八年级数学下册第19章一次函数复习教案新人教版
最新人教版数学八年级下册第十九章《一次函数复习》优质教学课件

图象过二、三 、四象限
一次函数的增减性
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而_________。 ⑵ 当k<0时,y随x的增大而_________。
增大
减小
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到. 当b>0时,向上平移; 当b<0时,向下平移.
七、正比例函数与一次函数图象之间的关系
怎样画一次函数y=kx+b的图象?
1、两点法
y=x+1
2、平移法
八、用待定系数法求函数解析式
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法
1、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
答:w关于x的函数关系式为w=5x+5000;
九、一次函数的应用
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图.(1)第20天的总用水量为多少米?(2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000 米3?
注意点:
(1)从函数图象中获取信息
-2
-2
练习:
2、若一次函数y=x+b的图象过点A(1,-1),则b=__________。
人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件

7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
第19章 一次函数(小结与复习)(教案 )-八年级数学下册同步精品课件(人教版)

考题分类:
解:(1)∵函数是正比例函数,∴m﹣3=0,且2m+1≠0, 解得m=3;
(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3, 解得m=1;
4.等腰三角形的周长为10cm,将腰长x(cm)表示底边长y(cm)
的函数解析式为 y=10-2x
,其中x的范围为 2.5<x<5
.
5.若一次函数 y (m 3)x m2 9 是正比例函数,则m的值
为 -3
.
6.一次函数y=-3x+6的图象与x轴的交点坐标是(2,0) ,与y轴 的交点坐标是 (0,6) ,与坐标轴围成的三角形面积为 6 .
∴31≤x≤33.
x
33
x
31
∵x 是整数,x 可取 31,32,33,
∴可设计三种搭配方案:
①A 种园艺造型 31 个,B 种园艺造型 19 个;
②A 种园艺造型 32 个,B 种园艺造型 18 个;
③A 种园艺造型 33 个,B 种园艺造型 17 个.
考题分类:
(2)方法一: 方案①需成本:31×800+19×960=43040(元); 方案②需成本:32×800+18×960=42880(元); 方案③需成本:33×800+17×960=42720(元).
【答案】D
考题分类:
[考点二]: 一次函数的图象与性质
例2 已知函数y=(2m+1)x+m﹣3; (1)若该函数是正比例函数,求m的值; (2)若函数的图象平行直线y=3x﹣3,求m的值; (3)若这个函数是一次函数,且y随着x的增大而减小,求m的
数学八年级下册第十九章一次函数小结与复习教学课件 新人教版

-2 -2 ꢀ此时,直线y=kx+b可以由直线y=-2x经过怎 样平移得到 ?
练习:
3.若一次函数y=x+b的图象过点A(1,-1),则b=__________。
-2
4.根据如图所示的条件,求直线的表达式。
练习:
5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成 一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油 箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式.
知识要点: 1.函数,变量,常量; 2.函数的三种表示法; 3.正比例函数:定义,图象,性质; 4.一次函数:定义,图象,性质; 5.一次函数的应用. 6.一次函数与一元一次方程,一元一次不等式,二元一次 方程组的关系.
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 变的量叫做 常量 ;
一般地,形如y=kx+b(k,b为常数,且k≠0)
的函数叫做一次函数.
当b =0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
八.正比例函数的图象与性质:
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象 是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从 左向右上升,即随着x的增大y也增大;当k<0时,直线 y= kx经过二,四象限,从左向右下降,即随着 x的增大 y反而减小。
步(衰2)弱服。药5时,血液中含药量
y/毫克
3
6
为每毫升____毫克。
3
O 2 5 x/时
6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量 服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示, 当成年人按规定剂量服药后。
人教版八年级下册数学第19章一次函数复习课说课稿教案设计

人教版八年级下册数学第19章一次函数复习课说课稿教案尊敬的各位评委老师:大家下午好!今天我说课的内容是人教版数学八年级下册第十九章《一次函数》复习课。
对于本节课我将从教材分析;学情分析;教法学法;教学程序与设计说明五个方面阐述我对本节课的理解。
一、教材分析一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,一次函数这一章在整个教材中将起着承上启下的作用,特别是一次函数的图像和性质的理解和掌握,又是后续知识发展的起点,对今后知识的掌握起着决定性的作用。
教学目标:(一)知识与技能1.理解掌握正比例函数、一次函数的概念、图像、性质及解析式的确定。
2.理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会应用于解决数学和实际生活问题。
(二)过程与方法1.进一步培养学生数形结合的意识和能力以及分类讨论的数学思想。
2.进一步培养学生的研究精神和合作交流意识及团队精神。
(三)情感与态度1.在学习过程中,培养学生的合作意识和大胆猜想、参与探究的良好品质。
2.进一步体验数与形的转化,体验数学的简洁美。
激发学生学习数学的兴趣。
教学重难点:教学重点:1.一次函数的图像及性质。
2.用函数观点看方程(组)、不等式的解。
教学难点:一次函数的实际应用和数型结合思想在解题中的应用。
二、学情分析八年级的学生已经具备了一定的总结概括能力,在此之前学生已经初步掌握了一次函数的相关概念、图像、性质及简单应用,另一方面八年级学生更加沉稳,不愿意表达自己的见解,需要老师设计富有趣味性与挑战性的问题,激发学生的探究热情。
三、教法学法教学方法:思路让学生讲,疑难让学生议,规律让学生找,结论让学生得,错误让学生析,小结让学生做。
学法指导:新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
八年级数学下册 19 一次函数复习(二)教案 新人教版(2021年整理)

八年级数学下册19 一次函数复习(二)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19 一次函数复习(二)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19 一次函数复习(二)教案(新版)新人教版的全部内容。
第19章一次函数复习(二)一、复习目标1.了解本章的知识结构图,对本章的知识脉络有一个清晰的认识2.掌握函数、正比例函数、一次函数的解析式、图象和性质;理解函数与方程(组)及不等式的内在联系;会建立函数模型解决实际问题。
二、课时安排1课时三、复习重难点重点:一次函数与一元一次方程,二元一次方程组和一元一次不等式的关系.难点:一次函数的实际应用.四、教学过程(一)知识梳理1.一次函数与一元一次方程:求ax+b=0(a,b是常数,a≠0)的解.从“数”的角度看:x为何值时函数y= ax+b的值为.求ax+b=0(a, b是常数,a≠0)的解.从“形"的角度看:求直线y= a x+b与 x 轴交点的.2.一次函数与二元一次方程组:解方程组从“数”的角度看:自变量(x)为何值时两个函数的值相等.并求出这个函数值从“形”的角度看:确定两直线交点的坐标。
3。
一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看:为何值时函数y= ax+b的值大于0.从“形”的角度看:求直线y= ax+b在 x轴上方的部分(射线)所对应的的横坐标的取值范围.4、待定系数法求函数解析式:用待定系数法求一次函数y=kx+b的解析式,可由已知条件给出的两对x、y的值,列出关于k、b的二元一次方程组.由此求出k、b的值,就可以得到所求的一次函数的解析式。
人教版数学八年级下册教学设计:第19章 一次函数(三)
人教版数学八年级下册教学设计:第19章一次函数(三)一. 教材分析人教版数学八年级下册第19章一次函数(三)的内容主要包括一次函数的图像与性质、一次函数的应用等。
本章内容是在学生已经掌握了函数概念、一次函数的定义和一次函数图像的基础上进行学习的,旨在让学生进一步理解一次函数的图像与性质,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本章内容时,已经具备了一定的函数知识,对一次函数的概念和图像有一定的了解。
但部分学生可能对一次函数的性质理解不够深入,对一次函数解决实际问题的能力有待提高。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.了解一次函数的图像与性质,能够分析一次函数图像的特点。
2.学会运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的团队合作意识,提高学生的数学思维能力。
四. 教学重难点1.一次函数的图像与性质的理解和运用。
2.一次函数解决实际问题的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究一次函数的图像与性质。
2.利用多媒体课件辅助教学,直观展示一次函数的图像,帮助学生理解。
3.采用案例分析法,让学生分组讨论,共同解决实际问题。
4.注重个体差异,针对性地进行讲解和辅导。
六. 教学准备1.多媒体课件。
2.案例素材。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一次函数的图像,引导学生回顾一次函数图像的特点,为新课的学习做好铺垫。
2.呈现(15分钟)讲解一次函数的性质,包括斜率、截距等,并通过实例进行说明。
让学生分组讨论,总结一次函数的性质,并回答问题。
3.操练(15分钟)让学生分组解决实际问题,如线性方程的求解、线性方程组的求解等。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对一次函数性质的掌握程度。
对学生在解题过程中遇到的问题进行讲解和辅导。
人教版数学八年级下册《第十九章章末复习》教学设计
人教版数学八年级下册《第十九章章末复习》教学设计一. 教材分析人教版数学八年级下册《第十九章章末复习》主要包括了本章所学的主要知识点,如一次函数、二次函数、几何图形的性质等。
本章复习课的目的在于帮助学生巩固和加深对所学知识的理解和运用。
二. 学情分析八年级的学生已经掌握了一定的数学基础,对于一次函数和二次函数的概念、性质和应用已经有了一定的了解。
但是在实际运用中,部分学生可能会存在理解不深、运用不活的问题。
因此,在复习课中,需要帮助学生巩固基础知识,提高运用能力。
三. 教学目标1.知识与技能:使学生掌握一次函数和二次函数的性质,能够运用所学知识解决实际问题。
2.过程与方法:通过复习,培养学生的逻辑思维能力和数学运用能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一次函数和二次函数的性质。
2.难点:如何运用所学知识解决实际问题。
五. 教学方法采用讲解法、问答法、案例分析法、小组合作法等,以学生为主体,教师为指导,充分调动学生的积极性。
六. 教学准备1.准备相关复习资料,如PPT、案例等。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过复习资料,回顾一次函数和二次函数的性质,引导学生进入复习状态。
2.呈现(10分钟)呈现一些实际问题,让学生运用所学知识解决。
如:一次函数在实际生活中的应用,二次函数在物理、化学等学科中的应用。
3.操练(10分钟)学生分组讨论,尝试解决呈现的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对操练中出现的问题,进行讲解和总结,强化学生对知识点的理解。
5.拓展(10分钟)引导学生对所学知识进行拓展,如:探讨一次函数和二次函数在其他领域的应用,如何运用所学知识解决实际问题等。
6.小结(5分钟)教师总结本节课的主要知识点和解决实际问题的方法,强调重点和难点。
7.家庭作业(5分钟)布置适量的作业,让学生巩固所学知识。
人教版八年级下册数学教案-第19章 一次函数-19.1.1 变量与函数
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。
八年级数学下册-第19章-一次函数教案-(新版)新人教版
后许多问题便迎刃而解.
2、归纳:题目中只给出了列表法,我们通过分析求出解
析式并画出了图象,从这个例子可以看出函数的三种不同
表示法可以转化。 三、课堂训练
1.下列函数中哪些是一次函数,哪些又是正比例函
数?
8
(1)y=-8x. (2)y= x . (3)y=5x2+6. (3)y=-0.5x-1.
2.一个小球由静止开始在一个斜坡向下滚动,其速
度每秒增加2米.
(1)一个小球速度 v 随时间 t 变化的函数关系.它
是一次函数吗?
Hale Waihona Puke (2)求第 2.5 秒时小球的速度.
3.汽车油箱中原有油 50 升,如果行驶中每小时用
油 5 升,求油箱中的油量 y(升)随行驶时间 x(时)变
化的函数关系式,并写出自变量 x 的取值范围.y 是 x 的
一次函数吗?
15℃就减少 6℃,那么海拔增加 xkm 时,气温从 15℃减少 解析式。
6x℃.因此 y 与 x 的函数关系式为:
形成一次 函数的概念
y=15-6x (x≥0) 当然,这个函数也可表示为: y=-6x+15 (x≥0)
练习巩固一次函数的 概念。
小结反思
数学来源于生活 又去指导生活。 培养学生的发现 能力。 学生利用函数知 识解决实际生活 中的问题。 巩固新知 内化提高
解答:
1.(1)(4)是一次函数;(1)又是正比例函数.
2.(1)v=2t,它是一次函数.
(2)当 t=2.5 时,v=2×2.5=5
所以第 2.5 秒时小球速度为 5 米/秒.
3.函数解析式:y=50-5x
自变量取值 范围:0≤x≤10
y 是 x 的一次函数. 4、教材 81 页练习 1、2 四、小结归纳 通过本节课学习,本节学习了一次函数的意义,知道了其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章 一次函数复习与小结
教学目标
知识技能:回顾本章主要内容,说出知识之间的联系;归纳解决实际问题的一般过程积
累数学活动的经验,发展归纳与概括的能力.
数学思考:本章知识之间的紧密联系以及与其它知识的联系.
解决问题:以小组讨论的形式对本章的知识进行系统梳理,总结出本章的知识点.
情感态度:通过对本章知识结构的回顾,进一步感受知识之间的紧密联系.
教学重点:确定函数解析式;函数的应用题.
教学难点:是知识的实际应用.
教学过程设计
活动一.知识结构
通过学生的合作交流总结出本节的知识结构
活动二.回顾与思考
1.为了研究变化的世界,我们引入了函数.在同一变化的过程中两个相互制约、相互
依存的量x,y满足什么条件时,y是x的函数?举出一些函数的实例.
2.举例说明函数有哪几种表示法,它们各有什么优点?
3.举例说明一次函数y=kx+b中的常数k对图象的影响,结合图象说明一次函数的性质.
由一次函数的图象怎样求出它的解析式?
4.一元一次方程、一元一次不等式、二元一次方程组与一次函数之间有什么关系?怎
样用函数图象解方程(组)或解不等式?
5.体会怎样建立实际问题的函数模型.
活动三.确定函数解析式
1.已知,如图14—1,一轮船在离A港10千米的P地出发向B地匀速行驶,30分钟后
离A港26千米(未到达B港).设出发x小时后,轮船离A港y千米(未到达B港),则y
与x之间的函数关系式为_______________.
解析 求出轮船的速度即可表示出y与x之间的函数关系.
答案 y=32x+10
2.已知一次函数的图象经过点(0,1),且图象与x轴、y轴所围成的三角形的面积为
2,求一次函数的解析式.
解析 首先设出函数解析式,由图象过点(0,1)可得b=1.然后根据三角形面积公
式列出关于k的方程求得k值.
答案 设所求的一次函数解析式为y=kx+b.
因为直线y=kx+b经过点(0,1),所以b=1.所以y=kx+1.
令y=0,则1xk.所以直线y=kx+l与x轴的交点坐标为1(,0)k
所以11122k,解得k=±14
所以一次函数的解析式为11yx1yx144或
活动四.函数应用题
1.如图14—2所示,是某公司一电热淋浴器水箱的水量y(L)与供水时间x(min)的
函数关系.
(1)求y与x的函数关系式;
(2)在(1)的条件下,求在30 min时水箱有多少L水?
解析(1)由图象可知y与x成一次函数关系,设出解析式列方程组求解;(2)求当x
=30时的函数值即得答案.
答案 (1)设y与x之间的函数关系式为y=kx+b.
因为直线y=kx+b过点(10,50)和点(50,150),
所以10kb50k2.550kb150b25解得
所以y=2.5x+25
(2)当x=30时,y=2.5×30=100(L),即30 min时水箱有100 L水.
2.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,
其中每台价格、月处理污水量及年消耗费如下表:
A型 B型
价格(万元/台) 12 10
处理污水量(吨/月) 240 200
年消耗费(万元/台) 1 1
经预算,该企业购买设备资金不高于105万元.
(1)请你为该企业设计,能有几种设计方案?
(2)若企业每月生产污水量为2 040吨,为了节约资金,应选用哪种购买方案?购买
资金为多少?
解析 列出关于x的不等式,求不等式的自然数解即可解决本题.
答案 设购买污水处理设备A型x台,则B型(10-x)台.
根据题意,得12x+10(10-x)≤105.解得x≤2.5.
因为x为自然数,所以x=0或1或2.
所以共有3种方案:
方案1:购买A型0台,B型10台;
方案2:购买A型l台,B型9台;
方案3:购买A型2台,B型8台.
(2)由题意,得240x+200(10-x)≥2 040.解得x≥1.所以x=1或2.
当x=1时,购买资金为12×l+10×9=102(万元);
当x=2时,购买资金为12×2+10×8=104(万元).
所以应选择方案2、方案3,购买资金分别为102万元和104万元.
活动五.链接中考
1.一次函数的图象经过点(1,2),且y随x的增大而增大,则这个函数解析式是
__________(任写一个),
解析 本题是结论开放题,答案不唯一,该类型是近几年中考命题热点,目的在于考查
学生思维的灵活性.
答案 y=2x或y=x+1
2.如图11—3,l1、l2分别表示一种白炽灯和一种节能灯的费用)y(费用=灯的售价+
电费,单位:元)与照明时间x(小时)的函数图象,假设两种灯泡的使用寿命都是2 000
小时,照明效果一样.
(1)根据图象分别求出l1、l2的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2 500小时,他买了一个白炽灯和一个节能灯,请你帮他设
计最省钱的用灯方法(直接给出答案,不必写出解答过程).
解析 (1)由图象可得知l1、l2分别经过两点,因此设出解析式列出方程组可求得函
数解析式;(2)列出关于x的方程;(3)根据所求出的函数关系式设计用灯方法.
答案 (1)设直线l1的解析式为y1=k1x+b1,因为直线l1经过点(0,2)和点(500,
17),
所以1111117500kbk0.03b2b2解得
所以y1=0.03x+2(0≤x≤2000).
同理求得直线l2的解析式l2=0.012x+20(0≤x≤2 000).
(2)当y1=y2时,两种灯的费用相等.
所以0.03x+2=0.012x+20.解得x=1 000.
所以当照明时间为1 000小时时,两种灯的费用相等.
(3)节能灯使用2 000小时,白炽灯使用500小时.
活动六.课堂小结
引导学生总结本节的收获.