【14-附】轴的强度计算
轴抗弯强度计算公式12则

轴抗弯强度计算公式12则抗弯强度计算公式(一)工字钢抗弯强度计算方法一、梁的静力计算概况1、单跨梁形式: 简支梁2、荷载受力形式: 简支梁中间受集中载荷3、计算模型基本参数:长 L =6 M4、集中力:标准值Pk=Pg+Pq =40+40=80 KN设计值Pd=Pg*γG+Pq*γQ =40*1.2+40*1.4=104 KN工字钢抗弯强度计算方法二、选择受荷截面11、截面类型: 工字钢:I40c2、截面特性: Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3 G= 80.1kg/m翼缘厚度 tf= 16.5mm 腹板厚度 tw= 14.5mm工字钢抗弯强度计算方法三、相关参数1、材质:Q2352、x轴塑性发展系数γx:1.053、梁的挠度控制〔v〕:L/250工字钢抗弯强度计算方法四、内力计算结果1、支座反力 RA = RB =52 KN2、支座反力 RB = Pd / 2 =52 KN3、最大弯矩 Mmax = Pd * L / 4 =156 KN.M工字钢抗弯强度计算方法五、强度及刚度验算结果21、弯曲正应力ζmax = Mmax / (γx * Wx),124.85 N/mm22、A处剪应力ηA = RA * Sx / (Ix * tw),10.69 N/mm23、B处剪应力ηB = RB * Sx / (Ix * tw),10.69 N/毫米为单位,直接把数值代入上述公式,得出即为每米方管的重量,以克为单位。
如30x30x2.5毫米的方管,按上述公式即可算出其每米重量为:4x2.5x(30-2.5)x7.85=275x7.85=2158.75克,即约2.16公斤矩管抗弯强度计算公式1、先计算截面模量WX=(a四次方-b四次方)/6a2、再根据所选材料的强度,计算所能承受的弯矩3、与梁上载荷所形成的弯矩比对,看看是否在安全范围内参见《机械设计手册》机械工业出版社2007年12月版第一卷第1-59页玻璃的抗弯强度计算公式锦泰特种玻璃生产的玻璃的抗弯强度一般在60~220Mpa之间,玻璃样品的形式和表面状态对测试的结果影响较大,3通常采用万能压力测试仪测试。
扭转—扭转轴的应力及强度计算(建筑力学)

MPa 51.4MPa
4
WP
2.92 10
扭转
(2) 求空心轴的内径
因为要求实心轴和空心轴的扭转强度相同,故两轴的最
大切应力相等,即
'max max 51.4MPa
max
Tmax
Tmax
WP
D23 1 4 16
6
16Tmax
16
变形的能力。单位GPa,其数值可由试验测得。
切应变的其单位是 弧度(rad)
扭转
二、圆轴扭转时横截面上的应力
从几何关系、物理关系和静力学关系这三个方面来分析圆
轴受扭时横截面上的应力。
1. 几何变形方面
取一圆轴进行扭转试验
试验现象表明,圆轴表面上各点的变形与薄壁圆筒扭转
时的变形一样。
扭转
由观察到的现象,对圆轴内部的变形可做如下假设:扭转
截面(危险截面) 边缘点处。因此,强度条件也可写成 maxFra bibliotekTmax
[ ]
W
圆轴强度条件可以解决圆轴扭转时的三类强度问题,即
进行扭转强度校核、圆轴截面尺寸设计及确定许用荷载。
扭转
例9-6 一实心圆轴,承受的最大扭矩Tmax=1.5kN•m,轴
的直径d1=53mm。求:(1)该轴横截面上的最大切应力。
扭转
第四节 圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力
圆轴的扭转试件可分别用Q35钢、铸铁等材料做成,扭
转破坏试验是在扭转试验机上进行。试件在两端外力偶Me
作用下,发生扭转变形,直至破坏。
Q35钢
铸铁
KISSsoft 渐开线花键强度计算【可用于车桥的制动凸轮轴、半轴、贯通轴花键的校核计算】

KISSsoft 渐开线花键强度计算
渐开线花键的计算,《机械设计》书中有简化的算法,有兴趣可以翻看下。
本例使用KISSsoft软件进行计算。
1.打开KISSsoft软件。
2.软件有语言选择项,根据需要选择。
(本例选择中文。
建议按英文版进行学习。
)
3.选择进入花键强度计算模块。
【也可以在下面箭头所指的地方选择“自行输入”,自己根据需要定义花键参数】
4.进入“负荷”标签栏,选择计算方法(默认是仅计算几何,需要根据需要选择强度计算的方法。
),填写载荷信息。
5.点击计算按钮,完成计算。
此时下边栏会出现计算结果概要。
6.点击“创建报告”按钮获得计算报告。
可以参考详细的计算结果。
【包含有应力信息和安全系数信息】
至此,简单的渐开线花键的强度校核流程就完成了。
【过程仅供参考,请自行购买专业的软件教程进行学习。
】。
材料力学-第4章圆轴扭转时的强度与刚度计算

I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
机械设计(8.4.1)--轴的强度计算

已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴;3. 粗(初)估轴的直8-4 轴的强度计算一、按扭转强度条件轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。
8-4轴的强度计算 一、按扭转强度条件[]23N/mm 2.01095503T T T dn PW T ττ≤⨯==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mmW T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ;[τT ]——许用扭转应力,N/mm ;8-4 轴的强度计算一、按扭转强度条件[]mm2.0109550 3.03.3nP A n P d T =⨯≥τ轴的最小直径设计公式:A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。
β——空心轴内外径的比值,常取0.5~0.6。
当轴上有键槽时,应适当增大轴径:单键增大3%-5%8-4 轴的强度计算 一、按扭转强度条件实心圆轴[]mm )1( )1(2.0109550 3.403.43nPA n P d T βτβ-=-⨯≥空心圆轴已知:各段轴径,轴所受各力、轴承跨距计算:轴的强度步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。
二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。
计算精度中等。
[]222N/mm 4b T b ca στσσ≤+=第三强度理论[]b T caT T b WT M W T W M WT d T W T dM W M σστσ≤+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==≈=≈=222332422.01.0122][)(-≤+==b caca WT M W M σασ弯曲应力 对称循环弯曲应力与扭转切应力的循环特征不同所以引入的应力校正系数α扭转应力不变化的转矩脉动变化的转矩频繁正反变化的转矩[][],3.011≈=+-b b σσα[][],6.001≈=-b b σσα[][],111≈=--b b σσα[σ]-1对称循环应力下轴的许用应力[σ]0脉动循环应力下轴的许用应力[σ]+1静应力下轴的许用应力轴的许用弯曲应力,表8-3[]311.0-≥b caM d σ122][)(-≤+==b cacaWT M W M σασ计算弯矩或校核轴径已知:轴的结构和尺寸、轴所受各力、轴承跨距、过渡圆角、表面粗糙度、轴毂配合计算:轴的强度用于重要的轴,计算精度高且复杂三、按疲劳强度计算安全系数8-4 轴的强度计算三、按疲劳强度计算安全系数轴的疲劳强度许用安全系数[S]=1.3-1.5,用于材料均匀;[S]=1.5-1.8,用于材料不够均匀;[S]=1.8-2.5,用于材料均匀性及计算精确度很低,或轴径 d>200mm 。
轴疲劳强度校核.

对于形状复杂的轴,如曲轴、凸轮轴 等,也采用球墨铸铁或高强度铸造材料来 进行铸造加工,易于得到所需形状,而且 具有较好的吸振性能和好的耐磨性,对应 力集中的敏感性也较低。 同时应该知道,在一般工作温度下, 各种碳钢和合金钢的弹性模量相差不大, 故在选择钢的种类和热处理方法时,所依 据的主要是强度和耐磨性,而不是轴的弯 曲刚度和扭转刚度等。 轴的常用材料见教材。
一、拟订轴上零件的装配方案
在进行结构设计时,首先应按传动简 图上所给出的各主要零件的相互位置关系 拟订轴上零件的装配方案。
轴上零件的装配方案不同,轴的结构 形状也不同。在实际设计过程中,往往拟 订几种不同的装配方案进行比较,从中选 出一种最佳方案。
如图所示为一 单级圆柱齿轮内减 速器简图。其输出 轴上装有齿轮、联 轴器和滚动轴承。 可以采用如下的装 配方案:将齿轮、 左端轴承和联轴器 从轴的左端装配, 右端轴承从轴的右 端装配。
d0 其中: ,即空心轴内外径之比。 d
按照上式计算得到的直径,一 般作为轴的最小直径。如果在该处 有键槽,则应考虑它对轴的削弱程 度。一般的,有一个键槽直径增加 5%,两个键槽直径增大10%,最 后需要将轴径圆整为标准值。
2、按照经验公式估算 对于一般减速器装置中的轴,一 般也可以用经验公式来估算轴的最小 直径。对于高速级输入轴的最小轴径 可按与其相联的电动机轴径D估算, d=(0.8~1.2)D;相应各级低速轴的 最小直径可按同级齿轮中心距a估算, d=(0.3~0.4)a。
1、直轴 直轴按外形可以分为光轴和阶梯轴,如图所示。阶 梯轴便于轴上零件的拆装和定位。 轴一般做成实心的,但为了减轻重量或满足某种功 能,则可以做成空心轴。所以按轴的结构可以分为实心 轴和空心轴,如图所示。
图12-2
大直径空心轴转子结构设计及机械强度计算.
不超过5200mm的电机转子。而ZD315/1344100kW
电机若设计采用实心轴的话,其转子总重量将达80吨,总长为6785rran,为此只能采用空心轴结构。全焊接空心轴因为在浸漆前就已将两端的两段实心轴部分联接在一起,因此加大了转子浸漆的吨位及整体长一10一
对大直径、大转矩的电动机来说,电机制造难
度、造价的增加主要还在于转子轴及转子支架。因
为转轴要锻造、轴径要粗,还要有充分的冷却,转子铁心压装要求高,加工困难。因此如何改进电机的结构,特别是改进电机转子、转子轴的结构已成为电机行业的一大课题。上海电机厂于二十世纪六十年代末就对转子空心轴的结构在大型直流电机上的应用进行攻关研究,最近为国内钢铁厂热轧工程轧机
度,该电机的制造只能采用组合式空心轴结构。组合式空心轴选用材料方便,容易找到两种焊接性能差别不大的材料来做空-1、5'轴圆筒和空心轴法兰盘,且焊接时占地空间、面积小,对设备的要求不是很高。但是组合式空心轴结构要比全焊接空心轴结构多一次两侧实心轴的装、拆轴工艺。这种结构必须要有大量的高强度螺栓、圆柱销等配合连接零件,且金加工工序多、周期长、精度高、技术难度大,同时要严格控制转
27280kg
转轴的临界转速3310r/rain
1513r/min
非传动端388kN有效铁心长度
117era117era
轴承支撑力传动端353kN
空心圆筒长度173cm
总集中扭矩
2940kNm
非传动端551kNm主极气隙长度0.7era
钢结构设计轴心受力构件截面强度计算
钢结构设计轴心受力构件截面强度计算7.1.1 轴心受拉构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,其截面强度计算应符合下列规定:1 除采用高强度螺栓摩擦型连接者外,其截面强度应采用下列公式计算:2 采用高强度螺栓摩擦型连接的构件,其毛截面强度计算应采用式(7.1.1-1),净截面断裂应按下式计算:3 当构件为沿全长都有排列较密螺栓的组合构件时,其截面强度应按下式计算:式中:N——所计算截面处的拉力设计值(N);f——钢材的抗拉强度设计值(N/mm2);A——构件的毛截面面积(mm2;A n——构件的净截面面积,当构件多个截面有孔时,取最不利的截面(mm2);f u——钢材的抗拉强度最小值(N/mm2);n——在节点或拼接处,构件一端连接的高强度螺栓数目;n1——所计算截面(最外列螺栓处)高强度螺栓数目。
7.1.2 轴心受压构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,截面强度应按本标准式(7.1.1-1)计算。
但含有虚孔的构件尚需在孔心所在截面按本标准式(7.1.1-2)计算。
7.1.3 轴心受拉构件和轴心受压构件,当其组成板件在节点或拼接处并非全部直接传力时,应将危险截面的面积乘以有效截面系数η,不同构件截面形式和连接方式的η值应符合表7.1.3的规定。
表7.1.3 轴心受力构件节点或拼接处危险截面有效截面系数条文说明7.1.1 原规范在条文说明中给出了式(7.1.1-1)和式(7.1.1-2),并指出“如果今后采用屈强比更大的钢材,宜用这两个公式来计算,以确保安全”。
当前,屈强比高于0.8的Q460钢已开始采用,为此,用这两个公式取代了净截面屈服的计算公式。
对于Q235和Q345钢,用这两个公式可以节约钢材。
当沿构件长度有排列较密的螺栓孔时,应由净截面屈服控制,以免变形过大。
7.1.2 轴压构件孔洞有螺栓填充者,不必验算净截面强度。
7.1.3 有效截面系数是考虑了杆端非全部直接传力造成的剪切滞后和截面上正应力分布不均匀的影响。
算艉轴的数据公式
算艉轴的数据公式艉轴是航空领域中的重要构件,其功用是将动力传递给推进螺旋桨或喷气引擎,从而产生推力推动飞机前进。
艉轴的设计数据公式是基于一系列工程原理和计算方法,下面是一些常见的艉轴设计公式。
1.艉轴受力计算公式:在设计艉轴时,需要考虑到航空器的功率、转速和推力等因素。
根据简化的受力分析,艉轴所受力可以分为以下几个部分:-弯曲力:由于艉轴的长度和承载的重量,会在转动时产生一定的弯曲力。
这可以通过弯曲方程来计算:F=(M*L)/(I*r)其中,F为弯曲力,M为弯矩,L为艉轴的长度,I为截面惯性矩,r 为截面到轴心的距离。
-扭转力:由于飞机的推力来自于发动机喷气或者螺旋桨推力,因此艉轴需要承受一定的扭转力。
可以使用扭转公式来计算扭转力:T=(P*r)/N其中,T为扭转力,P为功率,r为艉轴半径,N为旋转速率。
-轴向力:在转动过程中,因为受到喷气或螺旋桨的推力,艉轴还需要承受轴向力。
可以通过下面的公式计算:F=P/V其中,F为轴向力,P为推力,V为飞机速度。
2.艉轴的强度计算公式:为了保证艉轴能够承受受到的力,并具有足够的强度,需要计算艉轴的截面尺寸。
以下是常见的强度计算公式:-根据艉轴的材料和受力情况,可以使用最大应力理论来计算允许的最大应力:σmax = K * τmax其中,σmax为允许的最大应力,K为材料的强度系数,τmax为应力。
-对于圆柱形的艉轴,可以使用葛拉西奥公式计算截面变形:δmax = (F * Le) / (E * I)其中,δmax为截面变形,F为受力,Le为受力点到轴心的距离,E 为杨氏模量,I为截面惯性矩。
-如果考虑压缩载荷,可以使用承载能力公式来计算压缩载荷下的截面面积:As=(P/Fc)+(P/Fb)其中,As为压缩载荷下的截面面积,P为载荷,Fc为附加阻尼力,Fb为材料的抗弯强度。
3.艉轴的振动计算公式:艉轴的振动是需要考虑的重要因素,过大的振动会影响飞机的平衡和安全。
【精选】滚动轴承的受力分析、载荷计算、失效和计算准则
1.滚动轴承的受力分析滚动轴承在工作中,在通过轴心线的轴向载荷(中心轴向载荷)Fa作用下,可认为各滚动体平均分担载荷,即各滚动体受力相等。
当轴承在纯径向载荷Fr作用下(图6),内圈沿Fr方向移动一距离δ0,上半圈滚动体不承载,下半圈各滚动体由于个接触点上的弹性变形量不同承受不同的载荷,处于Fr作用线最下位置的滚动体承载最大,其值近似为5Fr/Z(点接触轴承)或4.6Fr/Z(线接触轴承),Z为轴承滚动体总数,远离作用线的各滚动体承载逐渐减小。
对于内外圈相对转动的滚动轴承,滚动体的位置是不断变化的,因此,每个滚动体所受的径向载荷是变载荷。
2.滚动轴承的载荷计算(1)滚动轴承的径向载荷计算一般轴承径向载荷Fr作用中心O的位置为轴承宽度中点。
角接触轴承径向载荷作用中心O的位置应为各滚动体的载荷矢量与轴中心线的交点,如图7所示。
角接触球轴承、圆锥滚子轴承载荷中心与轴承外侧端面的距离a可由直接从手册查得。
接触角α及直径D,越大,载荷作用中心距轴承宽度中点越远。
为了简化计算,常假设载荷中心就在轴承宽度中点,但这对于跨距较小的轴,误差较大,不宜随便简化。
图8角接触轴承受径向载荷产生附加轴向力1)滚动轴承的轴向载荷计算当作用于轴系上的轴向工作合力为FA,则轴系中受FA作用的轴承的轴向载荷Fa=FA,不受FA作用的轴承的轴向载荷Fa=0。
但角接触轴承的轴向载荷不能这样计算。
角接触轴承受径向载荷Fr时,会产生附加轴向力FS。
图8所示轴承下半圈第i个球受径向力Fri。
由于轴承外圈接触点法线与轴承中心平面有接触角α,通过接触点法线对轴承内圈和轴的法向反力Fi将产生径向分力Fri;和轴向分力FSi。
各球的轴向分力之和即为轴承的附加轴向力FS。
按一半滚动体受力进行分析,有FS ≈ 1.25 Frtan α(1)计算各种角接触轴承附加轴向力的公式可查表5。
表中Fr为轴承的径向载荷;e为判断系数,查表6;Y 为圆锥滚子轴承的轴向动载荷系数,查表7。