测井原理9-自然伽马测井
测井曲线原理

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw 的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
自然伽马测井的测量原理

自然伽马测井的测量原理嘿,朋友们!今天咱来唠唠自然伽马测井的测量原理。
你说这自然伽马测井啊,就好像是地层的“史官”。
它是咋工作的呢?就好比我们人啊,有一双特别的“眼睛”,能看到地层里那些看不见的秘密。
想象一下,地层里有各种矿物质吧,这些矿物质有的就带有放射性。
自然伽马测井仪呢,就专门去捕捉这些放射性物质发出的伽马射线。
这就好像是在黑暗中寻找闪光点一样,神奇吧!你可能会问啦,那它找到这些伽马射线能干啥呀?嘿嘿,这用处可大了去了!通过测量这些伽马射线的强度啥的,就能知道地层里的情况啦。
比如说,能知道地层里放射性物质的多少,这就像我们通过一个人的穿着打扮能大概了解他的性格一样。
而且啊,自然伽马测井仪可不管地层是深是浅,它都能努力去探测。
这多厉害呀!不管地层藏得多深的秘密,它都能给挖出来。
你说这自然伽马测井是不是很有意思?它就像是地层的“情报员”,默默地工作着,给我们带来关于地层的重要信息。
它不需要我们过多的操心,自己就能把活儿干得漂亮。
咱们在石油勘探、地质研究这些领域,自然伽马测井可发挥了大作用呢!没有它,很多事情可就难办咯!就像我们走路没有了眼睛,那还不得磕磕碰碰呀。
它能帮我们了解地层的岩性、划分地层啥的,这多重要啊!就好比我们要盖房子,得先知道地基稳不稳呀。
所以啊,可别小看了这自然伽马测井的测量原理。
它虽然看起来很复杂,但其实就是这么个道理,就是用特别的方法去发现地层里的秘密。
它就像是一把钥匙,能打开地层这个神秘宝库的大门。
总之呢,自然伽马测井的测量原理真的很神奇,很实用!它为我们探索地球内部的奥秘提供了有力的工具,让我们能更好地了解我们脚下的这片大地。
怎么样,是不是对自然伽马测井有了更深的认识和理解呀?。
自然伽马能谱测井在油田的应用分析

技术与检测Һ㊀自然伽马能谱测井在油田的应用分析赵金宝摘㊀要:自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井与自然伽马测井都是测量地层的自然伽马ꎮ不同之处是将入射的伽马射线的能量以幅度大小输出到多道脉冲幅度分析器ꎬ所测是地层伽马能谱ꎬ地面仪器将接受的伽马能谱进行解谱ꎬ得到地层中铀㊁钍钾的含量ꎬ仪器最终输出伽马射线的总强度和地层中铀㊁钍㊁钾的含量ꎮ关键词:自然伽马能谱测井ꎻ储层评价ꎻ泥质含量ꎻ岩性分析一㊁自然伽马能谱测井原理油田勘探开发中ꎬ储层评价㊁解释是测井解释重要工作ꎬ其中黏土矿物识别和岩性识别是这项工作的重要内容ꎮ自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ与自然伽马不同之处是它采用能谱分析的方法ꎬ可定量测量地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ所以自然伽马能谱测井可以解决更多的地质问题ꎮ二㊁自然伽马能谱测井的应用自然伽马能谱测井可以研究地层特性ꎬ包括泥质含量准确计算㊁识别高放射性储层㊁识别钾盐㊁识别黏土类型㊁沉积环境分析以及变质岩岩性识别等ꎮ下面主要介绍自然伽马能谱测井资料在测井解释中的应用ꎮ(一)计算泥质含量在自然伽马能谱测井资料中ꎬ地层的泥质含量与钍或钾的含量有较好的线性关系ꎬ而与地层的铀含量关系较复杂ꎮ因此ꎬ可以同时利用钍㊁钾及无铀伽马曲线或根据地质情况选其中一条曲线ꎬ计算地层泥质含量ꎮ(二)识别高放射性储集层利用自然伽马能谱测井可以有效识别和划分具有高自然伽马放射性的储集层ꎮ在人们传统的概念ꎬ储集层是低放射性㊁泥质含量较少㊁比较纯的岩石ꎬ因而忽视了高放射性储集层的生产价值ꎮ在纯砂岩和碳酸盐岩的放射性元素含量都较低ꎬ但对于某些渗透性砂岩和碳酸盐岩地层ꎬ由于水中含有易溶的铀元素ꎬ并随水运移ꎬ在某些适宜条件下沉淀ꎬ形成具有高放射性渗透层ꎬ即高伽马储层ꎬ此时可用自然伽马能谱测井进行储层划分ꎮ高自然伽马的地层一方面可以作为标志层与邻井进行对比ꎬ另一方面又可以帮助识别流体性质ꎮ另外ꎬ硬地层中高铀会指示具有渗流能力的储集层ꎮ(三)黏土矿物类型识别一般来讲ꎬ在绝大多数黏土矿物中ꎬ钾和钍的含量高ꎬ而铀的含量相对较低ꎬ因此ꎬ根据Th/Kꎬ可大致确定黏土类型ꎮTh/K比值在28以上为重钍矿ꎬ在12~28之间为高岭石ꎬ在3.5~12之间为蒙脱石ꎬ在2~3.5之间为伊利石ꎬ在1.5~2之间为云母ꎬ在0.8~1.5之间为海绿石ꎬ在0.5~0.8之间为长石ꎬ小于0.5为钾蒸发岩ꎮˑ井ˑˑ组Th测量值主要在7~20ppmꎬK测量值主要在2.4~4.0%之间ꎬTh/K比值在2~5之间ꎬ黏土类型为伊利石和蒙脱石为主的混合黏土层ꎬ见图1ꎮ(四)沉积环境分析由钾㊁铀㊁钍的性质可知ꎬ高能环境钍含量比低能环境高ꎬ铀和钾含量在低能环境比高能环境高ꎮ另外ꎬ铀含量与氧化还原条件有关ꎬ还原环境有机质含量高ꎬ铀含量高ꎻ钾含量与黏土关系密切ꎮTh/U值可判断沉积环境的氧化还原条件ꎬ据经验统计:Th/U值大于7时ꎬ属风化完全㊁有氧化和淋滤作用的陆相沉积ꎻTh/U值2~7ꎬ岩性为灰色和绿色泥岩夹砂岩ꎬ属还原环境沉积ꎻ小于2时ꎬ属强还原环境ꎮˑ井ˑˑ组Th/K比值主要在2~6.3之间ꎬTh/U比值在2~7之间ꎬ沉积环境主要属低能还原沉积ꎮ(五)变质岩岩性分析利用自然伽马能谱测井曲线制作的测井数据交会图是识别含油气盆地内变质岩岩性的简单而有效的方法ꎮ它是图1㊀ˑ井ˑˑ组黏土类型分析图把两种测井数据在平面图上交会ꎬ根据交会点的坐标定出所求参数的数值和范围的一种方法ꎮ在交会图上能直观地看出各种岩性的分界和分布的区域ꎬ能比较直观的识别变质岩ꎮ通过对变质岩物理特性进行分析ꎬ发现作为变质岩分类指标的二氧化硅(SiO2)含量与钾(K)含量有很强的相关性ꎬSiO2含量高则钾含量高ꎬ钍含量从酸性岩石向超基性岩石减少ꎬ而自然伽马测井测量的是地层中放射性元素的总含量ꎬ一般从基性到酸性变质岩逐渐升高ꎬ另一个指示岩性的光电吸收截面指数ꎬ一般从基性到酸性变质岩逐渐降低ꎮ自然伽马㊁光电吸收截面指数㊁钍三条测井曲线的交会图可以区分之ꎮˑ井发育的变质岩为玄武质安山岩㊁火山角砾岩㊁花岗岩ꎮ研究发现:利用GR-ThꎬPe-Th交会图可以有效识别变质岩岩性ꎬGR-Th交会图版可以分成四个区:基性岩性区㊁中性岩性区㊁中性向酸性过渡岩性区㊁酸性岩性区ꎮˑ井中玄武质安山岩落在基性岩为主以及部分中性区域ꎬ显示低GR㊁低Th特征ꎮ火山角砾岩和花岗岩落在酸性岩性区ꎬ显示高GR㊁高Th特征ꎮPe-Th交会图中玄武质安山岩显示高Pe值ꎬ火山角砾岩和花岗岩显示低Pe值ꎮ即ˑ井中玄武质安山岩显示低GR㊁低Th㊁高Pe特征ꎻ火山角砾岩和花岗岩显示高GR㊁高Th㊁低Pe特征ꎮ三㊁结论自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ它可以定量测定地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ随着勘探和开发难度的加大ꎬ自然伽马能谱测井将发挥越来越重要的作用ꎮ参考文献:[1]胡挺ꎬ潘秀萍.自然伽马能谱测井在杭锦旗地区的应用[J].工程地球物理学报ꎬ2017(1).作者简介:赵金宝ꎬ胜利油田油藏动态监测中心ꎮ102。
第一章 自然伽马测井和自然伽马能谱测井

‘0、核测井原理概述核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。
本课程的重点是自然伽马测井自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。
核测井,在核磁共振测井出现之前,我们又叫做放射性测井。
放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的γ射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。
这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。
密度测井与中子测井结合也可用来判别储集层空间中的流体性质。
核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度,束缚水饱和度等参数。
第一章 自然伽马测井和自然伽马能谱测井自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。
本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础);2.岩石的放射性来源(自然伽马测井的地质基础);3.井中自然伽马的测量;4. 自然伽马测井资料的应用;5.最后介绍自然伽马能谱测井的原理及其应用。
§1 伽马射线及其探测 1、 伽马射线及其性质(1)伽马射线:处于激发态的原子核,回到基态时,放出伽马射线。
伽马射线是一种能量很高,波长很短的电磁波。
γ+→X X AZ mAZ △E=h ν=hλc式中 h ν是伽马射线的能量,h 是普郎克常数,ν是频率,c 是光速,λ是波长。
岩石地层中放出的伽马射线的能量范围为1kev~7Mev.(2)伽马射线与物质的相互作用如前所述,伽马射线射入物质后主要与物质发生三种相互作用。
光电效应:伽马射线的全部能量转移给原子中的电子,使电子从原子中发射出来,伽马光子本身消失的现象,称为光电效应。
康普顿效应:入射的伽马光子与核外电子发生非弹性散射,光子的一部分能量转移给电子,使原子中的电子被反冲出来,而散射光子的能量和运动方向发生变化的现象。
测井方法原理及应用分类

测井方法原理及应用分类测井是指利用测井工具对地下井眼和岩石进行物理学、地球物理学和工程学参数的测量和记录的技术。
它是地质勘探和油气开发中的重要手段,广泛应用于石油勘探、岩石力学研究、水文地质、土壤调查、地下水动力学、环境地质等领域。
本文将详细介绍测井方法的原理及其应用分类。
一、测井方法的原理:1.伽马射线测井:利用自然伽马射线在地层中的吸收和散射特性,测量地层中放射性元素的含量。
通过测量伽马射线强度的变化,可以确定地层的岩性,判别储层类型。
2.电阻率测井:利用地层差异的电导率和介电常数,测量地层的电阻率。
通过测量电阻率的变化,可以确定地层的岩性、含水饱和度、孔隙度等。
3.自然电位测井:利用地层中的自然电位差,测量地层电位差的变化,以确定地层中的含水层位置和厚度。
4.声波测井:利用地层中声波的传播速度和衰减特性,测量地层的声阻抗和声波传播时间。
通过测量声波的变化,可以确定地层的岩性、孔隙度、裂缝情况等。
5.压力测井:利用钻井液的压力变化,测量地层的孔隙压力和地层压力系数。
通过测量压力的变化,可以确定地层的岩性、压力梯度等。
6.密度测井:利用地层密度的差异,测量地层的密度。
通过测量密度的变化,可以确定地层的岩性、孔隙度、含油饱和度等。
二、测井方法的应用分类:1.岩性测井:包括伽马射线测井、电阻率测井和声波测井。
它们可以对地层的岩性、构造性质、同位素组成等进行识别和判别,用于确定地层的储集能力、孔隙度、脆性指数等参数。
2.储层测井:包括电阻率测井、声波测井、密度测井和孔隙度测井。
它们可以确定地层的孔隙度、渗透率、含水饱和度等参数,用于评价储层的质量和储量。
3.含油气层测井:包括电阻率测井、伽马射线测井、密度测井和压力测井。
它们可以确定地层的含油气饱和度、储量、压力梯度等参数,用于评价油气层的勘探和开发潜力。
4.地层压力测井:主要包括压力测井和电阻率测井。
它们可以确定地层的孔隙压力、裂缝压力、渗透能力等参数,用于评价地层的压力梯度、岩石力学性质等。
煤田测井中自然伽马曲线的应用效果分析

煤田测井中自然伽马曲线的应用效果分析随着能源消费的不断增加,对煤矿的需求也日益增长。
而煤矿的勘探开采是一项复杂的工作,需要依靠各种技术手段进行地质勘探工作。
在煤田勘探中,测井技术是一种非常重要的手段,而自然伽马曲线作为测井数据的一部分,在煤田勘探中具有重要的应用价值。
本文将对煤田测井中自然伽马曲线的应用效果进行分析。
一、自然伽马测井介绍自然伽马测井是利用放射性同位素的自然辐射进行测井,通过测定辐射能量来了解地层的物理性质和岩性。
自然伽马测井主要包括自然伽马曲线测井和自然伽马密度测井。
自然伽马曲线测井是指利用岩石对自然放射性元素伽马能量的吸收和衰减特性,来解释地层的岩性、厚度、孔隙度、渗透率和地层的岩性叠加情况等。
自然伽马曲线是在测井中记录的一种曲线,反映了地层中的放射性元素含量和岩层的变化。
自然伽马曲线是通过探测地层中的放射性核素产生的伽马射线来获得的,它可以显示地层的岩性和成分变化,对地层属性进行反映。
自然伽马曲线在煤田测井中的应用主要有以下几个方面。
二、自然伽马曲线的应用效果分析1. 煤层识别自然伽马曲线可以反映地层的放射性元素含量和岩性变化,煤层中的放射性元素含量往往较低,因此在自然伽马曲线上通常表现为较低的数值。
利用自然伽马曲线可以识别煤层和非煤层,从而帮助确定煤层的分布范围和厚度。
2. 地层岩性分析自然伽马曲线可以反映地层的物理性质和岩性变化,通过对自然伽马曲线的解释,可以对地层的岩性进行分析。
不同的岩性在自然伽马曲线上表现为不同的特征,通过对自然伽马曲线的分析可以确定地层的岩性类型,为地层勘探提供重要的参考信息。
自然伽马曲线在煤田测井中还可用于测定地层的厚度。
通过自然伽马曲线的特征变化,可以确定地层的上、下界,从而确定地层的厚度。
这对于确定煤层的垂向变化以及煤矿勘探和开采具有很大的帮助。
自然伽马曲线具有高灵敏度和分辨率,能够反映地层的微观变化。
可以通过自然伽马曲线的特征变化来分析地层的微观变化情况,对地层的岩性叠加、层理、构造等进行解释,为地质构造分析提供帮助。
自然伽马测井名词解释
自然伽马测井名词解释
自然伽马测井是一种采用伽马射线来测量地层岩石物性的测井
方法。
在这个过程中,使用伽马探测器来测量地下岩石内的自然伽马辐射,并将其转换成对应的计数率。
这些计数率可以帮助地质学家确定地层的岩性、厚度和密度等信息。
以下是自然伽马测井中一些常见的名词及其解释:
1. 伽马射线(Gamma Ray):一种高能电磁波,由放射性核衰变产生。
在自然伽马测井中,伽马射线可以用来测量地层的放射性特性,从而确定地层类型和分界面。
2. 自然伽马辐射(Natural Gamma Radiation):指来自地下岩石的自然放射性元素(如铀、钍、钾等)所发出的伽马射线。
自然伽马测井利用这种辐射来识别地层特征。
3. 计数率(Count Rate):指测量仪器在一定时间内记录到的伽马射线计数数目。
计数率越高,表示所测地层中放射性物质的含量也越高。
4. 电阻率(Resistivity):指材料对电流通过的阻力。
自然伽马测井中,电阻率可以用来确定地层的导电特性。
通过与伽马计数率结合使用,可以帮助地质学家确定地层的矿物组成和岩性。
5. 伽马探测器(Gamma Ray Detector):一种专门用于检测伽马射线的探测器。
常见的探测器包括NaI(Tl)闪烁体探测器、BGO晶体探测器等,这些探测器可以测量伽马射线的能量和计数率,并将其转换成电信号输出。
总的来说,自然伽马测井是一种重要的地球物理勘探方法,广泛应用于油气勘探、地质调查和环境监测等领域。
了解自然伽马测井中的相关名词及其解释,有助于深入理解这一技术,并更好地应用于实际工作中。
7 第七章 自然伽马测井
最 低 读 数
最 高 读 数
最高读数 和最低读 数相差约 为200API
生衰变使原子核内部能量发生改变时的伴随产物。
1、核衰变及其放射性
(4)核衰变规律
任何放射性元素从不稳定到稳定的衰变过程,遵循着一个总的趋势, 即随时间呈指数规律递减。而且这种变化与任何外界作用无关,如温度、 压力和电场、磁场等都不能影响放射性衰变的速度,这一速度唯一地取决 于放射性元素本身的性质。 一种放射性物质的放射性强弱,是以单位时间内发生衰变的原子核的 数目来量度,称为放射性强度,用符号J表示。
们在元素周期表中占有同一位置,具有相同的化学性质,但有不同的原子 量,因而具有不同的物理性质,如1H1、1H2、1H3是氢的同位素,铀92U235 、92U234和92U238是铀的同位素等等。 在自然界中,有些同位素是稳定的,即它们的结构和能量不会发生 改变。而有些同位素则是不稳定的,能自发地改变其结构,放射出射线并 变成其它元素。这种不稳定的同位素称为放射性同位素。
3、影响因素
②曲线有深度位移
Vτ的影响使GR曲线发生畸变,主要表
现在幅度值GRmax下降,且GRmax位置不在地
层中心而向上偏移,视厚度增大,半幅点上 移。同时造成半幅点划分地层界面与实际地
层界面有一偏差,而且前者比后者浅。偏差
的大小与Vτ成正比。 为了尽可能减小这种影响,在实际测井
工作中应通过试验选择合适的提升速度和时
《伽马测井》课件
第二节 自然伽马测井
第二节 自然伽马测井
➢ 沉积岩的放射性低于岩浆岩和变质岩。 ➢ 沉积岩中自然伽马放射性随泥质含量的增加而增加。
这是因为: ①构成泥质的粘土颗粒较细,有较大的比表面积,在沉积过程中能够吸 附较多的溶液中放射性元素的离子。 ②泥质颗粒沉积时间长(特别是深海沉积),有充分的时间同放射性元素 接触和进行离子交换,所以,泥质岩石就具有较强的自然放射性。
这三种射线: 电离能力:α射线的电离本领最强,γ射线最弱。 穿透能力:γ射线最强,它在空气中的射程可达几百米,在沉积 岩石中的平均穿透深度约为30公分;而α射线在岩石中的穿透距 离仅约10-3厘米;β射线在金属中仅能穿透0.9厘米。 可见,来自井下岩石的放射性射线中,γ射线才是唯一可探测到 的。
第一节 伽马测井的核物理基础
吸收介质的原子系数Z对δe有明显影响,即在重核附近形 成电子对的几率比轻核大得多。
第一节 伽马测井的核物理基础
2、康普顿效应:能量较高伽马射线与物质中原子核外电子 碰撞时,一部分能量转交给电子,使之脱离原子电子壳层而 飞出,同时伽马射线改变自己运动方向,继续与其它电子相 撞。每碰撞一次,能量损失一部分,并改变其运动方向,形 成所谓康普顿效应。
第一节 伽马测井的核物理基础
3、核衰变
放射性核素——放射出带电粒子(α、β)——激发 态的新原子核——辐射γ——稳态的原子核,这个过程 称为核衰变,核衰变具有一定的半衰期。
放射性核素随时间减小而遵循一定的规律,即核衰变 规律:
N0:初始原子个数 λ:衰变常数(反映衰变速度的参数),表示单位时间 每个核发生衰变的几率,λ越大,衰变速度越快
岩石中所含的放射性核的种类和数量不同,放射性强度 也不同,根据自然界存在的放射性核素在岩石中的丰度可知, 岩石的自然伽马放射性主要取决于铀、钍、钾的含量。
《测井仪器原理》第八章 自然伽马能谱测井仪器
8.1.2 伽马能谱探测原理
1.伽马射线探测器
伽马射线与物质的相互作用能引起物质中原子的 电离和激发。利用这两种物理现象可以探测伽马 射线。 利用次级电子电离气体而建立的探测器有电离室、 正比计数器和盖革一弥勒计数器等。 利用次级电子使原子核的外层电子受激发,当原 子返回基态时放出光子,发生闪光,而建立了闪 烁计数器。
伽马能谱测量要通过伽马脉冲幅度来判别它 们是从哪种放射性核素放射出来的,因而幅度信 息是重要的,必须保证不受其它因素影响。 由于闪烁晶体和光电倍增管的对温度十分灵 敏,由于温度的变化会导致谱信号记入错误的能 窗,因此,稳谱措施是自然伽马能谱测井仪设计 中很重要的一环。 NGT-C自然伽马能谱测井仪采用两种稳谱方法。
•解谱原理 用U、Th和K分别代表各自含量,W1~W5代表 五个能窗的计数率,则
W1 a11U a12Th a13 K W a U a Th a K 2 21 22 23 W3 a31U a32Th a33 K W a U a Th a K 41 42 43 4 W5 a51U a52Th a53 K 式中,a11 ~ a53由仪器刻度时标定.
铀(U)、钍(Th)、钾(K)的伽马射线能谱
各种粘土矿物的Th/K比
因此,用Th和K的比值可识别各种粘土矿物。
用Th和U的比值研究沉积环境
从化学沉积物到碎屑沉积物,Th和U的比 值增大 ; 碳酸盐岩的Th/U为0.3~2.8; 粘土岩的Th/U为2.0~4.1 ; 砂岩的U含量变化范围很大,因而Th/U 值变化范围也大。
第八章自然伽马能谱测井仪
8.1 自然伽马能谱测井方法原理 8.2 NGT—C自然伽马能谱测井仪测量原理 8.3 NGT—C自然伽马能谱测井仪电路分析 8.4 小结 习题