微波课件第7章
合集下载
微波课件3-微波技术与微波器件-栾秀珍-清华大学出版社

集总参数电感:在某一个区域中只含有磁能; 集总参数电容: 在某一个区域中只含有电能。
微波信号是交变电磁场,电场和磁场是铰链在一 起的,没有单独的电场区域或磁场区域, 不存在集总参数
的电感和电容。
推广: 1)如果在某区域磁场储能大于电场储能,可等效为电感; 2)如果在某区域电场储能大于磁场储能,可等效为电容。
L(0) 10lg P1 (dB) : z=0处的起始衰减量。
P0
L(l) L(0) 8.68l (dB)
截止式衰减器的特点:
(1)衰减量(dB)数与移动距离l之间成线性关系, 可作为标准衰 减器。
(2)当 C 时,衰减系数很大,移动不太长的一段距
离就可得到很大的衰减量。
2 c
( c )
第 3 章 基本微波元件和阻抗变换器
(Basic Microwave Elements)
3.1 概 论 3 . 2 微波电阻性元件 3 . 3 微波电抗性元件 3 . 4 微波移相器 3 . 5 极化变换器 3 . 6 抗流式连接元件 3 . 7 阻抗变换器
3.1 概 论
基本电路元件:电阻、电感和电容。 微波元件的外形、结构与集总参数的电路元件差异
可以证明:微波传输线中传输模所携带的电能和磁能是 相等的,而截止模所含电能和磁能是不均衡的。
(1) 若截止模为TE模,则其磁能大于电能,可等效为 电感;
(2) 若截止模为TM模,则其电能大于磁能,可等效为 电容。
在传输系统人为引入某些不均匀性,则在不均匀 性区域将激发起高次截止模。
传输线中的不均匀性: 传输线的尺寸或形状或填充介质 发生了变化。
微波电阻性元件:衰减器和匹配负载。
衰减器:用来控制微波传输线中传输功率的装置,通过 对波的吸收、反射或截止来衰减微波能量。
第7章无线局域网-PPT课件

第 12 页
FAF为楼层衰减因子,与具体的环境和工作频率有关
L=L0+10nlgd+FAF
X
7.3 IEEE 802.11标准
7.3.1 IEEE 802.11标准概述
IEEE802.11标准的逻辑结构包括逻辑链路控制层 (LLC)、媒体访问控制层(MAC)和三种物理层 (PHY)中的一个
LLC MAC
•1985年,美国联邦通信委员会(FCC)授权普通用 户可以使用ISM频段,从而把无线局域网推向了商 业化。 FCC定义的ISM频段为:902~928MHz、 2.4~2.4835GHz、5.725~5.875GHz三个频段。
•2019年中国无线电管理委员会开放了2.4~2.4835 GHz频段。ISM频段为无线电网络设备供应商提供 了所需的频段,只要发射机功率的带外辐射满足无 线电管理机构的要求,则无需提出专门的申请就可 使用这些ISM频段。
第 10 页
X
7.2 室内电波传播模型
1、室内电波传播模型 L=L0+10nlgd+X
L0是第一米路径损耗;d是接收方和发送方之间的 距离,单位:m;X是标准方差为σ的正态随机变 量。n是路径损耗指数,它的值取决于周围环境和 建筑物类型。
第 11 页
X
7.2 室内电波传由建筑物外部面积和材料 以及建筑物的类型来决定。甚至建筑物窗口的数量 也会影响楼层间的损耗。因此,多楼层损耗模型包 括建筑物类型影响以及阻挡物引起的变化。
第 9 页
X
7.2 室内电波传播模型
1、室内电波传播模型
•WLAN在室内应用时一般覆盖范围在30-100m之 间,覆盖全部或者部分建筑物。和传统的无线移动 信道相比,室内无线信道的覆盖范围更小,环境变 动更大,建筑物内的电波传播要受到建筑物的布置、 材料的结构和建筑物类型等多种因素的影响。 •室内的无线电波传播和室外一样,都有反射、绕 射和散射等多种形式,但是条件相差很大。 •通常将室内信道分为视距(LOS)和非视距 (NLOS)两种,并且也不是一成不变的,它将随 着环境变化而变化。
第7章- 数字信号传输

1.单极性不归零码(即NRZ码)
编码器直接编成这种最原始的码型输 出。单极性不归零码(全占空τ= T)的 B 码型及其功率谱如图7-13所示。
单极性NRZ码不符合要求,它不适合 在电缆信道中传输。
2.单极性归零码(即RZ码)
单极性归零码(τ= 率谱如图7-14所示。
TB /2)的码型及功
RZ码与NRZ码相比,f B 成份不为零, 其他缺点仍然存在。所以单极性归零码也 不适合在电缆信道中传输。
自愈网的实现手段多种多样,目前主 要采用的有线路保护倒换、环形网保护、 DXC保护及混合保护等。下面分别加以介 绍。
1.线路保护倒换
线路保护倒换方式有: ①1+1方式。l+1方式采用并发优收, 即工作段和保护段在发送端永久地连在一 起(桥接),信号同时发往工作段(主用) 和保护段(备用),在接收端择优选择接 收性能良好的信号。
图7-26四纤双向复用段倒换环
(5)二纤双向复用段倒换环
二纤双向复用段倒换环采用时隙交换 (TSI)技术,使S1光纤和P2光纤上的信 号都置于一根光纤(称S1/P2光纤),利 用S1/P2光纤的一半时隙(例如时隙1到M) 传S1光纤的业务信号,另一半时隙(时隙 M+1到N,其中M≤N/2)传P2光纤的保护 信号。
7.2.4 传输码型特性的分析比较
以上介绍了几种传输码型,下面主要 将AMI码、HDB3码和CMI码的性能作一 分析比较。
1.最大连“0”数及定时钟提取
最大连“0”数及定时钟提取见表7-5。
2.检测误码能力
AMI码、HDB3码和CMI码均具有一 定的检测误码能力。
3.误码增殖
由前面分析可见:AMI码和CMI码无 误码增殖,而HDB3码有误码增殖。
4.电路实现
编码器直接编成这种最原始的码型输 出。单极性不归零码(全占空τ= T)的 B 码型及其功率谱如图7-13所示。
单极性NRZ码不符合要求,它不适合 在电缆信道中传输。
2.单极性归零码(即RZ码)
单极性归零码(τ= 率谱如图7-14所示。
TB /2)的码型及功
RZ码与NRZ码相比,f B 成份不为零, 其他缺点仍然存在。所以单极性归零码也 不适合在电缆信道中传输。
自愈网的实现手段多种多样,目前主 要采用的有线路保护倒换、环形网保护、 DXC保护及混合保护等。下面分别加以介 绍。
1.线路保护倒换
线路保护倒换方式有: ①1+1方式。l+1方式采用并发优收, 即工作段和保护段在发送端永久地连在一 起(桥接),信号同时发往工作段(主用) 和保护段(备用),在接收端择优选择接 收性能良好的信号。
图7-26四纤双向复用段倒换环
(5)二纤双向复用段倒换环
二纤双向复用段倒换环采用时隙交换 (TSI)技术,使S1光纤和P2光纤上的信 号都置于一根光纤(称S1/P2光纤),利 用S1/P2光纤的一半时隙(例如时隙1到M) 传S1光纤的业务信号,另一半时隙(时隙 M+1到N,其中M≤N/2)传P2光纤的保护 信号。
7.2.4 传输码型特性的分析比较
以上介绍了几种传输码型,下面主要 将AMI码、HDB3码和CMI码的性能作一 分析比较。
1.最大连“0”数及定时钟提取
最大连“0”数及定时钟提取见表7-5。
2.检测误码能力
AMI码、HDB3码和CMI码均具有一 定的检测误码能力。
3.误码增殖
由前面分析可见:AMI码和CMI码无 误码增殖,而HDB3码有误码增殖。
4.电路实现
《微波混频器电路》PPT课件

第3章 微波混频器
电路中设计微带线长度时都是以信号频率对应的微带导 内波长为基准的,一方面是由于信号频率和本振频率很接近, 按信号波长设计对本振传输带来的影响不大; 另一方面是 由于信号功率比较弱,电路设计务必要保证信号的损失最小,
单端混频器电路以微带形式光刻在介质基片上,为平面 电路,其结构简单,制造容易,体积小,质量轻,但性能较 差,实际应用不多。然而这种单端混频器也是其他各种混频 器的基础,其基本结构及其设计思想对于其他混频器都具有 参考意义。
电导,分别为
第3章 微波混频器 图 3-23 本振反相型平衡混频器等效电路
第3章 微波混频器
g1(t)
g0
2
n1
gn
cos
nLt
g2
(t)
g0
2
n1
gn
cos
n(Lt
π)
流过VD1、VD2的电流为(不考虑中频、镜频电压)
(3-67)
i1(t)uS1g1(t)UScosSt[g02n 1gncosnLt]
第3章 微波混频器
3.4.1 1. 单端混频器是一种最简单的混频器,前节的分析实际上
就是以单端混频器为例进行的,其工作原理和性能已经详细 讨论,这里主要关注其电路结构。图3-20给出了微带型单端 混频器的电路结构,它由耦合微带线定向耦合器、1/4波长 阻抗变换器、阻性混频二极管(通常采用梁式引线肖特基势 垒二极管)、中频和直流通路及高频旁路等部分组成。信号 从电路左边送入,经定向耦合器和阻抗变换器加到混频二极 管上,本振功率从定向耦合器的另一端口输入也加到二极管 上。
i2(t)uS2g2(t)UScosSt[g02n1gncosn(Lt)]
(3-68)
第3章 微波混频器 设ωS>ωL,ω0=ωS-ωL,则由式(3-68)可得到两管产生
第七章 原子发射光谱分析 (Atomic Emission Spectrometry知识分享

Aij —两个能级间跃迁概率; νij —发射谱线的频率; T—激发温度(T);
Ei—激发电位(J或eV)。
Iij
gi g0
AijhijN0ekEiT
原子发射光谱 法定量的依据
基态原子密度(N0):Iij正比于N0,N0正比于浓度。
激发电位(Excitation potential)
谱线强度与激发电位成负指数关系。在温度一定时,激发 电位越高,处于该能量状态的原子数越少,谱线强度越小。 激发电位最低的共振线通常是强度最大的线。
目前常用的光源有直流电弧(DC arc)、交流电 弧(AC arc)、高压火花(electric spark)及电感耦合等离 子体(ICP)。
1. 直流电弧
优点:电极头温度相对比较高(4000至7000K,与 其它光源比),蒸发能力强、绝对灵敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严重,故 不适宜用于高含量定量分析,但可很好地应用于矿石 等的定性、半定量及痕量元素的定量分析。
微波光谱法
4×10-7~4×10-10 核磁共振波谱法
高能辐射区
γ射线 能量最高,核能级跃迁 X射线 内层电子能级的跃迁
光学光谱区
(10nm-1000 μm)
紫外光 可见光
原子和分子外层电子能级的跃迁
红外光 分子振动能级和转动能级的跃迁
波谱区
微波 分子转动能级及电子自旋能级跃迁 无线电波 原子核自旋能级的跃迁
2.电磁波谱:电磁辐射按波长顺序排列就称光谱。
光谱区域 γ射线 X射线 远紫外光 近紫外光
光 可见光 学 近红外光 区 中红外光
远红外光
微波
无线电波
波长 5~140pm 10-3~10nm 10~200nm 200~380nm 380~780nm 0.78~2.5μm 2.5~50μm
Ei—激发电位(J或eV)。
Iij
gi g0
AijhijN0ekEiT
原子发射光谱 法定量的依据
基态原子密度(N0):Iij正比于N0,N0正比于浓度。
激发电位(Excitation potential)
谱线强度与激发电位成负指数关系。在温度一定时,激发 电位越高,处于该能量状态的原子数越少,谱线强度越小。 激发电位最低的共振线通常是强度最大的线。
目前常用的光源有直流电弧(DC arc)、交流电 弧(AC arc)、高压火花(electric spark)及电感耦合等离 子体(ICP)。
1. 直流电弧
优点:电极头温度相对比较高(4000至7000K,与 其它光源比),蒸发能力强、绝对灵敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严重,故 不适宜用于高含量定量分析,但可很好地应用于矿石 等的定性、半定量及痕量元素的定量分析。
微波光谱法
4×10-7~4×10-10 核磁共振波谱法
高能辐射区
γ射线 能量最高,核能级跃迁 X射线 内层电子能级的跃迁
光学光谱区
(10nm-1000 μm)
紫外光 可见光
原子和分子外层电子能级的跃迁
红外光 分子振动能级和转动能级的跃迁
波谱区
微波 分子转动能级及电子自旋能级跃迁 无线电波 原子核自旋能级的跃迁
2.电磁波谱:电磁辐射按波长顺序排列就称光谱。
光谱区域 γ射线 X射线 远紫外光 近紫外光
光 可见光 学 近红外光 区 中红外光
远红外光
微波
无线电波
波长 5~140pm 10-3~10nm 10~200nm 200~380nm 380~780nm 0.78~2.5μm 2.5~50μm
微波课件4-微波技术与微波器件-栾秀珍-清华大学出版社

工作模式和填充的介质有关,但它的谐振波长 0 则与腔
的填充介质无关,仅决定于腔的型式、尺寸和工作模式。
2.品质因数(Q0)
品质因数:描述谐振系统的频率选择性优劣和能量损耗
程度的物理量。
定义:谐振时腔中储能W与一个周期内腔中损耗能量之
比的2π倍,即
Q0
2
W WT
PL :一周期内腔的平均损耗功率 , WT PL T
对于非色散波(TE于色散波(TE、TM 波)
p g
谐振波长为
1 ( c )2
o
1
1
c
2
p 2l
2
TEM 波
TE 波、TM 波
o
2l p
o
1
1
c
2
p 2l
2
注意:谐振波长 o 是指谐振时电磁波在腔内填充介质中的
介质波长,仅当腔中为真空(或空气填充)时,它才相应于
波节间距 p/2 的整数(p)倍,即
l p p , ( p 1,2,....)
2
p
2l p
结论:在一定的腔体尺寸下,不是任意波长的电磁波都
能在腔中振荡的,只有那些能够在腔中满足一定驻波分
布的电磁波才能够振荡,它们的相波长由腔的尺寸决定,
即
p
2l p
谐振波长:能形成稳定驻波振荡的电磁波所对应的波长。
第 4 章 微波谐振腔
(Microwave Resonant Cavity)
4 . 1 概论 4 . 2 谐振腔的基本参量 4 . 3 矩形谐振腔 4 . 4 圆柱形谐振腔 4 . 5 同轴腔和微带线谐振腔
第 4 章 微波谐振腔
4 . 6 谐振腔的调谐、激励与耦合 4 . 7 谐振腔的等效电路 和它与
的填充介质无关,仅决定于腔的型式、尺寸和工作模式。
2.品质因数(Q0)
品质因数:描述谐振系统的频率选择性优劣和能量损耗
程度的物理量。
定义:谐振时腔中储能W与一个周期内腔中损耗能量之
比的2π倍,即
Q0
2
W WT
PL :一周期内腔的平均损耗功率 , WT PL T
对于非色散波(TE于色散波(TE、TM 波)
p g
谐振波长为
1 ( c )2
o
1
1
c
2
p 2l
2
TEM 波
TE 波、TM 波
o
2l p
o
1
1
c
2
p 2l
2
注意:谐振波长 o 是指谐振时电磁波在腔内填充介质中的
介质波长,仅当腔中为真空(或空气填充)时,它才相应于
波节间距 p/2 的整数(p)倍,即
l p p , ( p 1,2,....)
2
p
2l p
结论:在一定的腔体尺寸下,不是任意波长的电磁波都
能在腔中振荡的,只有那些能够在腔中满足一定驻波分
布的电磁波才能够振荡,它们的相波长由腔的尺寸决定,
即
p
2l p
谐振波长:能形成稳定驻波振荡的电磁波所对应的波长。
第 4 章 微波谐振腔
(Microwave Resonant Cavity)
4 . 1 概论 4 . 2 谐振腔的基本参量 4 . 3 矩形谐振腔 4 . 4 圆柱形谐振腔 4 . 5 同轴腔和微带线谐振腔
第 4 章 微波谐振腔
4 . 6 谐振腔的调谐、激励与耦合 4 . 7 谐振腔的等效电路 和它与
射频与微波电路电子课件
• D.M.Pozar著,张肇仪等译,微波工程(第三版),电子工业出版社, 2002年
• 廖承恩著,微波技术基础(第三版),西安电子科技大学出版社,1994年 • 沙湘月,伍瑞新著,电磁场理论与微波技术,南京大学出版社,2004年 • 范寿康,卢春兰,李平辉著,微波技术与微波电路,机械工业出版社,
2003年 • 吴培亨著,微波电路, 科学出版社,1980年 • I. Bahl,P.Bhartia著,郑新等译,微波固态电路设计(第二版),电子工业
3D全波仿 平面电路 3D全波仿真 3D全波 各种专门
真
仿真
仿真 问题
教材与参考书目
• 雷振亚编著,射频/微波电路导论,西安电子科技大学出版社,2005年(教 材)
• D.K.Misra著,张肇仪等译,射频与微波通信电路:分析与设计(第二 版),电子工业出版社,2005年
• R.J.Weber著,朱建清等译,微波电路引论:射频与应用设计,电子工业 出版社,2005年
• 基本理论:经典电磁场理论 • 基本研究方法:“场”与“路” • 工作波长与电路几何尺寸相近:“结构就是电路元
件”,分布参数
射频与微波段电磁波的特点
• 基本特性: ① 似光性 ② 穿透性 ③ 非电离性 ④ 信息性 • 优点: ① 频带宽 ② 波长短 • 缺点: ① 成本高 ② 损耗大 ③ 不能使用硅器件
出版社,2006年 • 程邦媛著,射频通信电路,科学出版社,2002年 • R.Ludwig,P.Bretchko著,王子宇等译,射频电路设计:理论与应用;电
子工业出版社,2002年
• 射频和微波的常用接头包括:
接头型号 频率范围 阻抗/Ω
说明
BNC(Q9) DC~3GHz 75/50/300 频率低、中功率、价格低
• 廖承恩著,微波技术基础(第三版),西安电子科技大学出版社,1994年 • 沙湘月,伍瑞新著,电磁场理论与微波技术,南京大学出版社,2004年 • 范寿康,卢春兰,李平辉著,微波技术与微波电路,机械工业出版社,
2003年 • 吴培亨著,微波电路, 科学出版社,1980年 • I. Bahl,P.Bhartia著,郑新等译,微波固态电路设计(第二版),电子工业
3D全波仿 平面电路 3D全波仿真 3D全波 各种专门
真
仿真
仿真 问题
教材与参考书目
• 雷振亚编著,射频/微波电路导论,西安电子科技大学出版社,2005年(教 材)
• D.K.Misra著,张肇仪等译,射频与微波通信电路:分析与设计(第二 版),电子工业出版社,2005年
• R.J.Weber著,朱建清等译,微波电路引论:射频与应用设计,电子工业 出版社,2005年
• 基本理论:经典电磁场理论 • 基本研究方法:“场”与“路” • 工作波长与电路几何尺寸相近:“结构就是电路元
件”,分布参数
射频与微波段电磁波的特点
• 基本特性: ① 似光性 ② 穿透性 ③ 非电离性 ④ 信息性 • 优点: ① 频带宽 ② 波长短 • 缺点: ① 成本高 ② 损耗大 ③ 不能使用硅器件
出版社,2006年 • 程邦媛著,射频通信电路,科学出版社,2002年 • R.Ludwig,P.Bretchko著,王子宇等译,射频电路设计:理论与应用;电
子工业出版社,2002年
• 射频和微波的常用接头包括:
接头型号 频率范围 阻抗/Ω
说明
BNC(Q9) DC~3GHz 75/50/300 频率低、中功率、价格低
第7章 矩量法
和
为了考察解答的收敛性,现研究当n增加时的逐次逼近程度。首先,取一
级近似n=1,此时,l11=-2,g=-2,由式(7-8),得φ1=1,按式(7-34)可知
电位函数的一级近似解为
;当n=2时,点匹配方程是
第7章 矩量法
由上式可求得φ1=1/2,φ2=1/3。同样,按式(7-34)可得二级近似解为
第7章 矩量法
矩量法的数学处理过程可以采用加权余量法或定义泛函内积等方法展开 R。F. Harrington对用矩量法求解电磁场问题作了全面和深入的分析,其经 典著作已于1968年出版[1] 。为从数学意义上,既能理解通常矩量法构造的 数学基础,又能把握其他数值计算方法与之相关的内在联系,本书采用加权 余量法的概念来说明矩量法。加权余量法(The Method of Weighted Residuals)的概念首先由S.H.Crandall[2]在1956年提出。他将由积分、微 分方程离散化为矩阵方程(代数方程组)的方法,统一归结为加权余量法, 由此构成各种近似计算方法统一的数学基础,并已在力学问题中得到广泛应 用。
第7章 矩量法
(3)最小二乘法 若权函数选为余量本身,即令
则就构成最小二乘法的计算模式。最小二乘法在函数的逼近,最优化问题等方 面都有着广泛的应用。最小二乘法是通过定义目标函数F为余量平方和,求取 极小值的一种方法,即有
现将余量
及
代入上式,则F便成为待定系数uj
的多元函数。这样,由式(7-27)给出的目标函数F的极值问题即归结为一
本章着意于矩量法基本概念与应用的阐述,因此将仅限于讨论方法在静态 电场中由点匹配法构造的计算模式,关于在天线辐射场、导体涡流场和散射场 等时谐场中矩量法的应用,读者可参阅参考文献[3、4]。
电子测量与仪器教学课件第7章 频率特性测量及仪器
时域分析是研究信号的瞬时幅度u与时间t的变化关系,如信号通过电路后幅度的放大、衰 减或畸变等。通过时域测量可测定电路是否工作在线性区、电路的增益是否符合要求、时 间响应特性等。实际工作中常用的示波器就是典型的时域测量分析仪器,常用它来观测信 号电压随时间的变化,但它无法获得信号中包含哪些频率成分、它们之间的相对幅度如何 等信息,也无法得到信号通过某个系统后频率成分是否产生了变化及变化的大小等信息, 这些都必须借助于频域测量分析来完成。
频域分析则是研究信号中各频率分量的幅值A与频率f的关系,包括线性系统频率特性的测 量和信号的频谱分析。频率特性测量和频谱分析都是以频率为自变量,以频率分量的信号 值为因变量进行分析的,通常由频率特性测试仪(扫频仪)来完成。其中,频率特性测试仪利 用扫频测量法,可直接在显示屏上显示被测电路的频率响应特性;频谱分析仪则是对信号 本身进行分析和对线性系统非线性失真系数进行测量,从而可以确定信号所含的频率成分, 了解信号的频谱占用情况,以及线性系统的非线性失真特性。
(3)增益测试。将Y衰减置于10挡上(相当于衰减20 dB),调节 粗、细输出衰减使因被测电路接入而变化的曲线高度仍恢复为H, 记下输出衰减总分贝数A2,则该中频放大器的电压增益k为
(4)测量带宽。利用扫频仪上的频标,在幅度左右两边分别对应 与波峰的0.707倍时的上下频率差就是被测网络的幅频特性曲线的 频带宽度。
扫频测量法就是将等幅扫频信号加至被测电路输入端,然后用显示器 来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续 变化的,因此在屏幕上可直接显示出被测电路的幅频特性。
7.2 ቤተ መጻሕፍቲ ባይዱ频仪
扫频仪是频率特性测试仪的简称,是一种能在荧光屏上直接观测 到各种网络频率特性等曲线的频域测量仪器,由此可以测算出被 测电路的频带宽度、品质因数、电压增益、输出阻抗及传输线特 性阻抗等参数。扫频仪与示波器的主要区别在于前者能够自身提 供测试时所需要的信号源,并将测试结果以曲线形式显示在荧光 屏上。
频域分析则是研究信号中各频率分量的幅值A与频率f的关系,包括线性系统频率特性的测 量和信号的频谱分析。频率特性测量和频谱分析都是以频率为自变量,以频率分量的信号 值为因变量进行分析的,通常由频率特性测试仪(扫频仪)来完成。其中,频率特性测试仪利 用扫频测量法,可直接在显示屏上显示被测电路的频率响应特性;频谱分析仪则是对信号 本身进行分析和对线性系统非线性失真系数进行测量,从而可以确定信号所含的频率成分, 了解信号的频谱占用情况,以及线性系统的非线性失真特性。
(3)增益测试。将Y衰减置于10挡上(相当于衰减20 dB),调节 粗、细输出衰减使因被测电路接入而变化的曲线高度仍恢复为H, 记下输出衰减总分贝数A2,则该中频放大器的电压增益k为
(4)测量带宽。利用扫频仪上的频标,在幅度左右两边分别对应 与波峰的0.707倍时的上下频率差就是被测网络的幅频特性曲线的 频带宽度。
扫频测量法就是将等幅扫频信号加至被测电路输入端,然后用显示器 来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续 变化的,因此在屏幕上可直接显示出被测电路的幅频特性。
7.2 ቤተ መጻሕፍቲ ባይዱ频仪
扫频仪是频率特性测试仪的简称,是一种能在荧光屏上直接观测 到各种网络频率特性等曲线的频域测量仪器,由此可以测算出被 测电路的频带宽度、品质因数、电压增益、输出阻抗及传输线特 性阻抗等参数。扫频仪与示波器的主要区别在于前者能够自身提 供测试时所需要的信号源,并将测试结果以曲线形式显示在荧光 屏上。
精品课件-微波技术基础(廖承恩)-第9章
第9章微波铁氧体元件
jM x (0H0 j )M y 0M s H y
jM y (0H0 j )M x 0M s H x (9.1-38) jM z 0
与式(9.1-18)相比可见,与有耗谐振系统一样,这里的磁损 耗也可用复数谐振频率来考虑,即用ω0+jαω代替无耗时的 ω0,相应的张量导磁率则仍具有式(9.1-24)的形式,不同的 是现在磁化率为复数:
(02 2 )M x 0m H x j m H y (02 2 )M y j m H x 0m H y
(9.1-20)
式中ω是微波磁场的频率。式(9.1-20)表示H和M之间的线性关 系,可用张量磁化率[χ]表示成
xx xy 0 M [ ]H yx yy 0H
0 0 0
(9.1-21)
式(9.1-20),得到磁化强度分量为
M
x
m 0
H
,
M
y
jm 0
H
第9章微波铁氧体元件
于是,由H+产生的磁化强度矢量可以写成
M
M
x
xˆ
M
y
yˆ
m 0
H (xˆ
jyˆ )பைடு நூலகம்
(9.1-29)
可见也是右旋圆极化, 并与激励场H+同步以角速度ω旋转。
由于M+和H+的方向相同,故可以写成B+=μ0(M++H+)=μ+H+,这里 μ+是右旋圆极化波的有效导磁率:
率。对于自由进动,ω0与进动角θ无关。式(9.1-8)与式 (9.1-7a、b)相对应的一个解是
mx=A cos ω0t, my=A sin ω0t