2017年秋季学期新版新人教版九年级数学上学期22.2、用函数观点看一元二次方程教案24

合集下载

新人教版九上课件22.2.1一元二次方程

新人教版九上课件22.2.1一元二次方程
1 2 x =7 2
4. 6x2=x 6. -x2=0
一元一次方程与一元二次方程有什么区别与联系?
一元一次方程 一般式 相同点 不同点 一元二次方程
ax=b (a≠0) ax2+bx+c=0 (a≠0) ) ) 整式方程, 整式方程,只含有一个未知数 未知数最高次数是1 未知数最高次数是2 未知数最高次数是 未知数最高次数是
2
2
随堂练习
练习二 将下列方程化为一般形式, 将下列方程化为一般形式,并分别指出它的 二次项系数、 二次项系数、一次项系数和常数项 2x(x-1)=3(x-5)-4
2x = 2 − 3x
2
(2y −1)
2
− ( y +1) = ( y + 3)( y − 2)
2
3.例3 方程(2a—4)x2 —2bx+a=0, . 方程( ) 在什么条件下此方程为一元二次方程? 在什么条件下此方程为一元二次方程? 在什么条件下此方程为一元一次方程? 在什么条件下此方程为一元一次方程? 解:a=2 且 b ≠0 时是一元一次方程 当 2a-4≠0,即a ≠2 时是一元二次方程; - 0 时是一元二次方程; .选择题 选择题 1.方程(mx-1)x2+mx+1=0为关于 的一元二 方程( - 为关于x的一元二 方程 + 为关于 次方程则m的值为 的值为___ 次方程则 的值为___ A 任何实数 B m≠0 C m≠1 D m≠0 且m≠1 2.关于 的方程中一定是一元二次方程的是 关于x的方程中一定是一元二次方程的是 关于 A ax2+bx+c=0 B mx2+x-m2=0 + = - C (m+1)x2=(m+1)2 D (m2+1) x2-m2=0 + +
能使方程左右两边相等的未知数的 值就叫方程的解。 值就叫方程的解。只含有一个未知 数的方程的解也叫做根 数的方程的解也叫做根

九年级数学上册 22.2《降次-解一元二次方程(第1课时)》学案(无答案) 新人教版

九年级数学上册 22.2《降次-解一元二次方程(第1课时)》学案(无答案) 新人教版

《22.2 降次——解一元二次方程》学习目标:运用直接开平方法解一元二次方程.一、 自主学习(一)温故知新求出下列各式中x 的值,并说说你的理由.(1)x 2=9 (2)x 2=5 (3)x 2=a (a>0)(二)探索新知问题:一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?解:设,列方程,对照上述解方程的过程,你能解下列方程吗?(1)4x 2-9=0 (2)x 2-6x+9=0三、达标巩固解下列方程:(1)822=x (2)09)6(2=-+x (3)2692x x ++= (4)20)5)(5(=-+x x四、学后记五、课时训练基础过关1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b2-12b+36=0,那么ab的值是_______.4.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 5.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根6.解下列方程(1)x2-7=0 (2)3x2-5=0(1)4x2-4x+1=0 (4)12(2x-5)2-2=0能力提升7.已知a是方程x2-x-1=0的一个根,则a4-3a-2的值为_________.8.若(x+1x)2=254,试求(x-1x)2的值为________.9.解关于x的方程(x+m)2=n.。

人教版 九年级数学讲义 二次函数与一元二次方程(含解析)

人教版 九年级数学讲义 二次函数与一元二次方程(含解析)

第6讲二次函数与一元二次方程知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数与一元二次方程之间的联系,能够根据二次函数与x轴的交点坐标联系相应方程的解的情况,此外了解二次函数与不等式之间的关系,能够根据图象写出相应不等式的解集等,本节课的难点是二次函数与方程、不等式之间的联系考查,希望同学们能够认真学习。

知识梳理讲解用时:10分钟二次函数与一元二次方程之间的关联求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标。

(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:①①=b2﹣4ac决定抛物线与x轴的交点个数;①①=b2﹣4ac>0时,抛物线与x轴有2个交点;①①=b2﹣4ac=0时,抛物线与x轴有1个交点;①①=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0),相应一元二次方程的根就是x1和x2.课堂精讲精练【例题1】在平面直角坐标系xOy中,二次函数y=x2+x+1的图象如图所示,则方程x2+ x+1=0的根的情况是()。

A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【答案】B【解析】此题主要考查了抛物线与x轴的交点,二次函数y=x2+x+1的图象如图所示,图象与x轴有两个交点,则方程x2+x+1=0的根的情况是:有两个不相等的实数根,故选:B.讲解用时:3分钟解题思路:直接利用二次函数图象得出方程x2+x+1=0的根的情况,即抛物线与x轴的交点情况,进而得出答案。

教学建议:利用数形结合分析。

初中数学《二次函数与一元二次方程》教案基于学科核心素养的教学设计及教学反思

初中数学《二次函数与一元二次方程》教案基于学科核心素养的教学设计及教学反思
预设学生活动
设计意图
画出函数y=x2-x-3/4的图象,根据图象回答下列问题。
(1)图象与x轴交点的坐标是什么;
(2)当x取何值时,y=0这里x的取值与方程x2-x-3/4=0有什么关系
(3)你能从中得到什么启发
1.先让学生回顾函数y=ax2+bx+c图象的画法,按列表、描点、连线等步骤画出函数y=x2-x-3/4的图象。
2.教师引导学生观察函数图象,回答(1)提出的问题,得到图象与x轴交点的坐标。
从“形”的方面看,函数y=x2-x-3/4的图象与x轴交点的横坐标,即为方程x2-x-3/4=0的解;从“数”的方面看,当二次函数y=x2-x-3/4的函数值为0时,相应的自变量的值即为方程x2-x-3/4=0的解。
板书设计
22.2二次函数与一元二次方程
函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解
教学反思
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。
初中数学《
基于学科核心素养的教学设计
课程名称:《二次函数与一元二次方程》
姓名
教师姓名
ห้องสมุดไป่ตู้任教学科
数学
学校
学校名称
教龄
6年
教学内容分析
教学内容
二次函数与一元二次方程
教学目标
通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系
教学重点与难点
使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题
学科核心素养分析
数学核心素养,就是能从数学的角度看问题,有条理地进行理性思维、严密求证、逻辑推理和清晰准确地表达的意识与能力。

人教版九年级数学 上第22章二次函数 222 二次函数的图象和性质教案

人教版九年级数学 上第22章二次函数 222 二次函数的图象和性质教案

北屯中学电子备课教学设计表学科:数学年级:九_ _年级_上 _册第22章单元(章)课题22.1.3二次函数y=a (x-h)2的图象和性质备课人备课人段秋玲审核人赵兰授课人课标解读与教材分析课标要求1.会用描点发画出二次函数图象,能通过图像认识二次函数性质。

2.会确定二次函数的图像顶点,开口方向和对称轴。

3.经历二次函数图象平移的过程。

教材分析二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的。

二次函数的图象是二次函数性质的直观体现,因此学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题是相当重要的,为后继学习研究函数打下一定的基础。

教学目标知识与技能: 使学生能利用描点法画出二次函数y=()2a x h-的图象。

过程与方法: 让学生经历二次函数y=()2a x h-性质探究的过程,理解函数y=()2a x h-的性质,理解二次函数y=()2a x h-的图象与二次函数y=a2x的图象的关系。

情感态度与价值观:培养学生创造思维的能力和动手实践能力,突出辩证唯物主义观点。

重点会用描点法画出二次函数y=()2a x h-的图象,理解其性质,理解它与y=ax2的图象的关系。

难点理解二次函数y=a(x-h)2的性质,理解二次函数y=()2a x h-的图象与二次函数y=ax2的图象的相互关系。

教学课时 1 课时课前准备课件教学时间年月日教学设计教学增补主备课人备教学设计一、情境引入:1.我们已经了解到,函数y=ax2+k图象可以由函数y=ax2的图象上下平移得到,平移的规律是怎样的?2.二次函数y=-12(x-1)2的图象,是否也可以由函数y=ax2的图象平移而得到呢?若是,应该怎样平移?画图试一试,你能从中发现什么规律吗?3.引出课题——二次函数y=a (x-h)2的图象和性质设计意图:渗透类比学习的方法,使学生对将要进行学习的新内容进行猜想,同时激发学生学习的好奇心和求只欲。

永平县三中九年级数学上册第二十二章二次函数22.2用函数的观点看一元二次方程1教学课件新版新人教版6

永平县三中九年级数学上册第二十二章二次函数22.2用函数的观点看一元二次方程1教学课件新版新人教版6

〔2〕球的飞行高度能否达到20m ?如果能 , 需要多少飞行 时间 ?
20 h
你能结合图形指出
O
4
t
为什么只在一个时间球的高 度为20m?
?
〔3〕球的飞行高度能否达到20.5m ?
如果能 , 需要多少飞行时间 ?
20.5 h
你能结合图形指出
O
t
为什么球不能达到20.5m的高度?
解 : 〔2〕解方程 20=20t-5t2 T2-4t+4=0 t1=t2=2 当球飞行2秒时 , 它的高度为20米。
2.已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点. (1)求m的取值范围 ; (2)当函数图象与x轴的两交点的横坐标的倒数和等于-4时 , 求m的值. 解:(1)当 m+6=0,即 m=-6 时,函数解析式为 y=-14x-5,此一次函 数与 x 轴有一个交点;当 m+6≠0,即 m≠-6 时,函数为二次函数,当 Δ≥0 时,抛物线与 x 轴有交点,即 4(m-1)2-4(m+6)(m+1)≥0,解得 m≤-59 .
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次 方程ax2+bx+c=0的根有什么关系?
解 : 〔1〕设y=0得x2+2-2=0 (x-1)(x+2)=0 X1=1,x2=-2 所以抛物线y=x2+x-2与X轴有两个公共点 , 公共点的横坐标分别是1和-2 , 当x取公共点的横坐标时 , 函数的值为0
Y=x2-x-3
y
-1 O 2 3
x
〔1〕抛物线y=x2+2x-3与x轴的交点个数有〔C〕
A.0个 B.1个 C.2个 D.3个

第22章 一元二次方程教案全章

教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。

从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。

22.2.2二次函数与一元二次不等式--新人教版初中数学导学案九年级上册《二次函数》【一流精品】

课题: 22.2.2二次函数与一元二次不等式【学习目标】1. 正确理解一元二次不等式的概念,掌握一元二次不等式的解法;2. 理解一元二次不等式、一元二次函数及一元二次方程的关系,能借助二次函数的图象及一元二次方程解一元二次不等式.【学习重点】从实际情景中抽象出一元二次不等式模型,一元二次不等式的解法.【学习难点】理解二次函数与一元二次不等式解集的关系.【课前预习案】复习1:解下列不等式:①112x>-;②112x->;③1102x-+>.探究一:一元二次不等式的定义制作一个高为2m的长方体容器,底面矩形的长比宽少1m,并且长方体的容积大于12m3,问底面矩形的宽取值范围?一元二次不等式的定义:只含未知数,并且未知数最高次数为的不等式,称为一元二次不等式.探究二:解一元二次不等式解一元二次不等式:①x2-x-6>0 ②x2-x-6<0第一步:解一元二次方程x2-x-6=0第二步:画出二次函数y= x2-x-6的草图第三步:写出不等式的解集:归纳:方程的解即函数图象与x轴交点的横坐标,不等式的解集即函数图象在x轴上方或下方图象所对应x 的范围。

例1.解不等式 2x2-3x-2 > 0 .总结出:解一元二次不等式ax2+bx+c>0、ax2+bx+c<0 (a>0) (标准形)的步骤是:探究三.二次函数,一元二次方程,一元二次不等式的关系例2:解不等式4x2+1>4x 例3:解不等式- x2 + 2x – 3 >0练习:解下列一元二次不等式:(1)3x2-7x+2<0 (2)-6x2-x+2≤0【课末达标案】1、不等式(3x+1)(2x-1)≤0的解集是( ) A.x ≤-31或x ≥21 B.-31<x <21 C.x <-31或x >21 D-31≤x ≤21. 2、不等式(x+5)(3-2x)≥6的解集是( )A .x≤-1或x≥29 B.-1≤x≤29 C.x ≤-29或x ≥1 D.-29≤x≤1 3、不等式(21-x)(31 -x)>0的解集为( )A.31<x <21B.x >21C.x <31D.x <31或x >21 4、不等式3x 2-16x+16>0的解集是 . 5、在下列不等式中,无解的是( )A.2x 2-3x+2>0B.x 2+4x+4≤0C.4-4x-x 2<0D.-2+3x-2x 2>06、若函数y=ax 2+bx+c(a ≠0)图象的开口向下,且与x 轴的交点的坐标为x 1,x 2(x 1<x 2),则不等式ax 2+bx+c <0的解集为( )A.x 1<x <x 2 B .x 2<x <x 1 C .x <x 1或x >x 2 D .x <x 2或x >x 17、已知二次方程ax 2+bx+c=0的两个根是-2,3,a >0,那么ax 2+bx+c >0的解集是( ) A.x <-2或x >3 B.x <-3或x >2 C.-2<x <3 D .-3<x <2 8、解下列不等式(组):(1) 0532>+-x x (2)0122<--x x (3)01272<++x x(4)0652≤--x x (5)5x+2≥3x 2 (6)(x-2)(3x-5)>0(7) 2245x x ≥+ (8) 3x-x 2<0 (9)2522<-)(x(10)212x x <+ (11)01242<--x x (12)012532>-+x x(13)0442>-+-x x (14)2230x x --+≥ (15)0232≥-+xx【课后拓展案】基础达标: 解下列一元二次不等式:1.0652>++x x2.0672≥+-x x3.0122>-+x x4.2230x x --+≥5.0262≤+--x x6.0142562≤++x x7.0941202≤+-x x 8.(2)(3)6x x +-<应用提高: 10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m≤2(B)m≥2(C)m≤1(D)m≥111.(1) 若不等式012>++mx x 的解集为全体实数,则m 的取值范围是_____________. (2) 不等式220mx mx +-<的解集为全体实数,则实数m 的取值范围为 .思维拓展:12、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.。

初三数学第二十二章《一元二次方程》全章教案

第二十二章一元二次方程22.1 一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+b x+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。

有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。

借问竿长多少数,谁人算出我佩服.如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x—1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x—1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。

九年级数学上册 22.2.1《配方法解一元二次方程》课件 新人教版

如图,工人师傅 为了修屋顶,把一梯 子搁在墙上,梯子与 屋檐的接触处到底端 的长AB=4米,墙高AC =3米,问梯子底端点离 墙的距离是多少?
A
C B
一般地,对于形如x2=a(a≥0)的方程, 根据平方根的定义,可解得 x a ,x a 1 2 这种解一元二次方程的方法叫做开平方法 (square root extraction).
练习3:用配方法解下列方程: (1) x2+12x =-9 (2) -x2+4x-3=0 4. 用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
思考:先用配方法解下列方程: (1) x2-2x-1=0 (2) x2-2x+4=0 (3) x2-2x+1=0 然后回答下列问题: (1)你在求解过程中遇到什么问题?你是怎样 处理所遇到的问题的? (2)对于形如x2+px+q=0这样的方程,在 什么条件下才有实数根?
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2 )2 6 + 9 =(x- 3 )2 (3)x2-___x
配方时, 等式两边同时加上的是一次项系数一 半的平方
例2:用配方法解下列方程 (1)x2+6x=1
(2)x2=6-5x
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y=ax2+bx+c的图象和性质
教材分析 之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。是前面知识的应用和拓展,又为今后
学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。充分体现了数形结合
的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。

课标
要求
熟练应用二次函数的图像和性质解决问题

学情
分析

学可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,

不能类比一次函数的一些观察图像的方法来学习二次函数的图像。不能从图中获取相关的
信息。学生基础掌握太不好了,必须每个人都看到,督促到。

教学
目标

知识目标: 二次函数的图像和性质,待定系数法求二次函数的解析式
能力目标: :通过画图象独立去探索交流图象的性质培养分析解决问题的能力
情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识间的联系,形
成体系。

教学重点:掌握二次函数图像与解析式间的关系及性质
教学难点:理解二次函数解析式的意义和性质
教学
手段

通过导学案帮助学生理解消化二次函数的基础知识

教学
方法

问答法、练习法、讨论法

学法 培养 画图分析
教 学 过 程 环节1 二次函数解析式常用的有三种形式:
(开口方向、大小、对称轴、顶点坐标、增减性、极值)
(1)一般式:_______ ________ (a≠0)
(2)顶点式:_____________ (a≠0)
对应训练:

1、抛物线2)1(xy的开口 ,对称轴是 ,顶点坐标是 。

2、函数2)1(3xy,当x 时,函数值y随x的增大而减小.当x 时,
函数取得最 值,最 值y= .

学 过 程 3、对于二次函数cbxaxy2对称轴 ,顶点坐标 . 4、已知抛物线9)2(2xaxy的顶点在坐标轴上,则a的值为 双休日作业出过让学生回忆。 5、(1)二次函数xxy22的对称轴是 . (2)二次函数1222xxy的图象的顶点是 ,当x 时,y随x的增大而减小. (3)抛物线642xaxy的顶点横坐标是-2,则a= . 6、对于二次函数mxxy22,当x= 时,y有最小值. 这两题都在考查顶点横坐标公式。
7、抛物线322xxy的开口方向向 ,顶点坐标是 ,对称轴是 ,
与x轴的交点坐标是 ,与y轴的交点坐标是 ,当x= 时,
y有最 值是 .

8、已知二次函数mxxy62的最小值为1,求m的值.本题考查顶点坐标纵坐标公
式。
9、利用配方法,把下列函数写成2)(hxay+k的形式,并写出它们的图象的开口方向、
对称轴和顶点坐标.
(1)162xxy (2)4322xxy

10、确定抛物线6422xxy的开口方向、对称轴和顶点坐标,再描点画图.作图
可作草图。
主要目标:掌握二次函数的图像和性质

重难点及解决策略: 能根据题目的特点选择恰当的方法,并且能够熟练地准确解决。策
略就是在对答案之后,能够反思自己的解题过程,要大手帮助小手。
教 学 过 程 教 学 过 程 教学设计: 二、二次函数的位置:(平移:规律: ,对称: ) 1、把函数261xy的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 . 2、函数2)1(3xy的图象向右平移2个单位,再向上平移3个单位,所得新图象的函数关系式为 .
3、将抛物线2axy向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,
3),则a的值为_______________.
4、把抛物线cbxxy2向上平移2个单位,再向左平移4个单位,得到抛物线2xy,

b=________,c= .

5、函数322xxy,则与其关于x轴对称的抛物线的解析
式 ,
与其关于y轴对称的抛物线的解析式 .

环节2: 明确二次函数图像位置之间的关系
主要目标:巩固
重难点及解决策略:掌握每种方法的特点,引导学生总结规律

教学设计:


环节3:
主要目标:
教学设计:

环节4:小测
主要目标:了解学情

重难点及解决策略:形式比较复杂的方程需要变形之后再因式分解。
教学设计:

环节5:课堂小结及课后反馈
主要目标:解疑

重难点及解决策略:交流共同质疑解疑
教学设计:
板书设计 根与系数关系 复习 新授 练习 作业设计
反思:通过本节课发现学生的忘性太大了,对于顶点式中顶点横纵坐标都有的学生能认,
可对于特殊形式的顶点式学生反而认不出来,说不准顶点坐标。

相关文档
最新文档