2016年北师大九年级上《图形的相似》期末复习试卷含解析

合集下载

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

图形的相似专题练习1.已知△ABC∽△DEF,AB=1,BC=3,EF=5,则△ABC与△DEF的面积比是()A.1∶9 B.1∶25C.9∶25 D.3∶52.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OB∶OB′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()图2A.4∶9 B.2∶5C.2∶3 D.2∶ 33.如果3A=2B(AB≠0),那么下列比例式中正确的是()A.ab=32B.ba=23C.a2=b3D.a3=b24.如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥B C.若AD=5,BD=10,AE=3,则CE的长为()图4A.3 B.6C.9 D.125.在下面的图形中,相似的一组是(),A) ,B),C) ,D)图56.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是(),A) ,B),C) ,D)图67.为测量某河的宽度,小在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于()图7A.120 m B.67.5 mC.40 m D.30 m8.如图,在△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是(),A) ,B),C) ,D)图89.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.图910.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.图1011.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若CD =3.2 cm ,则AB 的长为_________ cm.图1112.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.图1213.如图,在平面直角坐标系xOy中,以原点为位似中心,线段AB与线段A′B′是位似图形,若A(-1,2),B(-1,0),A′(-2,4),则B′的坐标为___________.图1314.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,1),B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB的位似比为2∶1,并分别写出点A,B的对应点A1,B1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后得△O2A2B2,并写出点A,B的对应点A2,B2的坐标;(3)△OA1B1和△O2A2B2是位似图形吗?若是,请在图中标出位似中心M,并写出点M的坐标.图1415.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC =90°.(1)求证:△ADE∽△BEC;(2)若AD=1,BC=3,AE=2,求AB的长.图1516.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.图1617.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.图1718.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.图1819.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC,DE,两杆相距30米.测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H,B,F,D,G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度.图1920.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC 固定不动,让三角板DEF绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC=120°)的底边中点O重合,两边DF,DE分别与边AB,BC 相交于点P,Q.写出图中的相似三角形__△APD∽△CDQ__(直接填在横线上);(2)其他条件不变,将三角板DEF旋转至两边DF,DE分别与边AB的延长线、边BC相交于点P,Q.上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ,△APD与△DPQ是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.,图1),图2),图3)图20参考答案【过关训练】1.C2.A3.C4.B5.C6.A7.A8.D 9.__4__10.__10__11._9.6__12._1+52__13.(-2,0)_14.解:(1)如答图,△OA1B1为所作,点A1,B1的坐标分别为(4,2),(2,-4);(2)如答图,△O2A2B2为所作,点A2,B2的坐标分别为(0,2),(-1,-1);(3)△OA1B1和△O2A2B2是位似图形,如答图,点M为所,位似中心M的坐标为(-4,2).15.[解:(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BE C.(2)∵△ADE∽△BEC,∴BEAD=BCAE,即BE1=32,∴BE=3 2,∴AB=AE+BE=7 2.16.解:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCG=90°.∵BF⊥AE,∴∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG,∴△ABF∽△GB C.(2)∵△ABF∽△BG C.∴ABBG=AFBC.∵AB=2,G是CD的中点,四边形ABCD是正方形,∴BC=2,CG=1,∴BG=BC2+CG2=5,∴25=AF2,解得AF=45 5.17.证明:(1)∵BD⊥AC,DG⊥BC,∴∠BDC=∠DGC=90°,∴∠DBC+∠DCG=∠GDC+∠DCG,∴∠GDC=∠DBC,∴△BDG∽△DCG,∴BG∶DG=DG∶CG,即DG2=BG·CG.(2)同(1)中的方法,同理可证△BGH∽△FGC,∴BG∶GF=GH∶CG,∴BG·CG=GF·GH.18.解:∵DE∥BC,∴△ADE∽△ABC,∴AEAC=ADAB,即AE1.5=1.22,解得AE=0.9 m,∴EC=1.5-0.9=0.6(m),即油面高0.6 m. 19.解:设AH=x,BH=y,由题意知,△AHF∽△CBF,△AHG∽△EDG,∴BFHF=CBAH,DGHG=DEAH,∴3x=1.5×(y+3),5x=1.5×(y+30+5),解得x=24.则旗杆AH的高度为24 m.20.__△APD∽△CDQ__解:(2)成立,如答图.理由如下:∵AB=BC,∴∠BAC=∠BC A.∵∠ABC=120°,∴∠BAC=∠BCA=30°,∴∠ADP+∠APD=180°-30°=150°.∵∠EDF=30°,∴∠ADP+∠CDQ=150°,∴∠APD=∠CDQ,∴△APD∽△CDQ. (3)△APD∽△DPQ.理由如下:∵△APD∽△CDQ,∴APCD=DPDQ.∵点D为AC的中点,∴CD=AD,∴APAD=DPDQ,即APDP=ADDQ.又∵∠P AD=∠PDQ=30°,∴△APD∽△DPQ.(4)△DEF满足∠EDF=α,△ABC满足顶角为(180°-2α)的等腰三角形即可.理由:∵∠ABC=180°-2α,∴∠A=∠C=α.∵∠ADP+∠APD=180°-α,∠ADP+∠QDC=180°-α,∴∠APD=∠CDQ.又∵∠A=∠C,∴△APD∽△CDQ.。

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

一、选择题1.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:92.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠ B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅3.如图,小颖身高为160cm ,在阳光下影长240AB cm =,当她走到距离墙角(点D )120cm 的C 处时,她的部分影子投射到墙上,则投射在墙上的影子DE 的长度为( )A .120cmB .80cmC .60cmD .40cm4.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4)5.如图,4AB=,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DB=,作EF DE⊥并截取EF DE=,连结AF并延长交射线BM于点C.设BE x=,BC y=,则y关于x的函数解析式是()A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--6.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足512MG GNMN MG-==,后人把512-这个数称为“黄金分割数”,把点G称为线段MN的“黄金分割点”.如图,在△ABC中,已知AB=AC=3,BC=4,若点D是边BC边上的一个“黄金分割点”,则△ADC的面积为()A.55-B.355-C.2085-D.1045-7.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(540)cm B.(540)cmC.(120﹣5cm D.(5160)cm8.如图,在△ABC中,中线AE、BD相交于点F,连接DE,则下列结论:①12DEAB=;②14CD CE DEAC BC AB++=++;③CD EFCA FA=;④13FDECDESS=△△.其中正确结论的个数是()A .1个B .2个C .3个D .4个9.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为( )A .2517B .6017C .10017D .1441710.如图,在平面直角坐标系xOy 中,已知△ABO 的两个顶点分别为A (﹣8,4),B (﹣2,﹣2),以原点O 为位似中心画△A B O '',使它与△ABO 位似,且相似比为12,则点A 的对应点A '的坐标为( )A .(4,2)B .(1,1)C .(﹣4,2)D .(4,﹣2)11.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DCAB AC= D .2AC BC CD =⋅二、填空题13.边长为4的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为34,则CE 的长为 _____ .14.如图,正方形ABCD 的边长为4,点E 为CD 中点,点F 为BC 边上一点,且CF=1,连接AF ,EG ⊥AF 交BC 于点G ,则BG=________.15.如图,在ABC 中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于点E ,若3BE =,则EC 的长为____.16.如图,在菱形ABCD 中,AB =1,∠ADC =120°,以AC 为边作菱形ACC 1D 1,且∠AD 1C 1=120°;再以AC 1为边作菱形AC 1C 2D 2,且∠AD 2C 2=120°…;按此规律,菱形AC 2020C 2021D 2021的面积为_____.17.已知点D ,E 分别在△ABC 的边AB ,AC 上,△ADE ,△DEC ,△BCD 的面积之比为4:2:3,∠ACD=∠ADE ,CD=6,则BC 的长为_______.18.如图所示,在ABC 中,E 、F 分别是AC 、AB 的中点,已知FC 长是6,则线段OC 的长为______.19.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________. 20.如图,在ABC 中,AB AC >,将ABC 以点A 为中心顺时针旋转,得到AED ,点D 在BC 上,DE 交AB 于点F .如下结论中:①DA 平分EDC ∠;②AEF DBF △∽△;③BDF CAD ∠=∠;④EF BD =.所有正确结论的序号是_____.三、解答题21.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数; (2)如图2,当5AB =,且10AF FD =时,求BC 的长;22.已知ABC ∆中,90C =∠.你能画一条直线把它分割成两个相似三角形吗?如果可以,请用尺规作出这条分割线,保留作图痕迹,并说明两个三角形相似的理由.23.如图,已知O 为坐标原点,B ,C 两点坐标为(3,1)-,(2,1).(1)在y 轴的左侧以O 点为位似中心将OBC 放大到原来的2倍,画出放大后111O B C ;(2)写出11B C ,的坐标;(3)在(1)条件下,若OBC 内部有一点M 的坐标为(,)x y ,请直接写出M 的对应点1M 的坐标.24.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DEAB的值可能为( )A.2 B.12C.2或12(2)已知:如图1,ABC中,AD是BAC∠的角平分线,2,AB AD ADE B=∠=∠.求证:ABD△与ADE互为母子三角形.(3)如图2,ABC中,AD是中线,过射线CA上点E作//EG BC,交射线DA于点G,连结BE,射线BE与射线DA交于点F,若AGE与ADC互为母子三角形.求AGGF的值.25.如图,在四边形ABCD中,AD∥BC,AC,BD交于点E,过点E作MN∥AD,分别交AB,CD于点M,N.(1)求证:△AME~△ABC;(2)求证:111 ME AD BC=+;(3)若AD=5,BC=7,求MN的长.26.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点、顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.求面积最大的三角形的斜边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可. 【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3, ∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D . 【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.2.B解析:B 【分析】根据已知对各个条件进行分析,从而得到答案. 【详解】 解:A.能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°; ∴△ABC 是直角三角形; B.不能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B+∠DAC=90°, ∴∠BAD=∠DAC , ∴△ABD ≌△ACD (ASA ), ∴AB=AC ,∴△ABC 是等腰三角形, ∴无法证明△ABC 是直角三角形; C.能,∵2AB BD BC =⋅ ∴AB BCBD AB= ∵∠B=∠B ∴△CBA ∽△ABD , ∴∠ADB=∠BAC ,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC是直角三角形;D.能,∵2AC CD BC=⋅,∴AC BC=CD AC∵∠C=∠C∴△CBA∽△CAD,∴∠ADC=∠BAC=90°∴△ABC是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.3.B解析:B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】解:如图,过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:120=160:(160−x),解得:x=80.答:投射在墙上的影子DE长度为80cm.故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是正确地构造直角三角形.4.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标. 【详解】如图,过点B 作BF ⊥x 轴,垂足为F , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAO+∠BAF=90°, ∵∠DAO+∠ADO=90°, ∴∠ADO=∠BAF , ∴△ADO ∽△BAF , ∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D , ∴OA=1,OD=2,BF=2, ∴1:2=2:FA , ∴FA=4, ∴点B (5,2), ∵四边形ABCD 是矩形, ∴点E 是BD 的,AC 的中点, ∴点E (52,2), 设点C 的坐标为(m ,n ),∴150,2,222m n ++== ∴m=4,n=4,∴点C 的坐标为(4,4), 故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键.5.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.6.A解析:A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点,∴512CD BC -=即5142CD -=, 解得CD=252-,∴12ADC C AF S D ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.7.D解析:D【分析】根据黄金分割的概念和黄金比值求出AC =BD =540,进而得出答案.【详解】解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点,∴AC =BD =8051-=540, ∴CD =BD ﹣(AB ﹣BD )=2BD ﹣AB =5160,故选:D .【点睛】此题考查了黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与较51-叫做黄金比. 8.C解析:C【分析】根据题意和相似三角形的判定与性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:在△ABC 中,中线AE 、BD 相交于点F ,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE AB =12,故①正确; ∴△CDE ∽△CAB , ∴12CD DE CA AB ==,12CD CE DE DE AC BC AB AB ++==++,故②错误; ∵DE ∥AB ,∴△DEF ∽△BAF , ∴12EF DE AF BA ==, ∴CD EF CA FA=,故③正确; ∵CD =DA ,12EF AF =, ∴S △CDE =S △ADE ,13DEF ADE S S ∆∆=, ∴FDE CDE S S ∆∆=13,故④正确; 故选:C .【点睛】本题考查了相似三角形的判定与性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】解:∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=5-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE AD BC AC=,∴5125x x -=, ∴x=6017, ∴正方形CDEF 的边长为6017. 故选:B .【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.D解析:D【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABO 与A B O ''△的相似比为12,且A '在第四象限, ∴点A 的对应点A '的坐标为118,422⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即(4,-2), 故选:D .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.11.C解析:C【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值12叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则113122AP -=-=, 2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点睛】 本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.1或3【分析】由正方形的性质结合三角形内角和定理可得出结合可得出由可证出再利用相似三角形的性质可求出的长【详解】解:四边形为正方形即或故答案为:1或3【点睛】本题考查了相似三角形的判定与性质正方形的 解析:1或3.【分析】由正方形的性质结合三角形内角和定理可得出90BAE AEB ∠+∠=︒,结合90AEB CEF ∠+∠=︒可得出BAE CEF ∠=∠,由B C ∠=∠,BAE CEF ∠=∠可证出ABE ECF ∆∆∽,再利用相似三角形的性质可求出CE 的长.【详解】 解:四边形ABCD 为正方形,90B C ∴∠=∠=︒,90BAE AEB ∴∠+∠=︒.EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,ABE ECF ∽, ∴CE CF BA BE ,即4344CE CE, 1CE ∴=或3CE =.故答案为:1或3.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形内角和定理,利用“两角对应相等的三角形相似”找出ABE ECF ∆∆∽是解题的关键.14.【分析】证明△ECG △FBA 利用相似三角形的性质求解即可【详解】设EG 交AF 于点Q ∵EG ⊥AF ∴∠FQG=90∴∠QFG+∠QGF=90在正方形ABCD 中∠B=∠C=90∴∠QAB+∠AFB=90∴ 解析:43【分析】证明△ECG ~△FBA ,利用相似三角形的性质求解即可.【详解】设EG 交AF 于点Q ,∵EG ⊥AF ,∴∠FQG=90︒,∴∠QFG+∠QGF =90︒,在正方形ABCD 中,∠B=∠C =90︒,∴∠QAB+∠AFB =90︒,∴∠QGF =∠FAB ,在△ECG 和△FBA 中,∠B=∠C =90︒,∠QGF =∠FAB ,∴△ECG ~△FBA(两组对应角相等的三角形是相似三角形),∴EC CG BF AB =, ∴EC CF FG BF AB+=, ∵E 是CD 的中点,∴122CE CD ==, ∵CF=1,∴BF=3, ∴2134FG +=, 解得:FG=53, ∴43BG BF FG =-=, 故答案为:43. 【点睛】 本题考查了正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.15.9【分析】过D 点作DF ∥CE 交AE 于F 如图先由DF ∥BE 根据平行线分线段成比例得到DF=BE=3再由DF ∥CE 得到然后利用比例的性质求CE 的长【详解】解:过D 点作DF ∥CE 交AE 于F 如图∵DF ∥BE解析:9【分析】过D 点作DF ∥CE 交AE 于F ,如图,先由DF ∥BE ,根据平行线分线段成比例得到DF=BE=3,再由DF ∥CE 得到DF AD CE AC=,然后利用比例的性质求CE 的长. 【详解】解:过D 点作DF ∥CE 交AE 于F ,如图,∵DF ∥BE ,∴DF DO BE BO=, ∵O 是BD 的中点,∴OB=OD ,∴DF=BE=3,∵DF ∥CE ,∴DF AD CE AC=,∵AD :DC=1:2,∴AD :AC=1:3, ∴13DF CE =, ∴CE=3DF=3×3=9.故答案为9.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16.【分析】根据题意可以求得菱形ABCD 的面积再根据题意可以知所有的菱形都相似即可得到菱形AC2020C2021D2021的面积【详解】解:作CE ⊥AB 交AB 的延长线于点E 如右图所示由已知可得∠ABC =解析:40412【分析】根据题意,可以求得菱形ABCD 的面积,再根据题意,可以知所有的菱形都相似,即可得到菱形AC 2020C 2021D 2021的面积.【详解】解:作CE ⊥AB 交AB 的延长线于点E ,如右图所示,由已知可得,∠ABC =120°,BC =1,∠CAB =30°,∴∠CBE =60°,∴∠BCE =30°,∴CE ∴AC∴菱形ABCD 的面积是1×2=2,∵AC AB =1,图中的菱形都是相似的,∴菱形AC2020C 2021D 2021的面积为:2×[(1)2]2020=2×4040=40412,【点睛】本题考查了图形的相似、菱形的性质、图形的变化类,解题的关键是明确题意,发现图形的变化特点,利用数形结合的思想解答.17.3【分析】根据△ADE△DEC△BCD的面积之比为4:2:3可得出AE:EC=2:1AD:BD=2:1则可证明DE∥BC利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE根解析:3【分析】根据△ADE,△DEC,△BCD的面积之比为4:2:3,可得出AE:EC=2:1,AD:BD=2:1,则可证明DE∥BC,利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE,根据相似三角形的判定可推出BC CDCD DE=,计算后即可得出结论.【详解】解:如图,∵S△ADE:S△DEC=4:2,∴AE:EC=2:1,∵S△ADE:S△DEC:S△BCD =4:2:3,∴S△ACD:S△BCD=6:3,∴AD:BD=2:1,∵AE ADEC BD=,∴DE ∥BC ,∴∠B=∠ADE ,∵∠ACD=∠ADE ,∴∠ACD=∠B ,∵∠A=∠A ,∴△ACD ∽△ABC , ∴BC AB AC CD AC AD==, 同理可证:△ACD ∽△ADE , ∴CD AC AD DE AD AE ==, ∴BC CD CD DE=, ∵DE ∥BC ,∴△ABC ∽△ADE ,, ∴DE AD BC AB=, ∵AD :BD=2:1, ∴23AD AB =, ∴23DE BC =, ∴23DE BC =, ∴223BC BC CD ⋅=, ∵,∴3BC =.故答案为:3.【点睛】此题主要考查了相似三角形的判定与性质,掌握平行线的判定与相似三角形的判定与性质是解题的关键.18.4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO 根据相似比可求得CO 的长即可【详解】解:∵点EF 分别是△ABC 中ACAB 边的中点∴EF 是△ABC 的中位线∴EF=BCEF ∥BC ∴△EFO解析:4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO ,根据相似比可求得CO 的长即可.【详解】解:∵点E、F分别是△ABC中AC、AB边的中点.∴EF是△ABC的中位线.∴EF=1BC,EF∥BC.2∴△EFO∽△BCO,且相似比为1:2.∴CO=2FO.∵FC=6.∴OC=2FO=4.故答案为4.【点睛】此题主要考查三角形的中位线的定理和相似三角形的判定方法的掌握.19.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E点坐标为:当与在原点异侧时E点坐标为:故答案为--解析:(4,2)或(4,2)【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC与DEF是以坐标原点O为位似中心的位似图形,分两种情况,当ABC与DEF在原点同侧时,E点坐标为:(4,2),--,当ABC与DEF在原点异侧时,E点坐标为:(4,2)--.故答案为:(4,2)或(4,2)【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.20.①②③【分析】由旋转性质得AD=AC∠ADE=∠C利用AD=AC得到∠ADC=∠C即可推出∠ADC=∠ADE判断①正确;根据∠E=∠B∠AFE=∠BFD即可证明△AEF∽△DBF判断②正确;利用三角解析:①②③【分析】由旋转性质得AD=AC,∠ADE=∠C,利用AD=AC得到∠ADC=∠C,即可推出∠ADC=∠ADE,判断①正确;根据∠E=∠B,∠AFE=∠BFD,即可证明△AEF∽△DBF,判断②正确;利用三角形的外角性质判断③正确;由∠FAD不一定等于∠CAD,不能证明△ADF全等于△ADC,故CD不一定等于DF,由此判断④错误.【详解】由旋转得:AD=AC,∠ADE=∠C,∵AD=AC,∴∠ADC=∠C,∴∠ADC=∠ADE ,即DA 平分∠EDC ,故①正确;∵∠E=∠B ,∠AFE=∠BFD ,∴△AEF ∽△DBF ,故②正确;∵∠ADB=∠ADE+∠BDF=∠C+∠CAD ,∠ADE=∠C ,∴BDF CAD ∠=∠,故③正确;∵∠FAD 不一定等于∠CAD ,AD=AD ,∠ADC=∠ADE ,∴不能证明△ADF 全等于△ADC ,故CD 不一定等于DF ,∴DE-DF 不一定等于BC-CD ,即无法证明EF=BD ,故④错误;故答案为:①②③.【点睛】此题考查旋转的性质,等腰三角形的性质,相似三角形的判定及性质,三角形的外角性质,是一道三角形的综合题.三、解答题21.(1)15°;(2)【分析】(1)由翻折易得BC BF =,FBE EBC ∠=∠,由2BF AB =及直角三角形的性质易得30AFB ∠=︒,再由矩形的对边平行即可得结论;(2)根据翻折易得FAB EDF ∆∆∽,从而有对应边成比例,由此可得DE 的长,从而可得EC 的长,即EF 的长,由勾股定理得DF ,最后可得AD 的长.【详解】(1)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处,BC BF ∴=,FBE EBC ∠=∠,2BC AB =,2BF AB ∴=,四边形ABCD 是矩形,∴∠A =90º,//AD BC ,30AFB ∴∠=︒,30AFB CBF ∴∠=∠=︒,1152CBE FBC ∴∠=∠=︒; (2)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处, 90BFE C ∴∠=∠=︒,CE EF =, 又矩形ABCD 中,90A D ∠=∠=︒,90AFB DFE ∴∠+∠=︒,90DEF DFE ∠+∠=︒,AFB DEF ∴∠=∠,FAB EDF ∴∆∆∽,∴AF AB DE DF =, AF DF AB DE ∴=,10AF DF =,5AB =, 2DE ∴=,523CE DC DE ∴=-=-=,3EF ∴=,2222325DF EF DE ∴=-=-=,255AF ∴==, 25535BC AD AF DF ∴==+=+=.【点睛】本题主要考查了矩形的性质、直角三角形的性质、相似三角形的判定与性质、图形的翻折,关键是图形的翻折这个条件,由它可得出对应线段相等、对应角相等,充分用好用足它们.22.图见解析;理由见解析【分析】作AB 的垂线即可;利用两个角对应相等的两个三角形相似即可判定.【详解】解:如图,作AB 的垂线,垂足为P ,直线CP 就是所求直线;证明:∵CP ⊥AB ,∴∠CPA=∠BPC=90°,∵90C =∠,∴∠A+∠B=90°,∠A+∠ACP=90°,∴∠ACP =∠B ,∴△CPA ∽△BPC .【点睛】本题考查了尺规作图和相似三角形的判定,解题关键是熟悉尺规作图的方法,根据相似确定如何作图.23.(1)见解析;(2)1(6,2)B -,1(4,2)C --;(3)1(2,2)M x y --.【分析】(1)先确定B ,C 的位置,再确定它们各自关于原点的对称点,最后把对称点的坐标各自扩大2倍即可;(2)点B 关于原点的对称点为(-3,1),扩大2倍,得到1B ;点C 关于原点的对称点为(-2,-1),扩大2倍,得到1C ;(3)利用原点对称原理计算,加上倍数即可.【详解】解:(1)如图,△111O B C 即为所求作.(2)∵点B (3,1)-,∴点B 关于原点的对称点为(-3,1),∴扩大2倍,得到1(6,2)B -;∵点C (2,1),∴点C 关于原点的对称点为(-2,-1),∴扩大2倍,得到1(4,2)C --.(3)∵点M (,)x y ,∴点M 关于原点的对称点为(,)x y --,∴扩大2倍,得到1(2,2)M x y --.【点睛】本题考查了位似的作图与计算问题,熟练将位似与原点的对称密切联系起来是解题的关键.24.(1)C ;(2)见解析;(3)13AG GF =或3. 【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出ABD ADE ∽△△,再根据2AB AD =从而得出结论;(3)根据题意画出图形,分当,G E 分别在线段,AD AC 上时和当,G E 分别在射线,DA CA 上时两种情况加以讨论;【详解】(1)∵DEF 与ABC 互为母子三角形, ∴1=2DE AB 或2 故选:C (2)AD 是BAC ∠的角平分线,BAD CAD ∴∠=∠,ADE B ∠=∠,ABD ADE ∴∽.又2AB AD =,ABD ∴与ADE 互为母子三角形.(3)如图,当,G E 分别在线段,AD AC 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, AG DG ∴=, AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE∴===, 3DG GF ∴=,3AG GF∴=. 如图,当,G E 分别在射线,DA CA 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, 1123AG AD DG ∴==,AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE ∴===, DG GF ∴=, 13AG GF ∴=. 综上所述,13AG GF =或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.25.(1)见详解;(2)见详解;(3)356 【分析】(1)利用相似三角形的判定定理直接证明即可(2)利用平行线分线段成比例定理,再证明,ABC DBC △AME ∽△△DEN ∽△,CEN AME ABC △∽CAD,△∽△,根据三角形相似的性质即可解答.(3)结合(2)的结论将AD=5,BC=7,代入即可求得MN 的长【详解】(1)//MN BCAME ABC ∴△∽△,(2)//AD MN ,//AD BCDE AE BD AC ∴= //MN BC,ABC DBC ∴△AME ∽△△DEN ∽△,AE ME DE NE AC BC BD CB ∴== ME NE BC BC∴= ME NE ∴=∴E 是MN 的中点,ME=NE=12MN //BC//AD MNCEN AME ABC ∴△∽CAD,△∽△,NE CE ME AE AD AC BC AC ∴== 1NE ME CE AE AC AD BC AC AC AC ∴+=+== 1NE ME AD BC∴+= 111ME AD BC∴=+ (3)结合(2)的结论,5,7AD BC == 11157MN ∴=+ 3512ME ∴=ME NE =7035126MN ME NE ∴=+== 【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题关键是熟练掌握相似三角形的判定定理,利用比例的等量关系解题.26.【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=5,AC:BC=1∶2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1∶2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE10,EF=10,DF=2的三角形,∵102105210,5∴△ACB∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF1010÷2=10,△DEF为面积最大的三角形,其斜边长为2.【点睛】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.。

北师大版九年级上册数学第四章 图形的相似 含答案

北师大版九年级上册数学第四章 图形的相似 含答案

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为()A.24cmB.21cmC.13cmD.9cm2、如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1B.2C.3D.43、如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( )A.18B.C.D.4、如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D 3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D 5,…,Dn,分别记△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面积为S1, S2, S3,…Sn.则Sn为()A. B. C. D.5、下列判断正确的是()A.任意两个等腰直角三角形相似B.任意两个直角三角形相似C.任意两个等腰三角形相似D.菱形都相似6、《九章算术》是我国数学经典,上面记载:“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方几何?”其意思是:如图,已知正方形小城ABCD,点E,G分别为CD,AD的中点,EF⊥CD,GH⊥AD,点F,D,H在一条直线上,EF=30步,GH=750步.正方形小城ABCD的边长是()A.150步B.200步C.250步D.300步7、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为( )A.1B.2C.3D.48、如图,AB是⊙O的直径,弦BC=2cm,F 是弦BC的中点,∠ABC=60°。

最新北师大版九年级数学上册 图形的相似综合复习题

最新北师大版九年级数学上册 图形的相似综合复习题

图形的相似综合复习题一、选择题(每小题6分,共24分)1.(重庆)如图,△ABC ∽△DEF ,相似比为1∶2,若BC =1,则EF 的长是( B ) A .1 B .2 C .3 D .42.(泰安)在△ABC 和△A 1B 1C 1中,下列四个命题:①若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,则△ABC≌△A 1B 1C 1;②若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,则△ABC≌△A 1B 1C 1;③若∠A=∠A 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1;④若AC :A 1C 1=CB :C 1B 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1.其中真命题的个数为( B )A .4个B .3个C .2个D .1个3.(宁波)如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD=90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D .2∶ 3 解析:∵AD∥BC,∴∠ACB =∠DAC,又∵∠B=∠ACD=90°,∴△CBA ∽△ACD ,BC AC =AC AD=AB DC ,AB =2,DC =3,∴BC AC =AC AD =AB DC =23,∴BC AC =23,∴cos ∠ACB =BC AC =23,cos ∠DAC =AC DA =23,∴BC AC ·AC DA =23×23=49,∴BC DA =49,∵△ABC 与△DCA 的面积比=BC DA,∴△ABC 与△DCA 的面积比=49,故选:C 4.孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E′的坐标是( D ) A .(-2,1) B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)解析:如图二、填空题(每小题6分,共24分)5.(邵阳)如图,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:__△ABP∽△AED(答案不唯一)__. ,第5题图) ,第6题图)6.(滨州)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则AD AB =__22__. 7.(2013·安徽)如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=__8__.解析:过点P 作PQ∥DC 交BC 于点Q ,由DC∥AB,得到PQ∥AB,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF =12BC ,∴△PEF ∽△PBC ,且相似比为1∶2,∴S △PEF ∶S △PBC =1∶4,S △PEF =2,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =S 1+S 2=8,第7题图) ,第8题图)8.(娄底)如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为__9__m .三、解答题(共52分)9.(10分)(2013·巴中)如图,在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为点E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD+∠AFE=180°,∠AFE =∠B,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎪⎨⎪⎧∠AFD=∠C,∠ADF =∠DEC,∴△ADF ∽△DEC(2)解:∵▱ABCD ,∴CD =AB =8.由(1)知△ADF∽△DEC,∴AD DE =AF CD ,∴DE =AD·CD AF=63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=6 10.(10分)(巴中)如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)求△A 1B 1C 1与△A 2B 2C 2的面积比,即S △A 1B 1C 1:S △A 2B 2C 2=____(不写解答过程,直接写出结果).解:(1)如图所示:△A 1B 1C 1即为所求(2)如图所示:△A 2B 2C 2即为所求(3)∵将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,∴△A 1B 1C 1与△A 2B 2C 2的相似比为1∶2,∴S △A 1B 1C 1∶S △A 2B 2C 2=1∶411.(10分)(德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,则相机的焦距应调整为多少毫米?解:根据物体成像原理知:△LMN∽△LBA,∴MN AB =LC LD.(1)∵像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD,解得LD =7,∴拍摄点距离景物7米 (2)拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,∴35LC =24,解得LC =70,∴相机的焦距应调整为70 mm12.(10分)(遵义)如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于点O.(1)求证:BO =DO ;(2)若EF⊥AB,延长EF 交AD 的延长线于点G ,当FG =1时,求AD 的长.(1)证明:∵四边形ABCD 是平行四边形,∴DC =AB ,DC ∥AB ,∴∠ODF =∠OBE,在△ODF 与△OBE 中,⎩⎪⎨⎪⎧∠ODF=∠OBE,∠DOF =∠BOE,DF =BE ,∴△ODF ≌△OBE(AAS),∴BO =DO(2)解:∵BD⊥AD,∴∠ADB =90°,∵∠A =45°,∴∠DBA =∠A =45°,∵EF ⊥AB ,∴∠G =∠A=45°,∴△ODG 是等腰直角三角形,∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF =FG ,△DFG 是等腰直角三角形,∵△ODF ≌△OBE(AAS),∴OE =OF ,∴GF =OF =OE ,即2FG =EF ,∵△DFG 是等腰直角三角形,∴DF =FG =1,∴DG =DF 2+FG 2=2,∵AB ∥CD ,∴AD DG =EF FG,即AD 2=21,∴AD =2 2 13.(12分)(衢州)(1)提出问题如图①,在等边△ABC 中,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC 与∠ACN 的数量关系,并说明理由.(1)证明:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC=∠ACN(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN (3)解:∠ABC=∠ACN.理由如下:∵BA=BC ,MA =MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BA M =∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,∴∠BAM =∠CAN,∴△BAM ∽△CAN ,∴∠ABC =∠ACN1.如图,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( C )A.1条B.2条C.3条D.4条,第1题图) ,第2题图)2.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为__(2,4-22)__.。

北师版九年级上册数学图形的相似综合复习题

北师版九年级上册数学图形的相似综合复习题

AC AD =,AB=2,DC=3,∴===,∴=,∴cos∠ACB==,cos∠DAC==,∴·=×=,∴=,∵△4ABC与△DCA的面积比=,∴△BCABC与△DCA的面积比92△1△1△1△1图形的相似综合复习题一、选择题(每小题6分,共24分)1.(重庆△)如图,ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是(B)A.1B.2C.3D.42.(泰安△)在ABC和A△1B1C1中,下列四个命题:①若AB=A B,AC=A1C1,∠A=∠A1,则ABC≌A B1C1;②若AB=A1B1,AC=A1C1,∠B=∠B1,则ABC≌A B1C1;③若∠A=∠A1,∠C=∠C1,则ABC∽A△1B1C1;④若AC:A1C1=CB:C1B1,∠C=∠C1,则ABC∽A△1B1C1.其中真命题的个数为(B)A.4个B.3个C.2个D.1个3.(宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=△3,则ABC 与△DCA的面积比为(C)A.2∶3B.2∶5C.4∶9D.2∶3BC AC 解析:∵AD∥BC,∴∠ACB=∠DAC,又∵∠B=∠ACD=△90°,∴CBA∽△ACD,=AB BC AC AB2BC2BC2AC2 DC AC AD DC3AC3AC3DA3 BC AC224BCAC DA339DA9DA4=,故选:C4.孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为△1,把EFO缩小,则点E的对应点E′的坐标是(D)A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)解析:如图二、填空题(每小题6分,共24分)5.(邵阳)如图,在ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:__△ABP∽△AED(答案不唯一)__.AB2DE CD AF⎩,第5题图),第6题图)AD2 6.(滨州)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=____.7.(2013·安徽)如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2,若S=2,则S1+S2=__8__.解析:过点P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=△SCQP,S△ABP=△SQ PB,∵1EF为△PCB的中位线,∴EF∥BC,EF=2△BC,∴PEF∽△PBC,且相似比为1∶2,∴S△PEF∶S △PBC=1∶4,△SPEF=2,∴△SPBC=△SC QP+△SQ PB=△SP DC+△SA BP=S1+S2=8,第7题图),第8题图) 8.(娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为__9__m.三、解答题(共52分)9.(10分)(2013·巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD⎧⎪∠AFD=∠C,+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,⎨∴△⎪∠ADF=∠DEC,ADF∽△DECAD AF AD·CD(2)解:∵▱ABCD,∴C D=AB=8.由(1)知△ADF∽△DEC,∴=,∴D E==63×843=12.在△R t ADE中,由勾股定理得AE=DE2-AD2=122-(63)2=6 10.(10分)(巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的A△1B1C1;(2)将A△1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出A△2B2C2;AB LD 50 LDLC 4(3)求 A △1B 1C 1 与 A △2B 2C 2的面积比,即 △S A 1B 1C 1:△S A 2B 2C 2=____(不写解答过程,直接写出结果).解:(1)如图所示: A △1B 1C 1即为所求(2)如图所示: A △2B 2C 2即为所求(3)∵将 A △1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点 A 2,B 2,C 2,∴ △A 1B 1C 1 与 A △2B 2C 2的相似比为 1∶2,∴S △A 1B 1C 1∶△S A 2B 2C 2=1∶411.(10 分)(德宏州)如图,是一个照相机成像的示意图.(1)如果像高 MN 是 35 mm ,焦距是 50 mm ,拍摄的景物高度 AB 是 4.9 m ,拍摄点离景物 有多远?(2)如果要完整的拍摄高度是 2 m 的景物,拍摄点离景物有 4 m ,像高不变,则相机的 焦距应调整为多少毫米?LC 解:根据物体成像原理知:LMN∽ LBA ,∴△MN = .(1)∵像高 MN 是 35 mm ,焦距是35 4.950 mm ,拍摄的景物高度 AB 是 4.9 m ,∴ = ,解得 LD =7,∴拍摄点距离景物 7 米35 2(2)拍摄高度是 2 m 的景物,拍摄点离景物有 4 m ,像高不变,∴ = ,解得 LC =70,∴相机的焦距应调整为 70 mm12.(10 分)(遵义)如图, ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是 AB ,CD 上的点, 且 BE =DF ,连接 EF 交 BD 于点 O.(1)求证:BO =DO ;(2)若 EF⊥AB,延长 EF 交 AD 的延长线于点 G ,当 FG =1 时,求 AD 的长.⎧∠ODF=∠OBE,DG FG 21⎧AB=AC,⎧AB=AC,AM AN(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF⎪与△OBE中,⎨∠DOF=∠BOE,∴△ODF≌△OBE(AAS),∴BO=DO⎪⎩DF=BE,(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=△45°,∴ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS),∴OE=OF,∴GF=OF=OE,即2FG=EF,AD EF∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG=DF2+FG2=2,∵AB∥CD,∴=,AD2即=,∴AD=2213.(12分)(衢州)(1)提出问题如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM 为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC与∠ACN的数量关系,并说明理由.(1)证明:∵△ABC,△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,⎪∴∠BAM=∠CAN,∵在△BAM和△CAN中,⎨∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴∠ABC⎪⎩AM=AN,=∠ACN(2)解:结论∠ABC=∠ACN仍成立.理由如下:∵△ABC,△AMN是等边三角形,∴AB =AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,⎪⎨∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN(3)解:∠ABC=∠ACN.理由如下:⎪⎩AM=AN,AB AC ∵BA=BC,MA=△M N,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴ABC∽△AMN,∴=,又∵∠BA M=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACNR t ABC的斜边BC上异于B,C的一定点,过M点作直线截△ABC,使截1.如图,M是△得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条,第1题图),第2题图) 2.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为__(2,4-22)__.。

北师大版九年级上册数学第四章 图形的相似含答案

北师大版九年级上册数学第四章 图形的相似含答案

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图1,在正方形ABCD中,点F为对角线BD上一点,EF⊥AB于点E,将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,则在图2中,以下说法:①FD=AE;②∠AEB=135°;③S△AEB :S△DFB=1:2;④AE∥BF,正确结论的序号()A.①②B.①③C.②③D.③④2、如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A. B. C. D.3、下列判断正确的是A.所有等腰三角形都相似B.所有直角三角形都相似C.所有菱形都相似D.所有等边三角形都相似4、△ABC∽△A1B1C1,且相似比为,△A1B1C1∽△A2B2C2,且相似比为,则△ABC与△A2B2C2的相似比为()A. B. C. 或 D.5、下列各组长度的线段(单位:)中,成比例线段的是()A.1,2,3,4B.1,2,3,5C.2,3,4,5D.2,3,4,66、如图,与是位似图形,点是位似中心,若,,则等于()A.6B.8C.9D.127、已知,a+2b=16,则c的值为()A. B. C.8 D.28、已知△ABC,以点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作出()个A.1个B.2个C.4个D.无数个9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE~△ECH;其中,正确的结论有( )A.1个B.2个C.3个D.4个10、如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A. B. C. D.11、如图,ΔABC中,∠C=90°,CD⊥AB,DE⊥AC,则图中与ΔABC相似的三角形有()A.4个B.3个C.2个D.1个12、两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为( )A.48cmB.54cmC.56cmD.64cm13、如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1B.2C.3D.414、如图,如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC ,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁15、如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A.不存在B.等腰三角形C.直角三角形D.等腰三角形或直角三角形二、填空题(共10题,共计30分)16、在平面直角坐标系xOy中,点A、B的坐标分别为(2,﹣1)、(3,0),以原点O为位似中心,把线段AB放大,点B的对应点B′的坐标为(6,0),则点A的对应点A′的坐标为________17、如图,小明将矩形纸片ABCD绕点A逆时针旋转得到矩形AEGH,点E恰好落在AC上,EG交AD于点F.若AB=3,tan∠ACB=,则FG的长为________.18、如图,以点O为位似中心,将△ABC缩小得到△A′B′C,若AA′=2OA′,则△ABC与△A′B′C′的周长比为________.19、如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=________.20、如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于________.21、如图,线段两个点的坐标分别为,,以原点为位似中心,将线段缩小得到线段,若点的坐标为,则点的坐标为________.22、如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是1.2m2,则地面上的阴影面积是________ m2.23、如图,△ABC内接于⊙O,D是上一点,E是BC的延长线上一点,AE 交⊙O于点F,若要使△ADB∽△ACE,还需添加一个条件,这个条件可以是________ .24、如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为________25、已知,则的值为________.三、解答题(共5题,共计25分)26、已知=k,求k2-3k-4的值.27、如图,在中,AB=AC,D、E、B、C在同一条直线上,且.求证:∽.28、如图,在中,,在边上取一点,使,过作交于, .求的长.29、如图,操场上有一根旗杆AH.为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?30、如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E。

北师大版九年级数学上学期期末培优训练第四章:图形的相似(含答案)

九年级数学上学期期末培优训练:图形的相似1.如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.2.在Rt△ABC中,∠ACB=90°,AB=5,AC=3.矩形DEFG的顶点D、G分别在边AC、BC上,EF在边AB上.(1)点C到AB的距离为.(2)如图①,若DE=DG,求矩形DEFG的周长.(3)如图②,若矩形DEFG的周长是DE长的8倍,则矩形DEFG的周长为.3.已知:如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E,AD与BE交于点H.(1)求证:BD2=DH•DA;(2)过点C作CF∥AB交BE的延长线于点F.求证:HB2=HE•HF.4.在平行四边形ABCD中,AD=BD,E为AB的中点,F为CD上一点,连接EF交BD 于G.(1)如图1,若DF=DG=2,AB=8,求EF的长;(2)如图2,∠ADB=90°,点P为平行四边形ABCD外部一点,且AP=AD,连接BP、DP、EP,DP交EF于点Q,若BP⊥DP,EF⊥EP,求证:DQ=PQ.5.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)求▱DEFG对角线DF的长;(2)求▱DEFG周长的最小值;(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.6.如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.(1)求证:四边形ABCD是矩形;(2)求证:.7.如图,正方形ABCD的边长为1.对角线AC、BD相交于点O,P是BC延长线上的一点,AP交BD于点E,交CD于点H,OP交CD于点F,且EF与AC平行.(1)求证:EF⊥BD.(2)求证:四边形ACPD为平行四边形.(3)求OF的长度.8.如图,在正方形ABCD中,边长为4,∠MDN=90°,将∠MDN绕点D旋转,其中DM 边分别与射线BA、直线AC交于E、Q两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P.(1)如图1,点E在线段AB上时,①求证:AE=CF;②求证:DP垂直平分EF;(2)当AE=1时,求PQ的长.9.如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF 交AD于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.10.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?11.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.12.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA 边向点A以1厘米/秒的速度移动.:点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?13.在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在射线BC上.猜想:如图①,点D在BC边上,BD:BC=2:3,AD与BE相交于点P,过点A作AF∥BC,交BE的延长线于点F,则的值为.探究:如图②,点D在BC的延长线上,AD与BE的延长线交于点P,CD:BC=1:2,求的值.应用:在探究的条件下,若CD=2,AC=6,则BP=.14.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.15.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.参考答案1.(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.2.解:(1)过C作CM⊥AB于M,交DG于点N,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,由勾股定理得:BC==4,=,∵由三角形的面积公式得:S△ACB∴3×4=5CM,解得:CM=,故答案为:;(2)如图,∵四边形DEFG是矩形,∴DG∥AB.∴MN=DE,CN⊥DG,∴△CDG∽△CAB,∴=,设DE=DG=x,则=,解得:x=,∴矩形DEFG的周长为4×=;(3)∵矩形DEFG的周长是DE长的8倍,∴设DE=MN=x,则DG=EF=×((8x﹣x﹣x)=3x,∵由(2)知:=,∴=,解得:x=,即DE=,∵矩形DEFG的周长是DE长的8倍,∴矩形DEFG的周长是8×=,故答案为:.3.解:(1)证明:∵在△ABC中,AB=AC,AD是边BC上的中线∴AD⊥BC,∠BAD=∠CAD∴∠ADB=90°∵BE⊥AC于点E∴∠HEA=90°又∵∠AHE=∠BHD∴∠CAD=∠DBH∴∠BAD=∠DBH∴△BAD∽△DBH∴=∴BD2=DH•DA;(2)证明:连接HC,如图,∵AD⊥BC,AD是边BC上的中线∴AD垂直平分BC∴HB=HC∴∠HBC=∠HCB∵AB=AC∴∠ABC=∠ACB∵∠BEC=90°∴∠HBC+∠ACB=90°∴∠HCB+∠ABC=90°∵CF∥AB∴∠ABC+∠∠HCB+∠HCF=180°∴∠HCF=90°∵∠HCF=∠HEC=90°,∠FHC=∠CHE ∴△FHC∽△CHE∴=∴=∴HB2=HE•HF.4.解:(1)如图1中,∵DA =DB ,AE =EB , ∴DE ⊥AB ,∵四边形ABCD 是平行四边形, ∴CD ∥AB , ∴DE ⊥CD , ∵DF ∥EB ,∴=,∴=,∴BG =4,在Rt △DEB 中,∵∠DEB =90°,EB =4,DB =6,∴DE ==2,在Rt △DEF 中,则有EF ==2.(2)如图2中,设AB 交PD 于点O .∵EF ⊥PE ,∴∠PEF =∠DEB =90°, ∴∠DEQ =∠BEP , ∵DP ⊥PB ,∴∠DEO=∠OPB=90°,∵∠DOE=∠BOP,∴∠EDQ=∠EBP,∵△ADB是等腰直角三角形,AE=EB,∴DE=AE=EB,∴△DEQ≌△BEP(ASA),∴EQ=EP,DQ=PB,∵∠PEQ=90°,∴PQ=PE,∵△ADE∽△ABD,可得AD2=AE•AB,∵AD=AP,∴AP2=AE•AB,∴=,∵∠EAP=∠BAP,∴△EAP∽△P AB,∴===,∴PB=PE,∴DQ=PE,∴DQ=PQ.5.解:(1)如图1所示:连接DF,∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;故▱DEFG对角线DF的长.(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l▱DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵▱DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF(AA)∴,∴,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵▱DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中有,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△FHB,∴,HF=,在△BPH和△GPF中有:,∴△BPH∽△GPF(AA),∴∴PF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴.②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED===2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∴△HGQ∽△BCQ(AA),∴,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.6.解:(1)证明∵AD∥BC,∴,∵DO=BO,∴AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AC,∵∠DCE=∠ACB,∴∠ACB+∠ACD=90°,即∠BCD=90°,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,∵AD∥BC,∴,∴∴,∵∠ADC=∠ACF=90°,∴,∴.7.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵EF∥AC,∴EF⊥BD;(2)证明:∵EF∥AC,∴=,=,∵四边形ABCD是正方形,∴AD∥CP,OA=OC,∴=,即=,∴AO∥DP,∵AD∥CP,∴四边形ACPD为平行四边形;(3)解:由勾股定理得:AC=BD==,∵四边形ACPD为平行四边形,∴CP=AD=BC,∴=,∵AD∥BP,∴==,∴DE=BD=,OE=OD﹣DE=﹣=,∵DO=BD=,∵∠DEF=∠DOC=90°﹣∠EDF=45°,∴∠DFE=45°,∴EF=DE=,在Rt△OEF中,由勾股定理得:OF===.8.(1)①证明:∵四边形ABCD是正方形,∴DA=DC,∠ADC=∠DAE=∠DCF=90°,∴∠ADC=∠MDN=90°,∴∠ADE=∠CDF,∴△ADE≌△CDE(ASA),∴AE=CF.②∵△ADE≌△CDE(ASA),∴DE=DF,∵∠MDN=90°,∴∠DEF=45°,∵∠DAC=45°,∴∠DAQ=∠PEQ,∵∠AQD=∠EQP,∴△AQD∽△EQP,∴=,∴=,∵∠AQE=∠PQD,∴△AQE∽△DQP,∴∠QDP=∠QAE=45°,∴∠DPE=90°,∴DP⊥EF,∵DE=DF,∴PE=PF,∴DP垂直平分线段EF.(2)解:①当点E在线段AB上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=A H=AG,设QH=x,∵×4×x+×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.②当点E在BA的延长线上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x﹣×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.综上所述,PQ的长为或.9.(1)证明:∵AD⊥BC于D,作DE⊥AC于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.10.解:(1)当∠AEF=∠BFC时,要使△AEF∽△BFC,需=,即=,解得AF=1或3;当∠AEF=∠B CF时,要使△AEF∽△BCF,需=,即=,解得AF=1;综上所述AF=1或3.(2)延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;连结CE,以CE为直径作圆交AB于点F2、F3.(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.11.证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.12.解:①若△POQ∽△AOB时,=,即=,整理得:12﹣2t=t,解得:t=4.②若△POQ∽△BOA时,=,即=,整理得:6﹣t=2t,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.13.解:猜想:如图①∵BE是AC边上的中线,∴AE=CE,∵AF∥BC,∴△AEF∽△CEB,∴===1,∵BD:BC=2:3,∴BD:AF=2:3,∵AF∥BD,∴△APF∽△DPB,∴==;探究:过点A作作AF∥BC,交BE的延长线于点F,如图②,设DC=k,则BC=2k,∵AF∥BC,∴△AEF∽△CEB,∴==1,即AF =BC =2k ,∵A F ∥BD ,∴△APF ∽△DPB ,∴===;应用:CE =AC =3,BC =2CD =4,在Rt △BCE 中,BE ==5,∴BF =2BE =10,∵AF ∥BD ,∴△APF ∽△DPB ,∴==,∴BP =BF =×10=6.故答案为,6.14.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠B +∠C =180°,∠ADF =∠DEC ,∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC ;(2)∵AE ⊥BC ,AD =3,AE =3,∴在Rt △DAE 中,DE ===6,由(1)知△ADF ∽△DEC ,得=,∴AF ===2. 15.(1)证明:∵PQ ⊥AQ ,∴∠AQP =90°=∠ABC ,在△APQ 与△ABC 中,∵∠AQP =90°=∠ABC ,∠A =∠A ,∴△AQP ∽△ABC .(2)解:在Rt △ABC 中, AB =3,BC =4,由勾股定理得:AC =5. ∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,①当点P 在线段AB 上时,如题图1所示.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC ,∴=,即=,解得:PB =,∴AP =AB ﹣PB =3﹣=;(II )当点P 在线段AB 的延长线上时,如题图2所示.∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为或6.。

北师大版九年级上册数学第四章 图形的相似含答案(通用)

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在中,、为边的三等分点,,点为与的交点.若,则为()A.1B.2C.D.32、如图,A,B是双曲线上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC的面积为1,D为OB的中点,则k的值为()A. B.2 C.4 D.83、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG 最小值为( )A. B. C. D.4、小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米5、如果两个相似三角形的面积之比是1:2,那么这两个相似三角形的周长比是()A.2:1B.1:C.1:2D.1:46、如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B 1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)7、两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF= CE= 则关于的函数图象大致是()A. B. C. D.8、如图,在△ABC中,∠ACB=Rt∠,AC=2,点D是边AB上的一个动点,以CD 为直径作⊙O交AB的另一点于F,交AC的另一点于E,将点E绕点F按逆时针方向旋转120°得到点E',当点D在线段BF上时,点E'始终在⊙O上,则点D 由B出发,运动到与点F重合停止,点E'所经过的路径的长是()A. B. C. D.9、如图,射线OC分别交反比例函数,的图象于点A,B,若OA:OB=1:2,则k的值为()A.2B.3C.4D.610、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.11、△ABC与△DEF相似,且相似比是,则△DEF与△ABC的相似比是()A. B. C. D.12、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m13、如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2 cm 2B.4 cm 2C.8 cm 2D.16 cm 214、如图,已知在平面直角坐标系中,点是坐标原点,是直角三角形,,,点在反比例函数上,若点在反比例函数上,则的值为( )A. B. C. D.15、如图,已知矩形ABCD满足AB:BC=1:,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为()A.4B.4C.2D.1二、填空题(共10题,共计30分)16、如图,在中,∠C=90°,AC=3,BC=4,把绕C点旋转得到,其中点在线段AB上,那么的正切值等于________17、如图,在中,AD平分,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若,,,求BD的长是________.18、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.19、如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,A(﹣4,0),C(0,6),如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B的对应点B′的坐标是________.20、如图,直线,分别交直线m,n于点A,B,C,D,E,F,若,,,则EF的长为________.21、在Rt△ABC中,∠C=90°,AB=13,(如图),将△ABC绕点C旋转后,点A落在斜边AB上的点A’,点B落在点B’,A’B’与边BC相交于点D,那么的值为________.22、如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为________23、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.24、如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体在暗盒中所成的像的高度为,那么物体的高度应为________ .25、在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得AO=18m,BO=21m,延长AO,BO分别到D,C两点,使OC=6m,OD=7m,又测得CD=5m,则河塘宽AB=________m.三、解答题(共5题,共计25分)26、已知=,求的值.27、如图,在锐角△ABC中,AB=4,BC=5,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,连接AA1, CC1,若△ABA1的面积为4,求△CBC 1的面积.28、王老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯时,为避免上楼时墙角碰头,设计墙角到楼梯的竖直距离为,他量得客厅高,楼梯洞口宽,阁楼阳台宽.请你帮助王老师解决问题:要使墙角到楼梯的竖直距离为,楼梯底端到墙角的距离是多少米?29、感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC 上.若∠B=∠C=∠DPE=45°,BC=6 ,CE=4,求DE的长30、四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.①请直接写出AE的长度;②当DE⊥CF时,试求出CF长度.(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.探究:当∠B与∠EPC满足什么关系时,成立?并证明你的结论.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、B6、C7、C8、D9、C10、B11、A12、C13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(包含答案解析)(5)

一、选择题1.在ABC 中,10AB AC ==,72ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,则CD 的长为( )A .5B .555-C .1555-D .551-2.下列各组长度的线段(单位:cm )中,成比例线段的是( )A .2,3,4,5B .1,3,4,10C .2,3,4,6D .1,5,3,123.如图,A B C '''是ABC 以点О为位似中心经过位似变换得到的,若:1:2OA A A ''=,则A B C '''的周长与ABC 的周长比是( )A .1:2B .1:3C .1:4D .4:94.如图,已知,//,//ABC DF BC DE AC △,四边形DECF 的面积为12,若DE 经过ABC 的重心,则ABC 的面积为( )A .25B .26C .27D .285.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点D 是AB 的中点,点P 是直线BC 上一点,将BDP △沿DP 所在的直线翻折后,点B 落在1B 处,若1B D BC ⊥,则点P 与点B 之间的距离为( )A .1或5B .1或3C .54或3 D .54或56.已知等腰△ABC 的底角为75°,则下列三角形一定与△ABC 相似的是( ) A .顶角为30°的等腰三角形 B .顶角为40°的等腰三角形 C .等边三角形D .顶角为75°的等腰三角形7.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅.其中正确的是( )A .①②③B .①③④C .②③④D .①②④8.两个相似三角形面积比是4:9,其中一个三角形的周长为18,则另一个三角形的周长是( ) A .12B .12或24C .27D .12或279.若ad=bc ,则下列不成立的是( ) A .a cb d= B .a c ab d b-=- C .a b c db d++= D .1 111a cb d ++=++ 10.如图,四个全等的直角三角形拼成“赵爽弦图”得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO GP =,下列结论:①GOP BCP ∠=∠,②BC BP =,③:21BG PG =+,④DP PO =.正确的是( )A .②③④B .①③④C .①②④D .①②③11.若ABC 的每条边长增加各自的20%得A B C ''',则B '∠的度数与其对应角B 的度数相比( ) A .增加了20%B .减少了20%C .增加了()120%+D .没有改变12.如图,在△ABC 中,∠C =90°,AB =10,BC =8.E 是AC 边上一动点,过点E 作EF ∥AB 交BC 于点F ,D 为线段EF 的中点,当BD 平分∠ABC 时,AE 的长度是( )A .1613B .3013C .4013D .4813二、填空题13.已知高为2m 的标杆在水平地面上的影子长1.5m ,此时测得附近旗杆的影子长7.5m .则旗杆的高为__m .14.已知35a b =,则aa b+的值为______.15.在平面直角坐标中,△ABC 的顶点坐标分别是A (1,1),B (4,2),C (3,5),以点A 为位似中心,相似比为1:2,把三角形ABC 缩小,得到△AB 1C 1,则点C 的对应点C 1的坐标为_________.16.已知线段AB 长是2,P 是线段AB 上的一点,且满足2·,AP AB BP =那么AP 长为____.17.如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,32OE EA =,则FGBC=________.18.如图,矩形ABCD 中,4=AD ,10AB =,P 为CD 边上的动点,当DP =_________时,ADP △与BCP 相似.19.如图,在Rt ABC △中,90C ∠=︒,棱长为1的立方体的表面展开图有两条边分别在AC ,BC 上,有两个顶点在斜边AB 上则图中阴影部分的面积为__________.20.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.三、解答题21.如图,已知直线CD 过点C(-2,0)和D(0,1),且与直线AB :y=-x+4交于点A . (1)求直线CD 的解析式; (2)求交点A 的坐标;(3)在y 轴上是否存在一点P ,使得PBCABCS S?若存在,请直接写出P 点的坐标;若不存在,请说明理由.22.如图1,E ,F 分别是正方形ABCD 的边AD 和对角线AC 的中点, (1)CFDE的值为 ; (2)①将△AEF 绕点A 旋转,(1)中的结论是否仍然成立?如果成立,请仅就图2的情况进行证明;如果不成立,请说明理由;②如果AB =2,当以点E ,F ,C 在一条直线上时,请直接写出CF 的值.23.如图,a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别相交于点A ,B ,C 和点D ,E ,F .若AB =3,BC =5,DE =4,求EF 的长.24.如图,ABC 的顶点坐标分别为()1,3A 、()4,2B 、()2,1C . (1)以原点O 为位似中心,在原点另一侧画出111A B C △,使1112AB A B = (2)写出1A 的坐标______. (3)111A B C △的面积是______.25.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,90BEF ︒∠=且3CF FD =.(1)求证:ABE DEF ∆∆;(2)若4AB =,延长EF 交BC 的延长线于点G ,求CG 的长.26.在如图的方格纸中,OAB 的顶点坐标分别为(00)(21)(13)----,,,,,O A B ,111O A B △与OAB 是关于点P 为位似中心的位似图形.(1)在图中标出位似中心P 的位置,并写出点P 及点B 的对应点1B 的坐标;(2)以原点O 为位似中心,在位似中心的同侧画出OAB 的一个位似22OA B △,使它与OAB 的位似比为2∶1,并写出点B 的对应点2B 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】证明△ABC ∽△BCD ,得到AB BCBC CD=,设CD=x ,表示出BC ,代入得到方程,解之即可. 【详解】解:如图,∵AB=AC ,∠ABC=72°, ∴∠C=72°,∴∠A=180°-2×72°=36°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∴AD=BD ,∠BDC=72°, ∴BC=BD ,在△ABC 和△BCD 中, ∠A=∠CBD ,∠ABC=∠C , ∴△ABC ∽△BCD , ∴AB BCBC CD=, 设CD=x ,则BD=AD=BC=10-x , ∴101010xx x-=-,解得:x=1555+(舍)或1555-, 故选C .【点睛】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,解题的关键是根据已知条件证明出△ABC ∽△BCD .2.C解析:C 【分析】判定四条线段是否成比例,计算前两条线段之比与后两条线段之比是否相等即可. 【详解】解:A.2:3≠4:5,故四条线段不成比例,不合题意; B.1:3≠4:10,故四条线段不成比例,不符合题意; C.2:3=4:6,故四条线段成比例,符合题意; D.1:5≠3:12,故四条线段不成比例,不合题意; 故选:C . 【点睛】本题主要考查了成比例线段的定义,熟记概念并准确计算是解题的关键.3.B解析:B 【分析】根据位似变换的概念得到,A B ''∥AB ,A B C ABC '''∽△△,根据相似三角形的性质解答即可. 【详解】解:∵:1:2OA A A ''=, ∴13OA OA ':=:,∵A B C '''是ABC 以点O 为位似中心经过位似变换得到的, ∴A B ''∥AB ,A B C ABC '''∽△△, ∴13A B OA AB OA '''==, ∴A B C '''的周长与ABC 的周长比为1:3, 故选:B . 【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,掌握位似的两个图形必须是相似形、对应边平行是解题的关键.4.C解析:C 【分析】 设重心为G ,则2BGGH=,根据三角形相似的判定与性质可得49BDE ABCS S =,19ADF ABCSS=,列出方程组并求解即可. 【详解】解:∵DE 经过ABC 的重心,设重心为G ,则2BGGH=,∵//,//DF BC DE AC ,∴△BDE ∽△BAC ,△ADF ∽△ABC , ∴23DE BG BD AC BH AB ===, ∴13AD AB =, ∴49BDE ABCS S=,19ADF ABCS S=, ∴45BDEADFDECFS SS =+,18ADFBDEDECFSSS =+, ∴41251128BDEADF ADF BED S SS S ⎧=⎪+⎪⎨⎪=⎪+⎩,解得12BDES=,3ADFS=,∴27△ABC S =, 故选:C . 【点睛】本题考查重心的性质、相似三角形的判定与性质,得到面积的比例关系是解题的关键.5.D解析:D【分析】分点B 1在BC 左侧,点B 1在BC 右侧两种情况讨论,由勾股定理可AB=5,由平行线可证△BED ∽△BCA ,可得12BD BE DE AB BC AC ===,可求BE ,DE 的长,由勾股定理可求PB 的长. 【详解】解:如图,若点B 1在BC 左侧,B 1D 交BC 于E ,∵∠C=90°,AC=3,BC=4, ∴225AC BC +, ∵点D 是AB 的中点, ∴BD=12BA=52, ∵B 1D ⊥BC ,∠C=90°, ∴B 1D ∥AC ,∴∠BDE=∠A ,∠EBD=∠CBA , ∴△BED ∽△BCA , ∴12BD BE DE AB BC AC ===, ∴BE=EC=12BC=2,DE=12AC=32, ∵折叠,∴B 1D=BD=52,B 1P=BP , ∴B 1E=B 1D-DE=1,∴在Rt △B 1PE 中,B 1P 2=B 1E 2+PE 2, ∴BP 2=1+(2-BP )2, ∴BP=54, 如图,若点B 1在BC 右侧,延长B 1D 交BC 与E ,∵B 1D ⊥BC ,∠C=90°, ∴B 1D ∥AC ,∴∠BDE=∠A ,∠EBD=∠CBA , ∴△BED ∽△BCA , ∴12BD BE DE AB BC AC ===, ∴BE=EC=12BC=2,DE=12AC=32, ∵折叠,∴B 1D=BD=52,B 1P=BP , ∵B 1E=DE+B 1D=32+52, ∴B 1E=4,在Rt △EB 1P 中,B 1P 2=B 1E 2+EP 2, ∴BP 2=16+(BP-2)2, ∴BP=5,则点P 与点B 之间的距离为54或5. 故选择:D . 【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理,相似三角形判定与性质.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.6.A解析:A 【分析】根据等腰三角形的性质得出等腰三角形的角的度数,进而利用相似三角形的判定解答即可. 【详解】解:∵等腰△ABC 的底角为75°,∴等腰△ABC 的三角的度数分别为30°,75°,75° ∴一定与△ABC 相似的是顶角为30°的等腰三角形 故选:A . 【点睛】本题考查了想做浅咖人判定,关键是根据等腰三角形的性质得出等腰三角形的角的度数解答.7.D解析:D 【分析】由正方形ABCD ,与BPC △是等边三角形的性质求解,求解30,EBA ∠=︒ 从而可判断①;证明60,PFE BPC ∠=∠=︒ =15,PBH PDF ∠=∠︒ 可判断②;由15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒ 可判断③; 证明30,PDH PCD ∠=︒=∠ 再证明,PDH PCD ∽ 可得,DP PHPC PD=从而可判断 ④. 【详解】 解:正方形ABCD ,90,,ABC A BCD ADC CB CD AB ∴∠=∠=∠=∠=︒==BPC △是等边三角形,60,PBC PCB BPC ∴∠=︒=∠=∠ 906030,EBA ∴∠=︒-︒=︒2,BE AE ∴= 故①符合题意;正方形ABCD ,//,45,AD BC CBD ∴∠=︒ 60,PFE PCB ∴∠=∠=︒ 60,PFE BPC ∴∠=∠=︒BPC △是等边三角形,,PC BC CD ∴==而906030,PCD ∠=︒-︒=︒()11803075,2CDP ∴∠=︒-︒=︒ 907515,PDF ∴∠=︒-︒=︒由60,45,PBC CBD ∠=︒∠=︒15,PBH ∴∠=︒ ,PBH PDF ∴∠=∠,BPH DFP ∴∽ 故②符合题意;15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒ ,PFD BPD ∴不相似,故③不符合题意;正方形ABCD ,45CDB ∴∠=︒,90451530,PDH PCD ∴∠=︒-︒-︒=︒=∠,DPH CPD ∠=∠ ,PDH PCD ∴∽ ,DP PHPC PD∴= ∴ 2DP PH PC =⋅,故④符合题意,综上:符合题意的有:①②④. 故选:.D 【点睛】本题考查的是等边三角形的性质,含30的直角三角形的性质,正方形的性质,相似三角形的判定与性质,掌握以上知识是解题的关键.8.D解析:D 【分析】把面积之比转化为周长之比,后分周长为较大三角形或较小三角形的两种情形求解即可. 【详解】∵两个相似三角形面积比是4:9, ∴两个相似三角形周长比是2:3, 当较大三角形的周长为18时,较小三角形的周长为18×23=12; 当较小三角形的周长为18时,较大三角形的周长为18×32=27; 故选D. 【点睛】本题考查了相似三角形面积之比,周长之比,解答时,熟练将面积之比转化为周长之比,会用分类思想求解是解题的关键.9.D解析:D 【分析】根据比例和分式的基本性质,进行各种演变即可得到结论. 【详解】 A 由a cb d=可以得到ad=bc ,故本选项正确,不符合题意; B 、由a c ab d b-=-可得:(a-c )b=(b-d )a ,即ad=bc ,故本选项正确,不符合题意; C 、由a b c db d++=可得(a+b )d=(c+d )b ,即ad=bc ,故本选项正确,不符合题意;D 、由1?111a cb d ++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c ,不能得到ad=bc ,故本选项错误,符合题意; 故选:D . 【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.10.D解析:D 【分析】由正方形的性质证明180BOG BCG ∠+∠=︒,结合180BOG GOP ∠+∠=︒, 从而可判断①;由GO GP =,可得,GOP GPO ∠=∠从而可得,GPO BCP ∠=∠可判断②;设,,BG a CG b == 则,DH CG BF b === 再证明,DHP BGP ∽ 可得,DH HPBG PG= 求解2,b HP a= 再证明,PG b = 利用,HG HP PG =+ 列方程2,b a b b a -=+解关于a 的方程并检验即可判断③;证明,DHP CHD ∽求解DP =再证明,BCP GPO ∽ 求解PO = 由,a b ≠ 可判断④,从而可得答案.【详解】解:正方形ABCD 与正方形EFGH .45,45,DBC EGF ∴∠=︒∠=︒ 90,BGC ∠=︒4590135,EGC ∴∠=︒+︒=︒36036045135180,BOG BCP OBC OGC ∴∠+∠=︒-∠-∠=︒-︒-︒=︒ 180,BOG GOP ∠+∠=︒∴ GOP BCP ∠=∠,故①符合题意;GO GP =,,GOP GPO ∴∠=∠ ,GPO BCP ∴∠=∠ ,BC BP ∴= 故②符合题意;正方形,FGHE//,EH FG ∴ ,DHP BGP ∴∽,DH HPBG PG∴= 设,,BG a CG b == 则,DH CG BF b ===,,BC BP BG PC =⊥ ,PG CG b ∴==,b HP a b∴= 2,b HP a∴=,FG HG HP PG a b ==+=-2,b a b b a∴-=+2220,a ba b ∴--=(21,2b a b ±∴==±经检验:(1a b =-不合题意,舍去,(1,a b ∴=+(11b BG a PG b b∴===+故③符合题意;,,BC BP BG CP =⊥,CBG PBG ∴∠=∠ //,DE BG ,HDP PBG ∴∠=∠ ,CBG DCH ∠=∠ ,HDP DCH ∴∠=∠ ,DHP CHD ∠=∠ ,DHP CHD ∴∽,DH DPCH CD∴= ,,DH b CH BG a ===CD ∴=b a∴=DP ∴=45,,,CBP PGO BC BP GP GO ∠=︒=∠==,BC BPPG GO∴= ,BCP GPO ∴∽ ,BC CPGP PO∴=22,BC CD PC CG b ====2,b PO =PO ∴=,a b ≠,DP PO ∴≠ 故④不符合题意;故选:.D 【点睛】本题考查的是四边形的内角和定理,等腰三角形的判定与性质,勾股定理的应用,正方形的性质,二次根式的运算,一元二次方程的解法,三角形相似的判定与性质,掌握以上知识是解题的关键.11.D解析:D 【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答. 【详解】解:∵△ABC 的每条边长增加各自的20%得△A′B′C′, ∴△ABC 与△A′B′C′的三边对应成比例, ∴△ABC ∽△A′B′C′, ∴∠B′=∠B . 故选:D . 【点睛】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.12.B解析:B 【分析】根据角平分线、中点及平行线的性质,得出FD=ED= FB ,设FD=ED= FB=x ,再根据△CEF ∽△CAB ,得出x 的值,根据勾股定理即可求解. 【详解】解:∵BD 平分∠ABC ∴∠ABD=∠FBD∵EF ∥AB ∠FDB=∠ABD ∴∠FDB=∠FBD ∴△FBD 为等腰三角形 ∴FB=FD∵D 为线段EF 的中点 ∴FD=ED ∴FD=ED= FB 设FD=ED= FB=x ∴EF=2x ∵EF ∥AB ∴△CEF ∽△CAB∴CF EFCB AB= ∴CB FB EFCB AB -= 即8-2810x x= 解得:x=4013∴CF=8-BF=8-4013=6413 EF=2×4013=8013∵∠C =90°,AB =10,BC =8∴=在Rt △CEF 中=4813∴AE=AC-CE=6-4813=3013故选:B . 【点睛】本题主要考查了角平分线、中点及平行线的性质,也考察了相似三角形的性质,勾股定理的应用;解题关键是熟练掌握角平分线、平行线以及相似三角形的性质以及利用方程解决实际问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意标杆光线影长组成的三角形与旗杆旗杆影长光线所组成的三角形相似故可利用相似三角形的性质解答【详解】解:设旗杆的高度为x 米根据题意得:解得:x =10故答案为:10【点睛】本题考查了相似三 解析:10【分析】根据题意,标杆、光线、影长组成的三角形与旗杆、旗杆影长、光线所组成的三角形相似,故可利用相似三角形的性质解答. 【详解】解:设旗杆的高度为x 米,根据题意得:21.57.5x =, 解得:x =10. 故答案为:10. 【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通解方程求出树的高度,体现了方程的思想.14.【分析】根据比例的性质求解即可;【详解】∵设∴;故答案是【点睛】本题主要考查了比例的性质准确计算是解题的关键 解析:38【分析】根据比例的性质求解即可; 【详解】∵35a b =, 设3a k =,5b k =,∴33358a k ab k k ==++; 故答案是38.【点睛】本题主要考查了比例的性质,准确计算是解题的关键.15.(23)或(0-1)【分析】以A 点为坐标原点建立新的直角坐标系得知C 点在新的直角坐标系中的坐标再根据相似比可求出C1在新的直角坐标系中的坐标最后即可知道点C1在原坐标系中的坐标【详解】以A 点为坐标原解析:(2,3)或(0,-1) 【分析】以A 点为坐标原点建立新的直角坐标系,得知C 点在新的直角坐标系中的坐标,再根据相似比,可求出C 1在新的直角坐标系中的坐标,最后即可知道点C 1在原坐标系中的坐标. 【详解】以A 点为坐标原点建立新的直角坐标系,则在新的直角坐标系中,C 点的坐标为(3-1,5-1),即C(2,4).根据题意可知在新的直角坐标系中11AB C △是以点A 为位似中心,相似比为1:2,把ABC 缩小后得到的三角形.∵点C 在新的直角坐标系中的坐标为(2,4),∴点C 的对应点C 1在新的直角坐标系中的坐标为()112422⨯⨯,或()112422⨯-⨯-,,即(1,2)或(-1,-2).∴点C 1在原坐标系中的坐标为(1+1,2+1)或(-1+1,-2+1),即(2,3)或(0,-1). 故答案为(2,3)或(0,-1). 【点睛】本题考查的是位似图形,熟练掌握位似变换是解题的关键.16.【分析】先证出点P 是线段AB 的黄金分割点再由黄金分割点的定义得到把AB=2代入计算即可【详解】解:∵点P 在线段AB 上AP2=AB•BP ∴点P 是线段AB 的黄金分割点AP >BP 故答案为:【点睛】本题考查1【分析】先证出点P 是线段AB 的黄金分割点,再由黄金分割点的定义得到12AP AB =,把AB=2代入计算即可. 【详解】解:∵点P 在线段AB 上,AP 2=AB•BP , ∴点P 是线段AB 的黄金分割点,AP >BP ,21AB AP ===∴,1. 【点睛】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点,较长线段是整个线段的12倍. 17.【分析】由得即得到位似比根据位似的性质计算即可【详解】∵∴即∵四边形与四边形位似∴故答案为【点睛】本题考查了图形的位似准确将线段的比转化为位似图形的位似比是解题的关键解析:35. 【分析】由32OE EA =,得323OE EA OE =++即35OE OA =,得到位似比,根据位似的性质计算即可. 【详解】∵32OE EA =,∴323OE EA OE =++,即35OE OA =, ∵四边形ABCD 与四边形EFGH 位似,∴FG BC =35OE OA =, 故答案为35. 【点睛】本题考查了图形的位似,准确将线段的比转化为位似图形的位似比是解题的关键.18.2或8或5【分析】需要分类讨论:△ADP ∽△BCP 和△ADP ∽△PCB 根据该相似三角形的对应边成比例求得DP 的长度【详解】∵四边形ABCD 是矩形AD =4AB =10∴BC =AD =4CD =AB =10设D解析:2或8或5 【分析】需要分类讨论:△ADP ∽△BCP 和△ADP ∽△PCB ,根据该相似三角形的对应边成比例求得DP 的长度. 【详解】∵四边形ABCD 是矩形,AD =4,AB =10 ∴BC =AD =4,CD =AB =10,设DP =x ,则CP =10-x , 分两种情况进行讨论: ①当△ADP ∽△BCP 时,AD DPBC CP =,即4410x x=- ∴()4104x x ⨯-=, 解得:5x =; ②当△ADP ∽△PCB 时, AD DP PC BC=,即4104xx =-, ∴()1016x x -= 解得:x=2或x=8, 故答案为:2或8或5. 【点睛】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.19.10【分析】由题意得是直角三角形四边形DEGC 是矩形易证再根据ASA 证明然后根据相似三角形的性质和全等三角形的性质得出从而求出AG 的值根据即可求出三角形ABC 的面积再减去6个边长为1的小正方形的面积解析:10 【分析】 由题意得BDE 、EHF 、EGA △是直角三角形,四边形DEGC 是矩形,//,////,231BC EG DE HF AC DE HF DC EG HE =====,,,易证EHF EGA △△,再根据ASA 证明BDE EHF ≅△△,然后根据相似三角形的性质和全等三角形的性质得出123AG=,从而求出AG 的值,根据 ABC BDE EGA DEGC S S S S =++△△△矩形即可求出三角形ABC 的面积,再减去6个边长为1的小正方形的面积即为阴影部分的面积. 【详解】 解:如图:由题意得:BDE 、EHF 、EGA △是直角三角形,四边形DEGC 是矩形,//,////,231BC EG DE HF AC DE HF DC EG HE =====,,,90BDE EHF EGA ∴∠=∠=∠=︒∠∠∠,DEB=HFE=GAEEHFEGA ∴△△ HE HF EG AG∴= 在BDE 和EHF 中BDE EHF DE HFDEB HFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BDE EHF ASA ∴≅△△,1DB HE ∴==,123AG∴=, 6AG ∴=,11=123623=1622ABC BDE EGA DEGC S S S S ∴=++⨯⨯+⨯⨯+⨯△△△矩形, ∴S 阴影=S △ABC -6=16-6=10,故答案为:10.【点睛】本题考查了相似三角形的判定及性质、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.20.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =EF =同理可求:AC,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC === ∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题21.(1)y=12x+1;(2)(2,2);(3)存在,(0,2)或(0,-2) 【分析】(1)直线CD 过点C(-2,0)和D(0,1),设直线CD 解析式为y kx b =+,将C(-2,0)和D(0,1)代入得-2=01k b b +⎧⎨=⎩解方程组即可; (2)联立方程1124y x y x ⎧=+⎪⎨⎪=-+⎩,解方程组即可; (3)△PBC 与△ABC 的底均为BC ,当面积相等时,则高也相等,由△ABC 的底BC 边上的高为A 点的纵坐标2,可求P 点的纵坐标的绝对值为2,点P 在y 轴上,分类考虑点P 的位置即可求出.【详解】解:(1)直线CD 过点C(-2,0)和D(0,1),设直线CD 解析式为y kx b =+,将C(-2,0)和D(0,1)代入得,-2=01k b b +⎧⎨=⎩, 解得1=21k b ⎧⎪⎨⎪=⎩,直线CD 的解析式为y=12x+1; (2)联立方程1124y x y x ⎧=+⎪⎨⎪=-+⎩,解得22x y =⎧⎨=⎩, A 点坐标为(2,2);(3)△PBC 与△ABC 的底均为BC ,当面积相等时,则高也相等,∵△ABC 的底BC 边上的高为A 点的纵坐标2,∴P 点的纵坐标的绝对值为2,点P 在y 轴上,①当点P 在x 轴上方时,则P 点坐标为(0,2);②当点P 在x 轴下方时,则P 点坐标为(0,-2);综上所述,点P 的坐标为(0,2)或(0,-2).【点睛】本题考查待定系数法求直线解析式,两直线交点坐标,同底等高三角形面积问题,掌握待定系数法求直线解析式,两直线交点坐标联立两直线方程解方程组,同底等高三角形面积分类处理是解题关键.22.(12;(2)①仍然成立,理由见解析;7.【分析】(1)由四边形ABCD 是正方形可知2AC =.又因为E ,F 分别是正方形ABCD 的边AD 和对角线AC 的中点,即可推出2=22CF DE ,即=2CF DE. (2)①因为△AFE 和△ACD 都是等腰直角三角形,可推出△AFE ∽△ACD ,即得出结论,=2AF AC AE AD=∠FAE =∠CAD =45°,可推出∠FAC =∠EAD ,即证明△ACF ∽△ADE ,即得出结论2CF AC DE AD= ②由题意可知AD =CD =AB =2, EF =AE =12AD =1,∠ADC =90°,∠AEF =90°.因为点E ,F ,C 在一条直线上,说明∠AEC =90°.在Rt AEC 中,利用勾股定理可求出CE 的长度,即可求出CF 的长度.【详解】解:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠D =90°,∴2AC AD =, ∵E ,F 分别是正方形ABCD 的边AD 和对角线AC 的中点,∴=2=2AD DE AC CF ,,∴2=22CF DE ⨯,即=2CF DE. (2)①(1)中的结论仍然成立,理由如下:∵△AFE 和△ACD 都是等腰直角三角形,∴△AFE ∽△ACD ,∴=2AF AC AE AD=, ∵∠FAE =∠CAD =45°,∴∠FAE +∠CAE =∠CAD +∠CAE ,即∠FAC =∠EAD ,∴△ACF ∽△ADE ,∴=2CF AC DE AD=. ②如图3所示: ∵四边形ABCD 是正方形,∴AD =CD =AB =2,∠ADC =90°,∴222AC AD ==同②得:EF =AE =12AD =1,∠AEF =90°, ∵点E ,F ,C 在一条直线上,∴∠AEC =90°,在Rt AEC 中,22==81=7CE AC AE --,∴CF =CE +EF =71+.【点睛】本题为四边形综合题,掌握正方形的性质,相似三角形的判定和性质,等腰直角三角形的性质以及勾股定理是解答本题的关键.23.203【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【详解】解:∵a ∥b ∥c ,AB =3,BC =5,DE =4,∴AB DE BC EF =,即345EF=, 解得,EF 203=, 故答案为:203. 【点睛】 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 24.(1)见解析;(2)()12,6A --;(3)10【分析】 (1)根据位似图形的性质即可以原点O 为位似中心,在原点另一侧画出111A B C △,使1112AB A B =; (2)结合(1)即可写出A 1的坐标;(3)根据网格利用割补法即可求出111A B C △的面积.【详解】解:(1)如图,111A B C △为所求.(2)由图可知:()12,6A --.故答案为:()2,6--.(3)111A B C △的面积是:1114626242410222⨯-⨯⨯-⨯⨯-⨯⨯=. 故答案为:10.【点睛】本题考查了作图−位似变换,解决本题的关键是掌握位似图形的性质.25.(1)见解析;(2)6【分析】(1)先根据正方形的性质得到90A D ︒∠=∠=,AB BC CD AD ===,//AD BC ;然后再说明ABE DEF ∠=∠即可证明ABE DEF ∆∆;(2)先求得1DF =、3CF =,再根据相似三角形的性质得到AE AB DF DE =,进而求得DE=2,然后再根据EDFGCF ∆∆的性质求得CG 即可.【详解】解:(1)证明:四边形ABCD 为正方形, 90A D ︒∴∠=∠=,AB BC CD AD ===,//AD BC ,90BEF ︒∠=,90ABE AEB DEF AEB ︒∴∠+∠=∠+∠=,ABE DEF ∴∠=∠,ABE DEF ∴∆∆;(2)解:4AB BC CD AD ====,3CF DF =,1DF ∴=,3CF =,ABE DEF ∆∆,AE AB DF DE ∴=,即441DE DE-=,解得:2DE =, //AD BC ,EDF GCF ∆∆,DE DF CG CF ∴=,即213CG =, 6CG ∴=.【点睛】本题主要考查了正方形的性质、相似三角形的判定与性质,正确运用相似三角形的判定定理是解答本题的关键.26.(1)画图见解析,1(5,1),(3,5)---P B(2)画图见解析,226)(--,B 【分析】(1)连接1O O 并延长与1A A 的延长线相交,交点即为位似中心P ,再根据平面直角坐标系写出点P 和1B 的坐标;(2)延长OA 到2A ,使2=AA OA ,延长OB 到2B ,使2=BB OB ,连接22A B ,再根据平面直角坐标系写出点2B 的坐标;【详解】解:(1)位似中心P 如图所示,1(5,1),(3,5)---P B ;(2)22OA B △如图所示,226)(--,B ;【点睛】本题考查了利用位似变换作图,熟练掌握位似变换的性质准确找出对应点的位置是解题的关键.。

北师大版九年级数学上册期末专题《第四章图形的相似》单元检测试卷(含答案)

期末专题突破:北师大版九年级数学上册第四章图形的相似单元检测试卷一、单选题(共10题;共30分)1.下列命题中,正确的是()A. 所有的等腰三角形都相似B. 所有的直角三角形都相似C. 所有的等边三角形都相似D. 所有的矩形都相似2.已知ab =32,则a+bb的值为()A. 32 B. 43C. 52D. 253.已知△ABC和△A′B′C″是位似图形。

△A′B′C′的周长是△ABC的一半,AB=8cm,则A′B′等于()A. 64 cmB. 16 cmC. 12 cmD. 4 cm4.若△ABC∽△A′B′C′且=,△ABC的周长为15cm,则△A′B′C′的周长为()cm.A. 18B. 20C.D.5.如图的两个四边形相似,则∠α的度数是()A. 87°B. 60°C. 75°D. 120°6.现有一张Rt△ABC纸片,直角边BC长为l2cm,另一直角边AB长为24cm.现沿BC边依次从下往上裁剪宽度均为3cm的矩形纸条,如图.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张B. 第5张C. 第6张D. 第7张7.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为( )A. 244m B. 6 m C. 15 m D. 52m8.已知:如图,△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)CDAD =ACAB;(4)AB2=BD•BC.其中一定能够判定△ABC是直角三角形的有( )A. 3个B. 2个C. 1个D. 0个9.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. ABAE =AGADB. DFCF=EGBDC. FGAC=EGBDD. AEBE=CFDF10.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(共10题;共33分)11.已知△ABC∽△A1B1C1,△ABC的周长与△A1B1C1的周长的比值是32,BE、B1E1分别是它们对应边上的中线,且BE=6,则B1E1= ________.12.已知△ABC∽△A′B′C′,相似比为3:4,△ABC的周长为6,则△A′B′C′的周长为________.13.在某时刻的阳光照耀下,高为4米的旗杆在水平地面上的影长为5米,附近一个建筑物的影长为20米,则该建筑物的高为________.14.如图,已知△ABC∽△DEF,∠A=70°,∠C=50°,则∠E=________ °.15.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.16.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果DE:EF=3:5,AC=24,则BC=________.17.若线段a,b,c,d成比例,其中a=3cm,b=6cm,c=2cm,则d=________ .18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.19.如图,∠BAC=80°,∠B=40°,∠E=60°,若将图中的△ADE旋转(平移),则所得到的新三角形与△ABC________,与△ADE________20.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.三、解答题(共7题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.如图所示,点D在△ABC的AB边上,AD=2,BD=4,AC=2 3.求证:△ACD∽△ABC.23.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.24.如图,已知△ABC是面积为3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于多少?(结果保留根号).25.在矩形ABCD中,AB=6,AD=8,P是BC边上一个动点(不与点B重合).设PA=x,点D到PA的距离为y,求y与x之间的函数表达式,并求出自变量x的取值范围.26.如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC 相似?27.如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.求证:△ABD∽△DCE.答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】D8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】412.【答案】813.【答案】16米14.【答案】6015.【答案】6或21016.【答案】1517.【答案】4cm18.【答案】310519.【答案】相似;全等20.【答案】3三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵ADAC =23= 33,ACAB= 236= 33∴ADAC = ACAB,又∵∠A=∠A∴△ACD∽△ABC23.【答案】解:∵∠C=∠E,∠ADC=∠BDE,∴△ADC∽△BDE,∴DCDE = ADBD,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴DCDE = ADBD,即DC5=34.∴DC= 154.24.【答案】解:∵AB=2AD,∴ABAD=2,又∵△ABC∽△ADE,△ABC是面积为3,∴S△ABCS△ADE=4,∴S△ADE=34,∵△ABC∽△ADE,△ABC是等边三角形,∴△ADE也是等边三角形,其面积为12AE•AE•sin60°=34,即34AE2=34,∴AE=1,作FG⊥AE于G,∵∠BAD=45°,∠BAC=∠EAD=60°,∴∠EAF=45°,∴△AFG是等腰直角三角形,设AG=FG=h,在直角三角形FGE中,∵∠E=60°,EG=1﹣h,FG=h,∴tanE=FGEG ,即tan60°=ℎ1−ℎ,解得h=31+3,∴S△AEF=12×1×31+3=3−34.25.【答案】解:∵在矩形ABCD中,∴AD∥BC,∴∠DAE=∠APB,∵∠B=∠AED=90°,∴△ABP∽△DEA,∴= ,∴= ,故y= ,∵AB=6,AD=8,∴矩形对角线AC= =10,∴x的取值范围是:6<x≤1026.【答案】解:设经过x秒,两三角形相似,则CP=AC-AP=8-x,CQ=2x,(1)当CP与CA是对应边时,CPAC =CQBC,即8−x8=2x16,解得x=4秒;(2)当CP与BC是对应边时,CPBC =CQAC,即8−x16=2x8,解得x=85秒;故经过4或85秒,两个三角形相似.27.【答案】证明:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵∠ADC=∠ADE+∠EDC=45°+∠EDC,∠ADC=∠B+∠BAD=45°+∠BAD,∴∠BAD=∠EDC,∵∠B=∠C,∠BAD=∠EDC,∴△ABD∽△DCE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省枣庄市滕州市2015-2016学年九年级(上)期末数学复习
试卷(图形的相似)
(解析版)

一、选择题
1.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC

则CD=()

A.2 B.C.D

2.(易错题)已知:如图,∠ADE=∠ACD=∠ABC
,图中相似三角形共有()

A.1对B.2对C.3对D.4对
3.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,
在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()

A.(3,2) B.(4,1) C.(3,1) D.(4,2

4.已知△ABC中,DE∥BC,AD=4,DB=6,AE=3,则AC
的值是()

A.4.5 B.5.5 C.6.5 D.7.5
5.若两个相似三角形的相似比是1:4,则它们的周长比是()
A.1:2 B.1:4 C.1:16 D.1:5
6.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截
得的三角形与Rt△ABC相似,这样的直线可以作()

A.1条B.2条C.3条D.4

7.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′
等于()

A.20°B.40°C.60°D.80°
8.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3
,则

的值为()

A.B.C.D.
9.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C
1

的面积.然后分

别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的
面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,
第10个正△A10B10C10的面积是()

A.B.C.D

10.关于相似的下列说法正确的是()
A.所有直角三角形相似
B.所有等腰三角形相似
C.有一角是80°的等腰三角形相似
D.所有等腰直角三角形相似
11.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,
则像CD的长是物体AB长的()

A.3倍B.C.D.2

12.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的
是()

A.B.C.∠ABP=∠C D.∠APB=∠ABC
二.填空题
13.如图,要得到△ABC∽△ADE,只需要再添加一个条件是______.

14.若x:y=2:3,那么x:(x+y)=______

15.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC=2,则S△ABD=______

16.已知,则=______.
17.如图,DE∥BC,AD:DB=3:5,则△ADE与△ABC的面积之比为______.

18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:
根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜
子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看
到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为
______
米.

19.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:
1.如果△BEC的面积为2,那么四边形ABED的面积是______

20.阳光通过窗口照射到室内,在地面上留下2.7m
宽的亮区(如图所示),已知亮区到窗

口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.
三.解答题
21.(2015秋?滕州市校级期末)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动
点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB
边向点B以2cm/s的速度运动.问:
(1)运动几秒时,△CPQ的面积是8cm2?
(2)运动几秒时,△CPQ与△ABC相似?

22.(2016?颍泉区一模)如图,在由边长为1
的单位正方形组成的网格中,按要求画出坐

标系及△A1B1C1及△A2B2C2;
(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点
B
的坐标;

(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得
到△A2B2C2.

相关文档
最新文档