一次函数的应用---鲁富青---公开课

合集下载

鲁教版-数学-七年级上册-6.5 一次函数的应用(2) 教案

鲁教版-数学-七年级上册-6.5 一次函数的应用(2) 教案

一次函数的应用(2)教学目标:1.能通过函数图像获取信息,发展形象思维,培养学生的数形结合意识.2.能利用函数图像解决简单的实际问题,发展学生的数学应用能力,培养学生良好的环保意识和热爱生活的意识.3.初步体会方程与函数的关系,建立良好的知识联系.教学重点:一次函数图象的应用.教学难点:正确地根据图象获取信息,并解决现实生活中的有关问题.教学过程:一、引入新课水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料:今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.造成干旱的原因既有人为因素,也有自然因素.水在枯竭,如果我们还不珍惜,最后一滴水将与血液等价.今天我们就一起针对节约用水的问题,从数学知识的角度来进行全面的分析,共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.板书课题:4一次函数的应用(2)二、学习新知由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,回答下列问题:t V(1)水库原有蓄水量是多少?(2)干旱持续天,蓄水量为多少?连续干旱天呢?(3)蓄水量小于时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报? (4)按照这个规律,预计持续多少天水库将干涸?处理方式:先让学生独立思考,试试自己能否独立完成.然后小组交流讨论,教师巡视及时启发诱导,让学生学会识图.5分钟后学生展示.解:(一)(1)原有需水量1200万立方米;(2)干旱持续10天,蓄水量为1000万立方米,连续干旱23天后为700万立方米;(3)40天;(4)60天.(二)设一次函数关系式:把和代入中 解得 即:一次函数关系式:我们用了图象法和关系式法两种方法解决了这个问题,你能对比一下这两种方法的优缺点吗?解析式法比较准确但是不直观.图象法比较直观但是不够准确.v 3万米103万米234003万米v kt b =+(0,1200)()40,400v kt b =+120040400b k b =⎧⎨+=⎩201200k b =-⎧⎨=⎩201200v t =-+1:理解横纵坐标分别表示的的实际意义.2:分析已知(看已知的是自变量还是因变量),通过作x 轴或y 轴的垂线,在图象上找到对应的点,由点的横、纵坐标的值读出要求的值.3:利用数形结合的思想:将“数”转化为“形”,由“形”定出“数”.例某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量(升)与摩托车行驶路程(千米)之间的关系如图所示,根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100千米消耗多少升汽油?(4)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?处理方式:因为在前面探索中已向学生介绍了如何识读一次函数图象,因此本题可放手让学生自己读图、识图,完成题中的问题,然后老师组织学生在班上交流.当学生有疑问时也可请求其他学生帮助解决.在答题过程中,老师适时地书写解答过程.解:观察图象,得(1)当x=0时,y=10,此时表示:摩托车的油箱最多可储油10升.(2)当时,,此时表示:一箱汽油最多可供摩托车行行驶500千米.(3)x 从0增加到100时,y 从10减少到8,因此摩托车每行驶100千米消耗2升汽油.(4)当时,,因此行驶了450千米后,摩托车将自动报警.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题.三、合作探索yx 0y =500x =1y =450x =师:请大家看图填空(1)当时,;(2)直线对应的函数表达式是________________.解:(1)观察图象可知当时,;(2)直线过和设表达式为,根据题意,得解之得: 所以直线对应的函数表达式是思考:一元一次方程与一次函数有什么联系?总结:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解. 通过本题让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程0y =______x=0y =2x =-()-2,0()0,1y kx b =+⎩⎨⎧==+-102b b k ⎩⎨⎧==15.0b k 0.51y x =+0.510x +=0.51y x =+0.51y x =+0.510x +=0.51y x =+0.510x +=y kx b =+的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解.使学生能用函数关系解决方程问题的同时也能用方程的观点来看待函数.四、总结归纳我们学会了怎样从实际情景函数图象中获取信息.我们学会了利用函数图象解决简单的实际问题.我们初步认识到了方程与函数之间的联系.五、能力检测1.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积,沙漠面积,土地沙漠化的变化情况如图1所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造沙漠,那么到第几年底,该地区的沙漠面积能减少到?2.一次函数的图象如图2所示,根据图象回答:当y=0时,x=_____; 方程的解是________.解:1.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米0kx b +=y kx b =+0kx b +=2100万千米2200万千米24万千米2176万千米y kx b =+0kx b +=2,实际每年改造面积2万千米2,由于,故到第12年底,该地区的沙漠面积能减少到176万千米2.2.利用一次函数与一元一次方程的关系得:当y=0时,x=-3; 方程的解是 x=-3.六、布置作业1.必做题:课本习题第1,2题.2.选做题:课本习题第3题.(200176)212-÷=y kx b =+0kx b +=0kx b +=。

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。

本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。

通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。

二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。

但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。

三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。

2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:一次函数在实际生活中的应用。

2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。

五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。

同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。

六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。

同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。

然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。

2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。

在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。

2022秋七年级数学上册第六章一次函数6.5一次函数的应用1含一个一次函数(图象)的应用课件鲁教版五

2022秋七年级数学上册第六章一次函数6.5一次函数的应用1含一个一次函数(图象)的应用课件鲁教版五
均速度是100 km/h,那么汽车距B地的距离s(km)
与行驶时间t(h)的关系用图象表示应为( C )
【点拨】本题中s并不是汽车行驶的路程,而 是剩下没有走的路程.不能受思维定式的影响, 要仔细审题,理解题意.实际上s与t的函数关 系式为s=400-100t,其中0≤t≤4,s是t的一次 函数,故选C.
3 【中考·西藏】如图,一个弹簧不挂重物时长6 cm,挂上 重物后,在弹性限度内弹簧伸长的长度与所挂重物的质 量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单 位:kg)的函数图象如图所示,则图中a的值是( A ) A.3 B.4 C.5 D.6
4 【中考·辽阳】一条公路旁依次有A,B,C三个村庄,甲、 乙两人骑自行车分别从A村、B村同时出发匀速前往C村, 甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如 图所示,下列结论:①A,B两村相距10 km;②出发1.25 h 后两人相遇;③甲每小时比乙多骑行8 km;④相遇后,乙 又骑行了15 min或65 min时两人相距 2 km.其中正确的个数是( D ) A.1个 B.2个 C.3个 D.4个
(3)若-2≤y≤2,请直接写出x的取值范围. 解:当-2≤y≤2时,x的取值范围为-4≤x≤-2.
9 【中考·台州】如图①,某商场在一楼到二楼之间设有上、 下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲 乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度 h(单位:
m)与下行时间 x(单位:s)之间具有函数关系 h=-130x+6, 乙离一楼地面的高度 y(单位:m)与下行时间 x(单位:s)的函 数关系如图②所示. (1)求 y 关于 x 的函数表达式;
【2021·天津南开中学期中】在如图所示的直角坐标 8

七年级数学上册 一次函数图象的应用讲义 (新版)鲁教版

七年级数学上册 一次函数图象的应用讲义 (新版)鲁教版

一次函数图象的应用(讲义)课前预习1. 我们一般从四个方面来研究一次函数,这四个方面分别是 、 、 、 . 具体来说:2. 若一次函数 y =kx +b 的图象不经过第二象限,则 k 0, b 0.3. 已知 m >0,n <0,请在如图所示的坐标系中分别作出 y =mx +n , y =nx +m 的大致图象.第 4 题图4. 如图,直线 y 12x 与直线 y 2 2x 4 相交于点 A ,请回答下列问题:当 x =-3 时, y 1 y 2 ;当 x =-1 时, y 1 y 2 ;当 x =1 时, y 1 y 2 .知识点睛1. 函数图象共存问题选定一个函数图象,根据图象性质判断 k ,b 符号,验证另一个函数图象存在的合理性.2. 数形结合求范围已知自变量 x 的取值范围求因变量 y 的取值范围:①在图上标出 x 的取值范围;②对应到函数的图象上;③根据对应的图象确定 y 的取值范围.若已知因变量 y 的取值范围求自变量 x 的取值范围,操作方式和上述类似.举例:当 x 1<x <x 2 时,y 1<y <y 2 当 x 1<x <x 2 时,y 2<y <y 1多个函数比大小:① ;② ;③ .精讲精练1. 若实数 a ,b ,c 满足 a +b +c =0,且 a <b <c ,则函数 y =ax +c 的图象可能是( )A .B .C .D .2. 一次函数 y =kx -k 的图象可能是( )A .B .C .D .3. 在同一坐标系中,正比例函数 y =kx 与一次函数 y =x -k 的图象可能是( )A .B .C .D . 4. 已知一次函数 y =mx +n 与正比例函数 y =mnx (m ,n 为常数, 且 mn ≠0),它们在同一平面直角坐标系中的图象可能是( )A .B .C .D .5. 两个一次函数 y 1=mx +n ,y 2=nx +m ,它们在同一平面直角坐标系中的图象可能是( )A .B .C .D .6. 如图,直线 y 2x 5 的图象如图所示,回答下列问题:(1)当-2<x < 1 时,y 的取值范围是 ;2(2)当-1<x ≤1 时,y 的取值范围是 .第 6 题图 第 7 题图7. 如图,直线y 2 x 4 的图象如图所示,回答下列问题:3(1)当 6<y ≤8 时,x 的取值范围是 ;(2)当-2≤y ≤2 时,x 的取值范围是 .8. 一次函数 y =kx +b (k ≠0),当-2≤x ≤5 时,对应的 y 值取值范围为 0≤y ≤7,则一次函数的解析式为 .9. 已知一次函数 y =kx +b 的图象如图所示,回答下列问题:(1)当 x <1 时,y 的取值范围是 ;(2)当 x ≥0 时,y 的取值范围是 .10. 已知一次函数 y =kx +b 的图象如图所示,回答下列问题:(1)当 y >0 时,x 的取值范围是 ;(2)当 y <2 时,x 的取值范围是 .11. 已知一次函数 y 2x 1的图象如图所示,回答下列问题:(1)当-1≤x <0 时,y 的取值范围是 ;(2)当 y >2 时,x 的取值范围是 .12. 如图,直线 y 1=kx +b 经过点 A (-1,-2)和点 B (-2,0),直线 y 2=2x过点 A ,当 y 1<y 2 时,x 的取值范围是 .第 12 题图 第 13 题图13. 如图,直线 y 1=3x +b 和 y 2=ax -3 的图象交于点 P (-2,-5),当y 1>y 2 时,x 的取值范围是 . 14. 如图所示,函数 y 1=|x |和 y 2 1 x 4 的图象相交于(-1,1), 3 3(2,2)两点.当 y 1>y 2 时,x 的取值范围是( )A .x <-1B .-1<x <2C .x >2D .x <-1 或 x >22=ax【参考答案】课前预习1. 表达式,图象,性质,计算表达式:y=kx+b(k,b 为常数,k≠0)图象:一条直线增减性:k>0,y 随x 增大而增大k<0,y 随x 增大而减小过象限:k>0,b>0,过第一、二、三象限k>0,b<0,过第一、三、四象限k<0,b>0,过第一、二、四象限k<0,b<0,过第二、三、四象限2. >,≤3. 略4. <,=,>知识点睛2. 找交点,作直线,定左右精讲精练1.A2. C3. B4.A5. C6. (1)1<y<4;(2)3<y≤77. (1)6≤x3;(2)3≤x≤98. y=x+2 或y=-x+59. (1)y<0;(2)y≥-210. (1)x<1;(2)x>0111. (1)-1≤y<1;(2)x212. x>-113. x>-214. D。

2022秋七年级数学上册第六章一次函数6.5一次函数的应用2含两个一次函数(图象)的应用课件鲁教版五

2022秋七年级数学上册第六章一次函数6.5一次函数的应用2含两个一次函数(图象)的应用课件鲁教版五

4 【中考·武汉】一个容器有进水管和出水管,每分钟的进水 量和出水量是两个常数.从某时刻开始4 min内只进水不出
水,从第4 min到第24 min内既进水又出水,从第24 min开
始只出水不进水,容器内水量y(单位:L)与时间x(单位:
min)之间的关系如图所示,则图中a的值是( C )
A.32 B.34 C.36 D.38
(2)现在乙复印社表示:若学校先按每月付给200元的承包 费,则可按每页0.15元收费.则乙复印社每月收费y(元)与 复印页数x(页)之间的函数表达式为__y_=__0_.1_5_x_+__2_0_0___(不 需要写出自变量的取值范围). (3)在如图所示的直角坐标系内画出(1)(2)中的函数图象, 并回答每月复印页数在1 200页左右时,选择哪个复印社更 合算?
解:画函数图象如图所示. 由图象可知,当每月复印页数在1 200页左右时,选 择乙复印社更合算.
3 【中考·东营】甲、乙两队参加了“端午情,龙舟韵”赛龙 舟比赛,两队在比赛时的路程s(m)与时间t(s)之间的函数 图象如图所示,请你根据图象判断,下列说法正确的是
( C) A.乙队率先到达终点 B.甲队比乙队多走了126 m C.在47.8 s时,两队所走路程相等 D.从出发到13.7 s的时间段内,乙队的速度慢
【中考·山西】某游泳馆推出了两种收费方式. 7 方式一:顾客先购买会员卡,每张会员卡200元,仅限
本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元. 设小亮在一年内来此游泳馆的次数为x,选择方式一的 总费用为y1元,选择方式二的总费用为y2元. (1)请分别写出y1,y2与x之间的函数表达式.
【 点 拨 】 根 据 题 意 可 知 , 两 车 的 速 度 和 为 : 360÷2 = 180(km/h),相遇后慢车停留了0.5 h,快车停留了1.6 h,此 时两车距离为88 km,故①结论错误; 慢车的速度为:88÷(3.6-2.5)=80(km/h),则快车的速度 为100 km/h, 所以快车速度比慢车速度多20 km/h;故②结论正确;

一次函数ppt课件市公开课金奖市赛课一等奖课件

一次函数ppt课件市公开课金奖市赛课一等奖课件

返回目录
上一页
下一页
结束第6放页 映
议一议: y=3+0.5x
y=100-0.18x
y= 0.5x+3 y= -0.18x+100
一次函数: 若两个变量x,y之间关系式能够表示成y=kx+b
(k,b为常数,k≠0)形式,则称y是x一次函数.(x为自变 量,y为因变量)
尤其地,当b=0时,称y是x正百分比函数.
在古代,许多民族与地域使用 水钟来计时,水钟在中国古代叫 “漏刻”或“漏壶”.如图是一个 原始漏刻示意图:水从上面贮水壶 慢慢流入下方受水壶中,受水壶中 浮子上竖直放置一根标尺(称为 “漏箭”).假设漏水量是均匀,受 水壶中浮子就会均匀升高,利用浮 子升高高度h与所经历时间t之间 某种特定关系,在漏箭上标上适当 刻度,就能够计时了.
返回目录
上一页
下一页
结束第1放1页 映
(2)某人月收入为1760元,他应缴所得税多少元?
(3)假如某人本月应缴所得税19.2元,那么此人本月 工资、薪金是多少元?
返回目录
上一页
下一页
结束第1放2页 映
☻归纳总结
转化
一次函数或
实际问题 列出函数关系式 正百分比函数
代数式求值 解方程
实际问题解
数学问题解
(3)一棵树现在高50厘米,每月长高2厘米,x月后这棵 树高度为y(厘米);
返回目录
上一页
下一页
结束第9放页 映
等腰三角形周长是20厘米,底边 长是x厘米.求:腰长y与底边长x之间 关系.
yy x
解:等腰三角形周长等于两腰与底边长和,因 而y=-0.5x+10.
y是x一次函数,但不是x正百分比函数.

一次函数的简单应用省公开课一等奖全国示范课微课金奖PPT课件

2、正百分比函数y=kx(k≠0)图象是过点 (0_,__0__),(_1_,__k__)___一__条__直__线。 (b ____3、, 一0b)_次__函__数__y_一=_k_条x。+直b(线k≠0)图象是过点(0,___),
k
第2页
4、正百分比函数y=kx(k≠0)性质: ⑴当k>0时,图象过一__、__三__象限;y随x增大而____增。大 ⑵当k<0时,图象过二__、__四__象限;y随x增大而___减_。小
(4)某外地客人坐出租车游
5
览本市,车费为31元,试求 出他乘车里程。
0
3 5 s(km)
第8页
思绪 :利用一次函数解题时,先要判断是否是一次函数, 怎样判断呢?我们能够从图象或函数解析式上加以判断, 本课件中例1和例2就是为了说明这个问题。例3和例4主 要是利用图象判断函数类型,然后分段建立函数解析式, 刻画两个变量间改变关系,利用解析式解题。
(2)当气温x=22 ℃时,小明看到烟花燃放5秒后才听 到声响,那么小明与燃放烟花所在地相距多远。
第5页
例2:生物学家测得7条成熟雄性鲸全长y和吻尖到喷水 孔长度x数据以下表(单位:米)
吻尖到喷水
孔的长度 1.78 1.91 2.06 2.32 2.59 2.82 2.95
x(m)
全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90
第9页
第3页
再次回顾
• 增减性解题; • 怎样平移。 y=3x怎样平移得到y=3x+2
第4页
例1:经试验检测,不一样气温下声音传输速度以下表所表

气温x(℃)
0 5 10 15 20

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。

本节课主要让学生掌握一次函数的应用,学会解决实际问题。

教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。

二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。

因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。

2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。

3.提高学生的数学应用能力,培养学生的逻辑思维能力。

四. 教学重难点1.一次函数的概念和性质。

2.如何将实际问题转化为一次函数问题。

3.运用一次函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。

2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。

3.采用小组合作学习,培养学生的团队协作能力。

4.利用多媒体辅助教学,提高教学效果。

六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。

2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。

3.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

”引导学生思考如何用数学知识解决实际问题。

2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。

通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。

教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。

让学生分享自己的解题过程和心得,加深对一次函数应用的理解。

最新学年七年级数学上册 一次函数图象的应用讲义 (新版)鲁教版(考试必备)

一次函数图象的应用(讲义)课前预习1. 我们一般从四个方面来研究一次函数,这四个方面分别是 、 、 、 . 具体来说:2. 若一次函数 y =kx +b 的图象不经过第二象限,则 k 0, b 0.3. 已知 m >0,n <0,请在如图所示的坐标系中分别作出 y =mx +n , y =nx +m 的大致图象.第 4 题图4. 如图,直线 y 12x 与直线 y 2 2x 4 相交于点 A ,请回答下列问题:当 x =-3 时, y 1 y 2 ;当 x =-1 时, y 1 y 2 ;当 x =1 时, y 1 y 2 .知识点睛1. 函数图象共存问题选定一个函数图象,根据图象性质判断 k ,b 符号,验证另一个函数图象存在的合理性.2. 数形结合求范围已知自变量 x 的取值范围求因变量 y 的取值范围:①在图上标出 x 的取值范围;②对应到函数的图象上;③根据对应的图象确定 y 的取值范围.若已知因变量 y 的取值范围求自变量 x 的取值范围,操作方式和上述类似.举例:当 x 1<x <x 2 时,y 1<y <y 2 当 x 1<x <x 2 时,y 2<y <y 1多个函数比大小:① ;② ;③ .精讲精练1. 若实数 a ,b ,c 满足 a +b +c =0,且 a <b <c ,则函数 y =ax +c 的图象可能是( )A .B .C .D .2. 一次函数 y =kx -k 的图象可能是( )A .B .C .D .3. 在同一坐标系中,正比例函数 y =kx 与一次函数 y =x -k 的图象可能是( )A .B .C .D . 4. 已知一次函数 y =mx +n 与正比例函数 y =mnx (m ,n 为常数, 且 mn ≠0),它们在同一平面直角坐标系中的图象可能是( )A .B .C .D .5. 两个一次函数 y 1=mx +n ,y 2=nx +m ,它们在同一平面直角坐标系中的图象可能是( )A .B .C .D .6. 如图,直线 y 2x 5 的图象如图所示,回答下列问题:(1)当-2<x < 1 时,y 的取值范围是 ;2(2)当-1<x ≤1 时,y 的取值范围是 .第 6 题图 第 7 题图7. 如图,直线y 2 x 4 的图象如图所示,回答下列问题:3(1)当 6<y ≤8 时,x 的取值范围是 ;(2)当-2≤y ≤2 时,x 的取值范围是 .8. 一次函数 y =kx +b (k ≠0),当-2≤x ≤5 时,对应的 y 值取值范围为 0≤y ≤7,则一次函数的解析式为 .9. 已知一次函数 y =kx +b 的图象如图所示,回答下列问题:(1)当 x <1 时,y 的取值范围是 ;(2)当 x ≥0 时,y 的取值范围是 .10. 已知一次函数 y =kx +b 的图象如图所示,回答下列问题:(1)当 y >0 时,x 的取值范围是 ;(2)当 y <2 时,x 的取值范围是 .11. 已知一次函数 y 2x 1的图象如图所示,回答下列问题:(1)当-1≤x <0 时,y 的取值范围是 ;(2)当 y >2 时,x 的取值范围是 .12. 如图,直线 y 1=kx +b 经过点 A (-1,-2)和点 B (-2,0),直线 y 2=2x过点 A ,当 y 1<y 2 时,x 的取值范围是 .第 12 题图 第 13 题图13. 如图,直线 y 1=3x +b 和 y 2=ax -3 的图象交于点 P (-2,-5),当y 1>y 2 时,x 的取值范围是 . 14. 如图所示,函数 y 1=|x |和 y 2 1 x 4 的图象相交于(-1,1), 3 3(2,2)两点.当 y 1>y 2 时,x 的取值范围是( )A .x <-1B .-1<x <2C .x >2D .x <-1 或 x >22=ax【参考答案】课前预习1. 表达式,图象,性质,计算表达式:y=kx+b(k,b 为常数,k≠0)图象:一条直线增减性:k>0,y 随x 增大而增大k<0,y 随x 增大而减小过象限:k>0,b>0,过第一、二、三象限k>0,b<0,过第一、三、四象限k<0,b>0,过第一、二、四象限k<0,b<0,过第二、三、四象限2. >,≤3. 略4. <,=,>知识点睛2. 找交点,作直线,定左右精讲精练1.A2. C3. B4.A5. C6. (1)1<y<4;(2)3<y≤77. (1)6≤x3;(2)3≤x≤98. y=x+2 或y=-x+59. (1)y<0;(2)y≥-210. (1)x<1;(2)x>0111. (1)-1≤y<1;(2)x212. x>-113. x>-214. D。

一次函数的应用教育课件优质课市公开课一等奖省优质课获奖课件

想一想
李老师开车从甲地到相距260km乙地, 假如油箱剩下油量y(L)与行驶里程x(km)之间 是一次函数关系,其图象如图所表示,那么 抵达乙地时油箱剩下油量是多少?
3.5 y/L 2.5
o
140 260 x/km
第2页
某人从家走20分钟到一个离家900米 报亭看10分钟报纸后,又用15分钟返回 家里,下面图象中表示此人离家距离 y(米)与所用时间x(分)之间关系是哪幅图?
V/万m3
1200 800 400
O 10 20 30 40 50 t/天
第6页
(1)水库干旱前蓄水量是多少? (2)干旱连续10天,蓄水量是多少?干旱连续
23天呢? (3)蓄后将发出严重干旱 警报? (4)按照这个规律,预计干旱连续多少天水库 将干涸?
第16页
1.如图所表示.
(1)当x=0时,y= (2)当y=0时,x= (3)y随x增大而
2; -2 ;
增大;
(4)直线对应函数表示式为
y
2 1
-2 -1 o x
检测反馈 y=x+.2
第17页
2.汽车由天津驶往相距120 km北京,s(km)表 示汽车离天津距离,t(h)表示汽车行驶时间, 其关系如图所表示。 (1)汽车经过 4 h从天津到北京,速度 是 30 km/h ; (2)当汽车行驶了1 h时, 离开天津 30 km.
第7页
解:(1)原蓄水量就是图象与纵轴交点纵坐 标.
V/万m3 1200 (0,1200) 800 400
O 10 20 30 40 50 t/天
第8页
(2)求干旱连续10天时蓄水量,也就是求t等 于10时所对应V值。当t=10时,V约为1000。 同理可知当t为23时,V约为750. (3)当蓄水量小于400万m3时,即V小于400, 所对应t值约为40.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档