.m/m)

基本组合作用弯矩表

部位简支基底反力池壁传递弯矩弯矩叠加

上侧-L向跨中89.12 - 61.76

B向跨中42.88 - 28.60

下侧-L向边缘0.00 -44.25 -44.25

B向边缘0.00 -33.79 -33.79

L向跨中- -27.36 -

B向跨中- -14.28 -

准永久组合作用弯矩表

部位简支基底反力池壁传递弯矩弯矩叠加

上侧-L向跨中68.37 - 48.07

B向跨中32.89 - 22.45

下侧-L向边缘0.00 -32.39 -32.39

B向边缘0.00 -26.21 -26.21

L向跨中- -20.30 -

B向跨中- -10.45 -

2.池内有水,池外无土时,荷载组合作用弯矩表(kN.m/m)

基本组合作用弯矩表

部位简支基底反力池壁传递弯矩弯矩叠加

上侧-L向跨中 1.26 102.30 103.57

B向跨中0.61 57.46 58.07

L向边缘0.00 177.89 177.89

B向边缘0.00 94.38 94.38

准永久组合作用弯矩表

部位简支基底反力池壁传递弯矩弯矩叠加

上侧-L向跨中4.19 80.55 84.75

B向跨中2.02 45.24 47.26

L向边缘0.00 140.07 140.07

B向边缘0.00 74.31 74.31

(6)配筋及裂缝:

配筋计算方法:按单筋受弯构件计算板受拉钢筋.

裂缝计算根据《水池结构规程》附录A公式计算.

按基本组合弯矩计算配筋,按准永久组合弯矩计算裂缝,结果如下:

①L侧池壁配筋及裂缝表(弯矩:kN.m/m, 面积:mm2/m, 裂缝:mm)

部位弯矩计算面积实配钢筋实配面积裂缝宽度

内侧-水平跨中 4.08 643 [url=mailto:D14@230]D14@230[/url] 669 0.02 水平边缘78.64 1053 [url=mailto:D16@190]D16@190[/url] 1058 0.20

竖直跨中2.62 643 [url=mailto:D14@230]D14@230[/url] 669 0.01

竖直上边缘0.00 643 [url=mailto:D14@230]D14@230[/url] 669 0.00

竖直下边缘94.38 1276 [url=mailto:D16@150]D16@150[/url] 1340 0.19 外侧-水平跨中-49.08 646 [url=mailto:D14@230]D14@230[/url] 669 0.27 水平边缘-32.20 643 [url=mailto:D14@230]D14@230[/url] 669 0.17

竖直跨中-36.41 643 [url=mailto:D14@230]D14@230[/url] 669 0.20

竖直上边缘-0.00 643 [url=mailto:D14@230]D14@230[/url] 669 0.00

竖直下边缘-33.79 643 [url=mailto:D14@230]D14@230[/url] 669 0.17

SBR反应池容积计算方法

SBR反应池容积计算方法及评价 SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR 改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。 现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。 1 现行设计方法 负荷法 该法与连续式曝气池容的设计相仿。已知SBR反应池的容积负荷或污泥负 荷、进水量及进水中BOD 5 浓度,即可由下式迅速求得SBR池容: 容积负荷法V=nQ 0C /Nv (1) V min =[SV I·MLSS/106]·V 污泥负荷法 Vmin=nQ 0C ·SVI/Ns (2) V=Vmin+Q 曝气时间内负荷法 鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式: 容积负荷法V=nQ 0C tc/Nv·ta(3) 污泥负荷法 V=24QC 0/nt a ·MLSS·N S (4) 动力学设计法

由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况: 限制曝气 V=NQ(C 0-Ce)t f /[MLSS·Ns·ta] (5) 非限制曝气V=nQ(C 0-Ce)t f /[MLSS·Ns(ta+tf)](6) 半限制曝气V=nQ(C 0-Ce)t f /[LSS·Ns(ta+tf-t0)] (7) 但在实际应用中发现上述方法存有以下问题: ① 对负荷参数的选用依据不足,提供选用参数的范围过大[例如文献推荐Nv=~(m3·d)等],而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响; ② 负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小; ③ 在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象; ④ 曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR 池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR 池容惊人地偏大。 上述问题的存在不仅不利于SBR法对污水的有效处理,而且进行多方案比较时也不可能全面反映SBR法的工程量,会得出投资偏高或偏低的结果。

事故池计算依据

1、事故池容积确定应执行的标准或规范主要有:GB50483-2009、Q/SY1190-2009和中国石化安环[2006]10号等。GB50483规定的应急事故水池容积确定方法,对所有涉及危险化学品环境风险事故排水的项目均应适用执行。其中消防用水量确定、围堰或防火堤有效容积确定时应按《建筑设计防火规范》(GB50016-2006)、《石油化工企业设计防火规范》(GB50160-2008)、《石油库设计规范》(GB50074-2002)、《储罐区防火堤设计规范》(GB50351-2005)[10]等有关规定执行;最大降雨量确定按《室外排水设计规范》 (GB50014-2006)、《石油化工企业给水排水系统设计规范》(SH3015-2003)等执行。必须根据项目特点、行业标准或规范、事故池容积确定的具体要求等,注意区分各标准规范的适用范围和具体规定条款的执行,尤其是石油化工企业和石油库。 2、应急事故水池容量应根据发生事故的设备容量、事故时消防用水量及可能进入应急事故水池的降水量等因素综合确定[1]。罐区防火堤内容积、排至事故池的排水管道在自流进水的事故池最高液位以下的容积、现有储存事故排水设施的容积均可作为事故排水储存有效容积。计算应急事故废水量时,装置区或贮罐区事故不作同时发生考虑,取其中的最大值[1]。应按事故排水最大流量对事故排水收集系统的排水能力进行校核,明确导排系统的防火、防爆、防渗、防腐、防冻、防洪、抗浮、抗震等措施。 3、必须注意事故时进入事故水池的雨水量,与正常生产时初期雨水量(即前期雨水)的本质区别,不可混淆。一是降雨历时不同,正常生产运营过程中初期雨水是指刚下的雨水,一次降雨过程中的前10~20min最大降水量[1],其设计参数计算必须按GB50014规定的短历时暴雨强度公式确定;而事故时降水量应根据事故消防时间(参照GB50016、GB50160规定一般为2~6h,Q/SY1190规定为6~10h)确定。二是汇水面积不同,初期雨水的汇水面积必须考虑生产区和储存区总的汇水面积;事故时只考虑装置区或罐区单独的能进入事故排水系统的最大降雨量,不作同时汇水考虑,且应采取措施尽量减少进入事故排水收集系统的雨水汇集面积。

消防水池有效容积的计算

消防水池有效容积的计算 消防水池的有效容积为: V a=(Q p-Q b)×t 式中:V a——消防水池的有效容积(m3); Q p——消火栓、自动喷水灭火系统的设计流量(m3/h); Q b——在火灾延续时间内可连续补充的流量(m3/h); t——火灾延续时间(h)。 大部分的出题都会加一句不考虑补水时间。 [计算举例]消防水池的有效容积计算 某多层丙类仓库地上3层,建筑高度20m,建筑面积12000m2,占地面积4000m2,建筑体积72000m3,耐火等级二级。储存棉、麻、服装衣物等物品,堆垛储存,堆垛高度不大于6m。属多层丙类2项堆垛储物仓库。该仓库设消防泵房和两个500m3的消防水池,消防设施有室内、外消火栓给水系统、自动喷水灭火系统、机械排烟系统、火灾自动报警系统、消防应急照明、消防疏散指示标志、建筑灭火器等消防设施及器材。请 计算消防水池的有效容积。 根据《建筑设计防火规范》GB50016-2014的规定,每座占地面积大于1000m2的棉、毛、丝、麻、化纤、毛皮及其制品的仓库应设置自动喷水灭火系统,该仓库设计有自动喷水灭火系统。依据《自动喷水灭火系统设计规范》4.2.1表5.5.5-1的规定,该堆垛储物仓库自动喷水灭火系统应为湿式系统,火灾危险等级为仓库危险级Ⅱ级,喷水强度不小于16L/min·m2,作用面积200m2。 根据《消防给水及消防栓系统技术规范》表3.3.2、表3.5.2、3.6.2及《自动喷水灭火系统设计规范》表5.0.5-1的规定,该场所室外消火栓的设计流量为45L/s;室内消火栓的设计流量为25L/s.室、内外消火栓的 火灾延续时间为3小时,自动喷水系统灭火的的火灾延续时间为2小时。 故: 消防水池的有效容积=室外45L/s×3h+室内25L/s×3h+自喷16L/min·m2×200m2×2h=486+270+383m m3=1140m3。祝:考出优异成绩 1

水质均化池容积计算方法

水质均化池容积计算方法 张玉镭 提要明确了水质均化的均化要求和两类水质均化的特征,给出了水质均化过程的数学模型及水质均化池最小有效容积的迭代计算算法。用多周期均化过程的计算示例,说明了该计算方法的使用。 关键词均化池工业废水水质均化调节池 对于一个水处理系统,当废水的水量和水质(浓度、水温等指标)变幅较大时,一般要设置均化池(也称为调节池)。通过水质均化可以均衡和稳定水质负荷从而改善废水的可处理性。在工业废水处理工艺中均化预处理操作常常是必要的、有时甚至是关键性的。均化池工艺计算主要是确定水质均化池最小有效容积;这个池容是在完全混合条件下的理论计算值,其大小由水质、水量的不均匀特性和后续工艺对水质及水量均化的要求决定。给出水质均化池最小有效容积的计算方法其意义不仅在于它对工艺设计中确定水质均化池容积是必要的;并且计算所得出水水质的时序数据,还可作为后续工艺进水的时序数据和工艺模拟的基础。 1计算方法 1.1直观的计算方法 现行水质均化池容积计算方法一般是:取浓度较大的若干时间段内进水体积之和作为理论容积,取这段时间内废水的平均水质数据为其均化出水的水质指标最大值;在确定水质均化池的实际设计容积时,考虑到池中废水流态不能完全符合瞬间完全混合的理论假设,对理论计算容积要作经验校正。 从总体上看,现行设计方法属于直观简便的方法,由于它没有体现出废水流量和浓度大小变化特征及水质水量变化特殊趋势的相互关联这两个基本因素,因而致使直观的方法很难做到合理地确定水质均化池容积。 1.2其它均化池容积计算方法 概率统计方法:当废水流量接近常数且废水水质为随机分布时可用概率统计方法确定均化池的池容。显然,废水的不均匀特性符合一定随机规律的情况不是多见的,因此概率统计方法的适用范围较小。 有限差分法:在连续流完全混合条件下,各种不均匀特性的废水进行定容积均化或变容积均化时,可对其混合过程数学模型用有限差分法求解。使用求得的浓度迭代式,取不同的池容作多次尝试以考察浓度的均化程度是否满足要求,刚好能满足要求的池容即为均化池最小有效容积。 这两种计算方法都可以更稳定且准确地算出水质均化池的理论容积[1][2]。 本文由简单的数学模型更简捷清晰地获得水质均化池最小有效容积的算法。 2水质均化池的均化要求 决定水质均化池容积的因素之一就是水处理系统对进水水质水量的均化要求。水质均化要求和流量均化要求是计算均化池最小有效容积的条件和算法依据之一。 一般水质均化池的后续工艺对水质均化池出水在流量上要求连续均匀出水,对水质要求均化到一定程度[1]。水质的均化程度可用如下方法表示:出水水质指标的(1)最大值与平均值之比,即峰值(用PF表示);(2)平均值与最低值之比;(3)最大值与最小值之差;(4)最大限定值等。 按均化池功能不同,可把水质均化池分成两种类型:恒水位水质均化池和变水位水质均化池。为叙述方便,以下把浓度作为待均化的水质指标。 3恒水位水质均化池 3.1恒水位水质均化池特征 恒水位水质均化池是池内水量恒定而出水流量与进水流量相等的水质均化池。它仅对水质起到均匀化的作用、而对水量无均化作用。 3.2恒水位水质均化池数学模型 均化池容积恒为V;在废水不均匀变化周期内,水量和水质测定的时间间隔为Δt;第i个时间间隔内的平均废水流量为q i,平均溶质浓度为c i,i=0,1,2…n-1;当进入均化池时池中的溶质浓度为C i;假定溶质在水质均化池中无相转移和化学变化,并且废水在瞬间均匀混合;混合后浓度为C i+1,自池中流出流量为q i、浓度为C i+1的废水;如此往复进行使废水浓度得以均化。如图1所示: 第i时段: q i ,C i+1 第i+1时段: 出水

消防水池最小容积的计算题

某综合楼,高45m,底部4层为商场,每层面积为3500㎡,上部为写字楼,每层面积为1500㎡。设有室内、外消火栓给水系统;自动喷水灭火系统(设计流量为30L/s);跨商场4层的中庭采用雨淋系统(设计流量为40L/s);中庭与商场防火分隔采用防护冷却水幕(设计流量为30L/s)。室内的消防用水需储存在消防水池中,市政管网有符合要求的两条水管向水池补水,补水量分别为 50m3/h和40m3/h。求该建筑消防水池最小有效容积应为多少立方米? 【解析】根据《建筑设计防火规范》GB50016-2014(以下简称《建规》)表5.1.1,该建筑为一类高层公共建筑; 根据《消防给水及消火栓系统技术规范》GB50974-2014(以下简称《消规》)表3.5.2,一类高层公共建筑消火栓设计流量为30L/s; 又根据《消规》3.5.3,高层建筑当高度不超过50m且室内消火栓设计流量超过20L/s时,其室内消火栓设计流量可按本规范表3.5.2减少5L/s,所以该建筑室内消火栓设计最小流量应为25L/s,室内消火栓用水量应为25*3*3.6=270m3;根据《消规》3.6.1条文说明,一个防护对象或防护区的自动灭火系统的用水量按其中用水量最大的一个系统确定,所以自动灭火系统的用水量应为 40*1*3.6=144m3; 根据《消规》3.6.4,建筑内用于防火分隔的防火分隔水幕和防护冷却水幕的火灾延续时间,不应低于防火分隔水幕或防护冷却设置部位墙体的耐火极限。根据《建规》5.3.2-1,当中庭采用防火隔墙进行防火分隔时,其耐火极限不应低于1.00h,所以防护冷却水幕的用水量应为30*1*3.6=108m3; 所以该建筑室内消防用水量应为270+144+108=522m3。 根据《消规》4.3.5,火灾延续时间内的连续补水流量应按消防水池最不利进水管供水量计算,由于一类高层公共建筑火灾延续时间为3h,所以该市政管网在火灾延续时间内的连续补水量应为40*3=120m3。 因此,该建筑消防水池最小有效容积应为522-120=402m3。 扩展考点:常见场所的火灾延续时间 《消规》3.6.2:

消防水池容积计算

消防水池容积计算 应该是室内消火栓Q1,室外消火栓Q2,喷淋系统Q3在火灾时间内的全部消防用水量.即三项流量乘以火灾延续时间之和.V=Q1*T1+Q2*T2+Q3*T3;T3一般为1小时,T2,T1一般为2小时或3(高层建筑)小时消防水池的容积,是按照满足两小时消防灭火用水量(自消、普消)的前提下,不含前10分钟的用水,水池的有效容积。在计算时,需要加上1.3的系数。规范同时上说在能保证连续补水的前提下,水池的容量可以减去火灾延续时间内补充的水量。 消防水池的消防用水量可按下式确定: Vf=3.6(Qf-Ql)Tx Vf消防用水量,立方米 Qf室内外消防用水量,升每秒 Ql水池连续补充水量,升每秒 Tx火灾延续时间,是指消防水泵开始从水池抽水到火灾基本被扑灭为止的一段时间,具体查规范。小区和普通建筑一般取2小时。 水池根据消防用水量确定,一般水池的容积比用水量稍大。消防水池内的水一经动用,应尽快补充,以供在短时间内可能发生第二次火灾时使用,本条参考《建规》的要求,规定补水时间不超过48h。 为保证在清洗或检修消防水池时仍能供应消防用水,故要求

总有效容积超过500m3的消防水池应分成两个,以便一个水池检修时,另一个水池仍能供应消防用水。 消防水池容积计算是否正确 室内消火栓用水量为15喷淋为20室外为20二支150进水管请问消防水池做多大? 室内消防用水量为15*3.6*2+20*3.6*1=180室外消防用水量为20*3.6*2=144 单位时间流量=截面积*水流速度*时间 Q=A*V*T 150进水管按2.5计算二小时出水量为317 消防水池容积为180+144-317=7 假如补水流速按1m/s计算,补水时间按1h计算为妥,补水量为2x3.14159x0.15^2x1/4x1x3600=127m3,水池容积在200m3左右。 原则只有条件受限时才考虑补水量,有条件就不要考虑了!~如果有两路进水就不用考虑室外消防用水量,仅有一路时要考虑!~还有好多地方要求只有一路进水时要设置独立的室外消火栓系统!~也就是独立管网独立室外消火栓泵。 室内消火栓用水量为15*3.6*2=108(15l/s) 自喷用水量为20*3.6*1=72(15l/s) 室外消防用水量为20*3.6*2=144 (20l/s) 室外消防用水量由室外DN150供水,供水能力35L/S 水流速度1.8m/s,即室内外消火栓用水量 故消防水池需蓄全部自喷用水量,再应考虑最大时生活用水

SBR反应池容积计算方法及评价

SBR反应池容积计算方法及评价 简介:从SBR反应池的功能出发,通过对现行SBR反应池容积的各类计算方法比较和合理性分析,提出了总污泥量综合设计法,并以工程算例结果鉴别各类方法的适用性,供设计借鉴。 关键字:SBR池容积污泥负荷污泥龄干污泥总量沉降距离 SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。 现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。 1现行设计方法 1.1负荷法 该法与连续式曝气池容的设计相仿。已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容: 容积负荷法V=nQ0C0/Nv(1) V min=[SVI·MLSS/106]·V 污泥负荷法Vmin=nQ0C0·SVI/Ns(2) V=Vmin+Q0 1.2曝气时间内负荷法 鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式: 容积负荷法V=nQ0C0tc/Nv·ta(3) 污泥负荷法V=24QC0/nt a·MLSS·N S(4) 1.3动力学设计法 由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。根据动力学原理演算(过程略),SBR 反应池容计算公式可分为下列三种情况: /[MLSS·Ns·ta](5) 限制曝气V=NQ(C 0-Ce)t f /[MLSS·Ns(ta+tf)](6) 非限制曝气V=nQ(C 0-Ce)t f 半限制曝气V=nQ(C0-Ce)t f/[LSS·Ns(ta+tf-t0)](7)

水体容积计算方法

水体容积计算方法 使用保活剂,需要知道水体容积大小。规整的容器还好办,遇到不规整的容器,有些朋友可能挠头了。这里介绍下水体容积的计算方法。 这里不是卖弄,是给那些可能不晓得计算水体容积的朋友看的。 几个常用换算概念: 1吨水=1000千克=1000升= 1立方米 长宽高各10厘米=1升 长宽高各1厘米=1毫升 保活剂在水中的用量单位是:克/吨水。与下列单位一致: 克/吨水=克/立方米水体=毫克/升=ppm 水体容积计算公式: 长方体计算公式=长×宽×高 六边形体计算公式=2.6×边长2 ×高 如图: 八边形体计算公式=4.28×边长2×高 椭圆体计算公式= 3.14×半长轴×半短轴×高 圆柱体计算公式= 3.14×半径2×高 圆台体计算公式=1/3(上底半径2+下底半径2+上底半径×下底半径)×3.14×高 梯形体计算公式=1/3(上底面积+下底面积+√上底面积×下底面积 )×高 笔算开平方的方法: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);

5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数

建筑消防水池储水量设计(doc 7页)

建筑消防水池储水量设计(doc 7页)

高层建筑消防水池储水量设计的商榷 提要高层建筑火灾,立足于自救,这就给高层建筑消防给水工程提出了更高的要求和急待解决的问题,如高层建筑消防水池的储水量需要设计多大,才能做到既能满足高层建筑火灾时消防用水量的要求,又能达到科学、经济、节省投资的目的,这是当前建设、设计及消防部门关注的一个焦点,本文对当前实际工程中消防水池储水量的设计情况进行了归纳总结,并以规范为指导,结合消防建审工作实践,从因地制宜综合考虑消防水量、加强市政规划及消防水源建设等角度对高层建筑消防水池的储水量设计作进一步的探讨。 关键词高层建筑消防水池储水量设计 随着社会生活和经济技术的发展,体现城市时代特征的高层建筑亦进入繁荣发展阶段,越来越多的高层建筑矗立于现代都市之中。随之而来的高层建筑火灾形势也越来越严峻。 高层建筑火灾,立足于自救,高层建筑消防给水系统的可靠性,将直接影响到火灾的扑救效果。而消防水池是消防给水系统设计中的重要设施。因此,对于如何经济、合理、科学地设计高层建筑消防水池的储水量,以及什么条件、什么情况的补水才算作火灾延续时间摧消防水池的补水量等的设计变得相当敏感且责任重大。如何把好这个尺度,这是建设单位、设计单位与消防部门之间的一个焦点。本文中,笔者将以规范为指导,结合我国国情和具体工程的设计及消防建审工作实践,就消防水池储水量的设计问题进行探讨,有些想法仍不很成熟,提出来供大家研讨。 《高层民用建筑设计防火规范》第7.3.2条和7.3.3条对消防水池的设置及设计储水量作出了如下规定:“当室外给水管网能保证室外消防用水量时,消防水池的有效容量应满足火灾延续时间内室内消防用水量的要求;当室外给水管网不能保证室外消防用水

消防水池容积计算

消防水池容积=360立方米 水池平面积:80.5平方米 所需水深:(360/80.5)=4.5m,水面到梁底净距=0.2m, 水泵房层高=5.4m,所以(覆土+梁高)<0.7即可(5.4-4.5-0.2=0.7)水池容积的计算过程如下: 1.消防用水量(消防水池储水量)= 室外消防用水量+ 室内消防用水量根据:《消防给水及消火栓系统技术规程》GB 50974-2014,3.6.1 2.室外消防用水量 V1=15L/s×(2×3600)s=108立方米

设计流量:15L/s(本建筑物属于住宅,耐火等级一级),依据:《消防给水及消火栓系统技术规程》GB 50974-2014,3.3.2 火灾延续时间:2小时(本建筑属于民用建筑,住宅)依据:《消防给水及消火栓系统技术规程》GB 50974-2014,3.6.2

3.室内消防用水量V2=V21+V22 室内消火栓用水量:V21=20L/s×(2×3600)s=144立方米 设计流量:20L/s,见:《消防给水及消火栓系统技术规程》GB 50974-2014,3.5.2 (本建筑物属于住宅,高层,h>54m) 火灾延续时间:2小时(本建筑属于民用建筑,住宅),见:《消防给水及消火栓系统技术规程》GB 50974-2014,3.6.2

喷淋用水量:V22=30L/s×(1×3600)s=108立方米 设计流量:30L/s,软件计算得到 火灾延续时间:1小时,见:《自动喷水灭火系统设计规范》GB 50084-2001(2005年版),5.0.11 所以V2=V21+V22=144+108=252立方米 3.消防用水量(消防水池储水量)= 室外消防用水量+ 室内消防用水量 =V1+V2=108+252=360立方米

清净下水池计算

事故池容积计算 池容积, 事故 1.事故池容积的确定方法 事故池容积应包括可能流出厂界的全部流体体积之和,通常包括事故延续时间内消防用水量、事故装置可能溢流出液体量、输送流体管道与设施残留液体量和事故时雨水量。 1.1消防用水量 消防用水量等于消防水流量与消防持续时间乘积。化工企业消防水流量通常为消火栓给水系统、消防冷却水流量、车间或装置喷淋水量、化学消防需水量(如低倍数泡沫灭火系统)等。在设计中,首先根据生产性质、危险类别确定消防用水量最大的单元,然后将各类消防用水量相加,可得最大消防用水量。计算公 式如下: QF=∑qiti QF—最大消防用水量,m3 qi—每类消防系统消防小时流量,m3/h ti—每类消防系统消防持续时间,h i—消防系统的类别 1.2事故装置可能溢流出液体 1.2.1储罐区 储罐区溢流出的液体量等于全部储罐总泄露量减去封闭于防火堤内的液体量。防火堤内有效容积大于罐区内最大的一台储罐容积的二分之一,但一般小于或等于罐区内最大的一台储罐容积。一旦储罐发生火灾,着火罐内的液体将泄漏,暂时储存于防火堤内,同时着火罐和邻近罐消防冷却水不断喷淋,消防冷却水与泄漏的液体混存于防火堤内,随着时间推移,防火堤内液面不断上升,混合液体逐渐溢出防火堤。实际上,火灾与爆炸范围与程度是随机的,储罐液体的泄漏量难以准确估算,为安全起见,笔者建议储罐液体泄漏 量按最大的一台储罐容积计算。 1.2.2装置区 装置区可能泄露液体有管道、反应容器、中间罐等,装置区可能排出的液体量有两种方法。方法一,根据装置操作特点、管道直径及长度、容积或罐体尺寸计算确定。方法二,根据物料和水平衡计算结果确定。 装置区一般就近设置事故存液池,但装置消防排水等“清净下水”应排入全厂事故池。

消防水池容积计算[新版]

消防水池容积计算[新版] 消防水池容积计算 应该是室内消火栓Q1,室外消火栓Q2,喷淋系统Q3在火灾时间内的全部消防用水量.即三项流量乘以火灾延续时间之和.V=Q1*T1+Q2*T2+Q3*T3;T3一般为1小时,T2,T1一般为2小时或3(高层建筑)小时消防水池的容积,是按照满足两小时消防灭火用水量(自消、普消)的前提下,不含前10分钟的用水,水池的有效容积。在计算时,需要加上1.3的系数。规范同时上说在能保证连续补水的前提下,水池的容量可以减去火灾延续时间内补充的水量。 消防水池的消防用水量可按下式确定: Vf=3.6(Qf-Ql)Tx Vf消防用水量,立方米 Qf室内外消防用水量,升每秒 Ql水池连续补充水量,升每秒 Tx火灾延续时间,是指消防水泵开始从水池抽水到火灾基本被扑灭为止的一段时间,具体查规范。小区和普通建筑一般取2小时。 水池根据消防用水量确定,一般水池的容积比用水量稍大。 消防水池内的水一经动用,应尽快补充,以供在短时间内可能发生第二次火灾时使用,本条参考《建规》的要求,规定补水时间不超过48h。 为保证在清洗或检修消防水池时仍能供应消防用水,故要求 3总有效容积超过500m的消防水池应分成两个,以便一个水池检修时,另一个水池仍能供应消防用水。 消防水池容积计算是否正确室内消火栓用水量为15 喷淋为20 室外为20 二支150进水管请问消防水池做多大,

室内消防用水量为15*3.6*2+20*3.6*1=180 室外消防用水量为20*3.6*2=144 单位时间流量,截面积*水流速度*时间 Q=A*V*T 150进水管按2.5计算二小时出水量为317 消防水池容积为180+144-317=7 假如补水流速按1m/s计算~补水时间按1h计算为妥~补水量为 2x3.14159x0.15^2x1/4x1x3600=127m3,水池容积在200m3左右。 原则只有条件受限时才考虑补水量~有条件就不要考虑了:~如果有两路进水就不用考虑室外消防用水量~仅有一路时要考虑:~还有好多地方要求只有一路进水时要设置独立的室外消火栓系统:~也就是独立管网独立室外消火栓泵。室内消火栓用水量为15*3.6*2=108(15l/s) 自喷用水量为20*3.6*1=72(15l/s) 室外消防用水量为20*3.6*2=144 (20l/s) 室外消防用水量由室外DN150供水,供水能力35L/S 水流速度1.8m/s,即室内外消火栓用水量 故消防水池需蓄全部自喷用水量,再应考虑最大时生活用水 量如为30,即消防水池容积为72+30=102 另:150进水管(1m/s)1小时补水量假如补水流速按1m/s计算~补水时间按1h计算为妥~补水量为72m3 有二路进水~可以不用考虑室外消防的畜水量~直接只考虑室内消防和室内喷淋要求的水量就可以了~室内消防2小时~喷淋考虑1小时~共就为180T水。

雨水收集利用蓄水池容积计算书

雨水收集利用蓄水池容积计算书 安庆凯旋尊邸雨水方案建议 本项目为安庆市大桥开发区C-17地块项目,建筑总用地面积为133156 m2,总建筑面积为 m2,建筑基底总面积 m2。本次参评绿色建筑的为高层住宅项目,建筑面积为,用地面积为。 一、可收集雨水量 1、综合径流系数 表1-1 综合径流系数计算表 序号 1 2 3 下垫面分类面积占地比例径流系数屋面 3320 24% 道路及硬地面 4480 32% 景观水面 1200 9% 1 植被土地 4800 35% 总计 13800 ——综合径流系数 2、雨水设计径流总量 根据区域内布局特点及雨水回收利用的要求,收集区域内部分屋面、道路、绿地和水面雨水,总收集面积13800m2。雨水收集后用于绿化喷灌、道路浇洒、水景补水等。雨水收集量根据《建筑与小区雨水利用工程技术规范》GB50400-20XX 中条规定雨水设计径流总量公式计算:W=10ψc hy F 式中:W——雨水径流总量; ψc——雨量径流系数;

hy——设计降雨厚度,取值为1368mm; F——汇水面积。 2 因此,本项目雨水径流总量为。 根据《雨水集蓄利用工程技术规范》GB/T50596-20XX第条可收集雨水总量: W′=Wαβ 式中: W′——雨水可回用水量,m3/a; W——雨水径流总量,m/a;α——季节折减系数,取;β——初期雨水弃流系数,取。 3 因此,本项目雨水系统可收集雨水总量为/a 3\\、根据《民用建筑节水设计标准》GB50555-20XX,本项目的节水用水定额 绿化喷灌:/ m2·次,年喷灌天数为140天;道路浇洒:/ m2·次,年浇洒次数35次;水景补水:846mm/a,年补水天数219天。 绿地面积为:4800 m2, 日平均浇洒量为:4800×2×= m3;年浇洒量为:4800×=1344m3;道路浇洒面积为:4480 m2 日平均浇洒量为:4480××= m3;年浇洒量为:×35=;水景面积为:2100 m2 年补水量为:2100×846×= m3 日补水量为:÷219 = ;

曝气池容积计算方法分析

曝气池容积计算方法分析 曝气池是活性污泥处理系统中的核心构筑物,其容积的大小不仅关系到整个处理系统的净化效果,同时还关系到建造费用的问题。因此,有必要对曝气池容积的计算方法进行分析,从而得到较佳的设计取值。长期以来,曝气池容积的计算,采用较普遍的是按BOD—污泥负荷率法,但近来也有人建议采用污泥龄法。那么,二者之间有何异同,是否有某种内在的联系、可否将二者有机地结合起来呢?本文就此进行如下的分析讨论。 1 BOD—污泥负荷率(Ns)曝气池容积计算法 1.1 BOD—污泥负荷率(Ns)的物理概念 曝气池内单位重量(千克)的活性污泥,在单位时间内能够接受并将其降解到某一规定额数的BOD5重量值,被称为BOD—污泥负荷率(Ns)。即[1][2]: ⑴ 式中 Ns——BOD—污泥负荷率, kg BOD5/kgMLSS·d Q——污水设计流量,m3/d Sa——原污水的BOD5值,mg/l

X——曝气池内混合液悬浮固体浓度 (MLSS),mg/l V——曝气池容积,m3 1.2 曝气池物料平衡方程式 如图1为完全混合活性污泥系统的物料平衡图[1][4]。 在稳定条件下,对于系统中的有机物进行物料平衡,则有: ⑵ 整理得: ⑶由莫诺(Monod)方程式的推论知[1][4] : ⑷代入式⑶,并整理得: ⑸ 或

⑹又 ⑺代入式⑹得: ⑻ 或 ⑼式中 X V——曝气池混合液挥发性悬浮固体 浓度(MLVSS),mg/l S e——处理水出水有机物浓度,mg/l ——有机物降解速度, K2——有机物降解常数。 1.3 曝气池容积计算 由式⑴有:

⑽ 将式⑼代入式⑽得: ⑾ 式⑽即为按BOD—污泥负荷率法计算曝气池容积得计算公式,式⑾为经变换后得计算公式。 2 污泥龄(θc)曝气池容积计算法 2.1 污泥龄(θc)的物理概念 曝气池内活性污泥总量与每日排放污泥量之比,称为污泥龄(θc)。也即劳伦斯—麦卡蒂(Lawrence—McCayty)的“生物固体平均停留时间” [1]。即: ⑿ 式中θc——污泥龄,d ΔXv——曝气池内每日增加的挥发性 污泥量(Vss),kmg/l 其它——同前

消防水池用水量计算

消防水池用水量计算 请教各位:现在有一个小区,有五栋三十层的普通住宅,另有一座单独的一类地下车库。要计算该小区消防水池的有效容积。现在有两种思路。 一: 高层住宅楼所需室内消防用水量为20L/s,室外消防用水量为15L/s,消火栓灭火时间按2h计算;消防水池内贮存室内、外消防用水量,则有: Q1=(15+20)*3.6*2=252m3 地下车库室内消防用水量为10L/s,室外消防用水量为20L/s,消火栓灭火时间按2h计算;自喷用水量为30L/s,灭火时间按1h计算。消防水池内贮存室内、外消防用水量,则有: Q2=(10+20)*3.6*2+30*3.6*1=324m3 小区同一时间内的火灾次数仅考虑为一次,取最大消防用水量为324m3。则消防水池内有效容积为324m3。 二: Q=(15+20)*3.6*2+30*3.6*1=360m3 消防水池内有效容积为360m3。

消防水池用水量计算 如题 一栋5层丙类厂房,建筑高度18m,建筑体积15200m3(室外消防用水量为 25L/s),市政给水管道只有一条进水管,建筑内仅设有室内消火栓系统(临 时高压系统),回答以下问题. (1)、该建筑消防水池的容积至少为______. 答:A.126 m3 B.216 m3 C.252 m3 D.378 m3 麻烦说一下具体计算过程 该题的计算都是根据室外和室内的供水时间为两小时计算,为什么呢,规 范的规定为丙类厂房的消防水池供水时间是3小时,为何在这里取两小时 呢. 我认为的计算是 室外25*3600*2=180立方米. 室内10L\S*3600*2=72立方米 请高手指点为何这里要取两小时供水时间.还是另外有算法? 数学 nmjFVvv2014-10-08 优质解答 1、室外消防栓用水量:25*3.6*3=270M3 2、室内消防栓用水量:10*3.6*3=108M3 3、市政进水管没提供管径及流量,不考虑减去补水量,即水池容积为:室外消防栓用 水量+室内消防栓用水量=270+108=378M3,应选D.

消防水池容量计算方法

消防水池容量计算方法 通常同一时间、地点我们认为只可能发生一次火灾,而一次火灾启用的消防设备是有限的,我们的计算就按照需要启动的消防设备最多(最不利)的那次来计算。一次灭火启用的设备不同,灭火持续时间也不同:消火栓按3小时持续出水计算,喷水是按一小时计算。最后将各灭火设备的流量累加。 举个简单例子:一个商场,有室内消火栓和喷淋,最坏的情况是两种设备同时启用。消火栓按同时4个出水灭火计算,算出3小时的总用水量V1;喷淋按照喷头作用面积160㎡计算1小时持续供水的水量V2;最后V1+V2就是消防水池应该拥有的容积。注意的是这个计算值需要减去灭火持续时间内消防水池的补水量才是消防水池的实际容积。 (1)设备的计算流量不能小于规范规定的流量,小于的按规范计算,大于的按计算值确定。 (2)计算消防用水量与几栋楼、几个消火栓没有关系。按照《高层民用建筑设计防火规范》规定,消防用水量应该为室内消防用水量+室外消防用水量+喷淋用水量。 (3)消防水池应符合下列规定: 当室外给水管网能保证室外消防用水量时,消防水池的有效容量应满足在火灾延续时间内室内消防用水量的要求。当室外给水管网不能保证室外消防用水量时,消防水池的有效容量应满足在火灾延续时间内室内消防用水量与室外消防用水量不足部分之和的要求。当室外给水管网供水充足且在火灾情

况下能保证连续补水时,消防水池的容量可减去火灾延续时间内补充的水量;②补水量应经计算确定,且补水管的设计流速不宜大于2.5m/s。③消防水池的补水时间不宜超过48h;对于缺水地区或独立的石油库区,不应超过96h。④容量大于500m3的消防水池,应分设成两个能独立使用的消防水池。⑤供消防车取水的消防水池应设置取水口或取水井,且吸水高度不应大于 6.0m。取水口或取水井与建筑物(水泵房除外)的距离不宜小于15m;与甲、乙、丙类液体储罐的距离不宜小于40m;与液化石油气储罐的距离不宜小于60m,如采取防止辐射热的保护措施时,可减为40m。⑥消防水池的保护半径不应大于150.0m。⑦消防用水与生产、生活用水合并的水池,应采取确保消防用水不作他用的技术措施。⑧严寒和寒冷地区的消防水池应采取防冻保护设施。

地下消防水池

水池(泵房)的设计 注意:以下“水池”均代表“地下水池” 1、什么是深基坑?深基坑与设计及施工的关系? 答:深基坑的定义:建设部建质200987号文关于印发《危险性较大得分部分项工程安全管理办法的通知》规定: 一般深基坑是指开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的工程。 2、水池顶板、侧壁、底板各自厚度如何确定? 答:顶板厚度:根据计算确定。 侧壁:厚度不宜小于250mm。(地下工程防水技术规范第10页) 底板:依据筏板基础,不小于400mm。(高规121页) 3、水池顶板、侧壁、底板如何计算? 答:顶板按简支板计算,侧壁按1m宽的板带计算(梁),底板同侧壁。 4、水池底板侧壁外侧为什么要悬挑?外侧不悬挑时画图应该注意什么,如何满足钢筋锚固?底板钢筋在端部什么情况下需要弯折?底板端部需要配筋吗? 答: 5、水池什么情况下需要设置暗柱?暗柱怎么配筋?如何计算? 答:水池跨度较大,以及在拐角处需设暗柱;计算配筋,按悬挑梁进行计算。 6、水池顶板为什么要覆土?覆土厚度怎么确定?最小覆土厚度可以为多少? 答: 7、水池顶部活荷载怎么取值? 答:根据实际情况计算。 8、水池抗浮力计算要注意什么?抗浮力水位怎么确定?抗浮力计算不满足时最好的处理办法是什么?水池底板有悬挑时外侧土的容重计算注意什么? 答:我个人认为计算时要按水池无水时计算;查地勘;加大底板厚度,增加底板悬挑长度;注意计算土的浮重度。 9、水池侧壁之间、侧壁与顶部按铰接计算合理还是刚接合理? 答:铰接合理。 10、(弱)酸性水池、(弱)碱性水池怎么做防腐处理? 答:做外防水,刷防腐涂料,以及用耐酸(碱)性混凝土。 11、水池侧壁内侧、侧壁外侧、顶板、底板的保护层厚度怎么确定? 答:根据混凝土规范确定,顶板和侧壁不应小于25mm(二类环境b),基础不应小于40mm。 12、水池顶部做上反梁时应注意怎么? 答: 13、导流墙洞口留设位置怎么确定?导流墙如何计算? 答: 14、水池底板与侧壁之间、侧壁之间、侧壁与顶板之间为什么要加腋、腋角大小如何确定?腋角如何配筋?腋角一定要45度吗?什么情况下可以取消腋角? 答:转角加腋主要是构造要求,解决应力突变问题,防止裂缝。(结构建筑图集) 15、水池底板与侧壁之间、侧壁之间、侧壁与顶板之间钢筋的走向是什么样的? 答: 16、水池需要加暗梁吗? 答:根据实际情况确定。

贮水池、高位水箱(水塔)的容积确定

贮水池、高位水箱(水塔)的容积确定 1.贮水池的容积确定: (1)居住小区或建筑物生活的贮水池有效容积应按外部给水管网供给水量和给水泵供水量的变化曲线经计算确定,一般根据调节水量和事故备用水量确定,应满足下式要求: Vt≥(Qb—Qg)Tb+Vs QgTt≥(QbQg) Tb (1.8-1) 式中Vt——贮水池的有效容积(m 3); Qb——给水泵的供出水量(m 3/h): Qg——给水管网的供出水量(m 3/h): Tb——给水泵的运行时间(h); Vs——事故备用水量(m3): Tt——水泵运行间隔时间(h)。 (2)当资料不足时,贮水池的调节水容积可按最高日用水量的15%-20%确定。 (3)水泵——水塔(高位水池)联合供水时,其有效容积可根据小区内的用水规律和小区泵房的运行规律进行计算确定;若资料不全时可参考表1.8-1选定。 水塔(高位水池)生活调节贮水量表1.8-1 (4)建筑物的生活用水贮水池的有效容积应按进水量与用水量变化曲线经计算确定,当资料不足时,宜按最高日用水量的20%-25%确定.当建筑物内采用部分直供、部分升压供水方案时,上述最高日用水量应按需升压供水的那部分用水量计算。 2、吸水井、高位水箱的容积确定 (1)吸水井的有效容积一般不得小于最大1台水泵或多台同时工作水泵3min的出水量,小型泵可按5-15min的出水量来确定,吸水井的长、宽、深尺寸应满足吸水管的布置、安装、检修和水泵正常工作的要求。并应参考贮水池做好防止水质污染、变质和保证安全运行的有关措施。 (2)建筑物内的生活供水高位水箱的有效容积应按进水量和用水量的变化曲线经计算确定。

事故收集池总容积计算公式

事故排水收集和事故收集池总容积计算公式 摘自中石化《水体污染防控紧急措施设计导则》6事故排水收集 6.1事故排水可利用污水系统、清净水系统收集,排放总管宜采用密闭形式,难以采用密闭形式时应采取安全防范措施。 6.2事故排水收集系统的排水能力应按事故排水流量进行校核。事故排水流量包括物料泄漏流量、消防水流量、清净水流量、雨水流量等。 6.3事故排水收集系统的自流管道可按满流校核。 6.4事故排水收集系统在各装置排水接入处宜设置水封,防止挥发性气体蔓延。 7 事故排水储存 7.1应设置能够储存事故排水的储存设施。储存设施包括事故池、事故罐、防火堤内或围堰内区域等。 7.2 事故储存设施总有效容积: V总= (V1+ V2- V3)max + V4+ V5 注:(V1+ V2- V3)max是指对收集系统范围内不同罐组或装置分别计算V1+ V2- V3,取其中最大值。 V1——收集系统范围内发生事故的一个罐组或一套装置的物料量。 注:储存相同物料的罐组按一个最大储罐计,装置物料量按存留最大物料量的一台反应器或中间储罐计;

V2——发生事故的储罐或装置的消防水量,m3; V2=∑Q消t消 Q消——发生事故的储罐或装置的同时使用的消防设施给水流量,m3/h; t消——消防设施对应的设计消防历时,h; V3——发生事故时可以转输到其他储存或处理设施的物料量,m3; V4——发生事故时仍必须进入该收集系统的生产废水量,m3; V5——发生事故时可能进入该收集系统的降雨量,m3; V5=10qF q——降雨强度,mm;按平均日降雨量; q=q a/n q a——年平均降雨量,mm; n——年平均降雨日数。 F——必须进入事故废水收集系统的雨水汇水面积,ha; 7.3罐区防火堤内容积可作为事故排水储存有效容积。 7.4排至事故池的排水管道在自流进水的事故池最高液位以下的容积可作为事故排水储存有效容积。 7.5在现有储存设施不能满足事故排水储存容量要求时,应设置事故池。 V事故池=V总-V现有 V现有——用于储存事故排水的现有储存设施的总有效容积。

给水厂清水池设计计算

9 清水池 清水池的平面尺寸 清水池有效容积为: 4321W W W W W +++= 式中,1W —调节容积,m 3,取最高用水量的10%,1W =Q 1.0; 2W —净水厂自用水量的5%-10%,取10%,2W =11.0Q ; 3W —消防贮水量,m 3 ; 4W —安全用水,m 3,取200m 3 ; 1W =Q 10.0=1728017280010.0=?m 3 2W =11.0Q =1280128001.0=?m 3 3W =65373672001000036004103=-+???-m 3 最高时供水量31000024/1600005.124/m Q K Q h g =?== 水厂设计水量7200 24/16000008.1=?==aQ Q c 4W =1000m 3 4321W W W W W +++==17280+1280+3736+1000=23296m 3 滤后水经过消毒后进入清水池,两组滤池的滤后水分别进入两个清水池,则每个清水池的容积是11648m 3,取清水池有效水深,则其面积为,平面尺寸为65×,清水池采用地下式钢筋混凝土立方体水池,水池顶部高出地面,清水池超高。 管道布置 ⑴清水池的进水管 进水管流量为s ,选用铸铁管,查水力计算表表的管径 mm DN 1100,流速s ,1000i=; ⑵清水池的出水管 由于用户的用水量时时变化,清水池的出水管应按照出水最大流量计: 24 1KQ Q =

式中 K —时变化系数,一般采用5.2~3.1,设计中取5.1 Q —设计水量d m 3 s m h m KQ Q 3315.1540024 2/1728005.124==?== 选用铸铁管,查水力计算表表的管径 mm DN 1200,流速s ,1000i= ⑶清水池的溢流管 溢流管的直径与进水管直径相同,取为mm DN 1100。在溢流管管端设置喇叭口,管上不设置阀门。出口设置网罩,防止虫类进入池内。 ⑷清水池的排水管 清水池内的水在检修时需要放空,因此应设排水管。排水管的管径按照2h 内将池水放空计算。排水管内的流速按照s m 2.1左右估计,则排水管的管径 m v t V D 31.12 .114.33600241164814.33600423=????=???= 设计中取为mm DN 1300。 清水池的附属设施 (1)集水坑 每个清水池设有一个集水坑,集水坑采用圆形,集水坑比池底低1m ,清水池的出水管和排水管都在此接出。 (2)导流墙 导流墙能促进新旧水量交替,清除死角,加强氯与水体混合,提高消毒效率及保证出水的必要措施。导流墙顶板砌筑到清水池最高水位,使顶部空间维持畅通,有助于空气流通,导流墙底部每隔设一个,共19个,在导流墙底部每隔m 0.2设置流水孔,尺寸120×120mm 。 (3)通风管 为便于清水使进出水管交替和适应水位高低的变化的需要,清水池顶应设置通风管,通风管直径为200mm ,每池设8个。 (4)人孔 人孔是人和池内设备等进出水池的通道,每个清水池设两个圆形人口,直径为1m ,设置在靠近溢流管和出水管处,以便于管道的安装和维修。

相关文档
最新文档