二次函数的应用中考题集锦最值问题
中考数学二次函数最值问题(典型中考题)带答案

二次函数作为初中数学的重点内容同样也是难点内容一般同学都很பைடு நூலகம்把控尤其是最值问题多数同学遇到这样的题目都直接放弃
中考数学二次函数最值问题(典型中考题)带答案
二次函数作为初中数学的重点内容,同样也是难点内容,一般同学都很难把控,尤其是最值问题,多数同学遇到这样的题目都直接放弃。
但是如果我们了解了二次函数最值的常考题型,典型题,以及解题方法,这样是可以帮助同学们在这一部分突破一定的分数的。
【数学中考一轮复习】 二次函数最值应用(含解析)

专项训练 二次函数最值应用结合图象,分两类情形: (1)最值在顶点位置如图所示,P 为二次函数y =ax 2+bx +c (a ≠0)的图象的顶点,则二次函数的最值(开口向上有最小值,开口向下有最大值)为顶点P 的纵坐标ab ac 442-.(2)最值不在顶点位置如图所示,M (x 1,y 1),N (x 2,y 2)为y 二次函数y =ax 2+bx +c (a ≠0)的图象上的两点,则当x 1≤x ≤x 2时,二次函数的最大值为y 2,最小值为ab ac 442-.具体应结合开口方向,根据M ,N ,P 三个点的位置,通过比较y M ,y P ,y N ,确定二次函数的最值.如果在实际问题中,还要考虑取值的实际意义,综合进行分析,确定二次函数的最值. 类型一 面积中的最值应用1.把一根长为120 cm 的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为 x cm.(1)要使这两个正方形的面积的和等于650 cm 2,则剪出的两段铁丝长分别是多少? (2)剪出的两段铁丝长分别是多少cm 时,这两个正方形的面积和最小?最小值是多少?2.如图所示,在足够大的空地上有一段长为100 m 的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100 m 的木栏.(1)若AD <20 m ,所围成的矩形菜园的面积为450 m 2,求所利用的旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.3.如图所示,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地ABCD 上修建公园其中要留出宽度相等的三条小路,且两条与AB 平行,另一条与AD 平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价y 1(元)和修建花圃的造价y 2(元)与修建面积s (平方米)之间的函数关系分别为y 1=40s 和y 2=35s +20000.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?类型二 利润中的最值应用4.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?5.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.6.2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x为正整数)的销售价格p (元/千克)关于x 的函数关系式为p =⎪⎪⎩⎪⎪⎨⎧≤<+-≤<+)3020(1251)200(452x x x x ,销售量y (千克)与x 之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)类型三运动中的最值应用,7.周末,小明陪爸爸去打高尔夫球,小明看到爸爸打出的球的飞行路线的形状如图所示,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h(单位:m)与飞行时间t(单位:s)的几组值后,发现h与t满足的函数关系式是h=20t-5t2. (1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15 m?8.如图所示,一位篮球运动员在离篮圈水平距离4 m处跳起投篮,球运行的高度y(m)与运行的水平距离x(m)满足解析式y=ax2+x+c,当球运行的水平距离为1.5 m时,球离地面高度为3.3 m,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05 m.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手,问球出手时他跳离地面多高?9.如图所示,某足球运动员站在点O处练习射门将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c.已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)a=_________;c=___________.(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?巩固训练1.某宾馆共有80间客房宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =41x-42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( ) A.252元/间 B.256元/间 C.258元/间 D.260元/间 2.如图所示,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =_______m 时,矩形土地ABCD 的面积最大.3.小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为y 1 m 、y 2 m.y 1与x 之间的函数表达式是y 1=-180x +2250,y2与x 之间的函数表达式是y 2=-10x 2-100x +2000.(1)小丽出发时,小明离A 地的距离为_________m ;(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?4.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)参考答案1.解:(1)根据题意知:一个正方形的边长分别为x cm , 则另一个正方形的边长为41(120-4x )=(30-x )cm , 且分成的铁丝一段长度为4x cm ,另一段为(120-4x )cm ,x 2+(30-x )2=650. 整理得:x 2-30x +125=0,解得:x 1=5,x 2=25, 故这根铁丝剪成两段后的长度分别是20 cm ,100 cm ; (2)设这两个正方形的面积之和为y cm 2,y =x 2+(30-x )2=2x 2-60x +900=2(x-15)2+450, ∴当x =15时,y 取得最小值,最小值为450cm 2,即剪成两段均为60 cm 的长度时面积之和最小,最小面积和为450 cm 2. 2.解:(1)设AB =x m ,则BC =(100-2x )m.x (100-2x )=450. 解得,x 1=5,x 2=45,当x =5时,100-2x =90>20,不合题意,舍去. 当x =45时,100-2x =10, 答:AD 的长为10m ;(2)设AD =a m ,面积为S m 2, S =a ·1250)50(2121002+-=-x a , ∴当a =50时,S 取得最大值,此时S =1250. 答:矩形菜园ABCD 面积的最大值是1250 m 2.3.解:(1)设小路的宽为m 米,则可列方程(30-m )(20-2m )=448; 解得:m 1=2或m 2=38(舍去); 答:小路的宽为2米;(2)设小路的宽为x 米,总造价为w 元,则花圃的面积为(2x 2-80x +600)平方米,小路面积为(-2x 2+80x )平方米,所以w =40·(-2x 2+80x )+35·(2x 2-80x +600)+20000, 整理得:w =-10(x-20)2+45000,∴当2≤x ≤4时,w 随x 的增大而增大.∴当x =2时,w 取最小值. 答:小路的宽为2米时修建小路和花圃的总造价最低.4.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),根据题意,得1⎩⎨⎧=+=+80149012b k b k ,解得⎩⎨⎧=-=1505b k , ∴y 与x 之间的函数关系式为y =-5x +150; (2)根据题意,得w =(x-10)(-5x +150)=-5x 2+200x-1500=-5(x-20)2+500 ∵a =-5<0,∴抛物线开口向下,w 有最大值.∴当x <20时,w 随x 的增大而增大.10≤x ≤15,且x 为整数, ∴当x =15时,w 有最大值. 即w =-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.5.解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b.将x =12,y =1200;x =13,y =1100代入得:⎩⎨⎧b +13k =1100b +12k =1200,解得:⎩⎨⎧2400=b 100-=k ,∴y 与x 的函数关系式为:y =-100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x-2-10)+y (x-10) =400x-4800+(-100x +2400)(x-10)=-100(x-19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 6.解:(1)当0<x ≤20时,设y =k 1x +b 1,由图象得:⎩⎨⎧=+=402080111b k b ,解得⎩⎨⎧=-=80211b k ,∴y =-2x +80(0<x ≤20); 当20<x ≤30时,设y =k 2x +b 2,由图象得:⎩⎨⎧=+=+803040202222b k b k ,解得⎩⎨⎧-==40422b k ,∴y =4x-40(20<x ≤30). 综上,y =⎩⎨⎧);30≤x <2040-4x (),20≤x <080+2x (((2)设当月该农产品的销售额为w 元,则w =yp , 当0<x ≤20时,w =(-2x +80)(52x +4)=-54x 2+24x +320=-54(x-15)2+500 ∵-54<0,由二次函数的性质可知:∴当x =15时,w 最大=500.当20<x ≤30时,W =(4x-40)(-51x +12)=-54x 2+56x-480=-54(x-35)2+500,∵-54<0,20<x ≤30,由二次函数的性质可知:当x =30时,W 最大=(30-35)2+500=480.∵500>480, ∴当x =15时,w 取得最大值,该最大值为500.答:当月第15天,该产品的销售额最大,最大销售额是500元. 7.解:(1)h =20t-5t 2. ∵-5<0,故h 有最大值,当t =)(5220-⨯=2,此时h 的最大值为20,∴当t =2 s 时,最大高度是20 m ;(2)令h ≥15,则h =20t-5t 2≥15,解得:1≤t ≤3, ∴1≤t ≤3时,飞行高度不低于15 m.8.解:(1)依题意,抛物线y =ax 2+x +c 经过点(1.5,3.3)和(4,3.05),∴⎩⎨⎧ 3.05=c +4+42×a 3.3=c +1.5+1.52×a ,解得⎩⎨⎧ 2.25=c 0.2-=a ,∴y =-0.2x 2+x +2.25=-0.2(x-2.5)2+3.5.∴当球运行的水平距离为2.5 m 时,达到最大高度为3.5 m ; (2)∵x =0时,y =2.25,∴2.25-0.25-1.8=0.2 m. 即球出手时,他跳离地面0.2 m.9.解:(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎨⎧c +0.8×5+0.82a =3.5c =0.5,解得:⎪⎪⎩⎪⎪⎨⎧=-=211625c a ,∴抛物线的解析式为:y =-1625t2+5t +21, 故答案为:-1625,21. (2)∵y =-1625t2+5t +21,∴y =29)58(16252+--t . ∴当t =58时,y 最大=4.5.∴当足球飞行的时间为58s 时,足球离地面最高,最大高度是4.5 m ;(3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-1625×2.82+5×2.8+21=2.25<2.44, ∴他能将球直接射入球门. 巩固训练 1.B 2.1503.解:(1)∵y 1=-180x +2250,y 2=-10x 2-100x +2000, ∴当x =0时,y 1=2250,y 2=2000,∴小丽出发时,小明离A 地的距离为2250-2000=250(m ), 故答案为:250;(2)设小丽出发第x min 时,两人相距s m ,则s =(-180x +2250)-(-10x 2-100x +2000)=10x 2-80x +250=10(x-4)2+90, ∴当x =4时,s 取得最小值,此时s =90,答:小丽出发第4min 时,两人相距最近,最近距离是90m. 4.解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(60,100),(70,80)代入一次函数表达式得:⎩⎨⎧+=+=b k b k 708060100,解得:⎩⎨⎧=-=2202b k ,故函数的表达式为:y =-2x +220;(2)设药店每天获得的利润为w 元,由题意得: W =(x-50)(-2x +220)=2(x-80)2+1800, ∵-2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.。
二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?6.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? 第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x (0<x <0.5).(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元 (3)106 107 108 【解析】 【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值. (1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克; (2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数, ∵20-< ,∴11x =时,w 有最大值是242元, ∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数, ∴由二次函数的对称性可知,x 的取值为9,10,11,12,13 当9x =或13时,2244234x x -+=; 当10x =或12时,2244240x x -+=, 当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350, ∴当106a =或107或108时符合题意. 答:所有符合题意的a 值为:106,107,108. 【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质. 2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =.z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】 【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答. (1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70;综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元. 【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键. 5.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元 【解析】 【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可. (1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =, 当7x =时,5777W =, ∵57785777>,∴6x =时,W 最大,最大利润为5778元. 【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 6.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 【解析】 【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解.(1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩,解得:2730x ≤≤,由(2)可知21070010000w x x =-+-, ∵100-<,即开口向下,对称轴为直线352bx a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.(1)解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。
二次函数综合应用题(有答案)中考题必练经典(学有余力的看)

函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。
备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
(完整版)二次函数(应用题求最值)(含答案)

二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.x(第13题)3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
二次函数的应用(面积最值问题)
二次函数的应用(面积最值问题)[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值X 围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道与在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的X 围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008XXXX)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)XX 市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008XXXX)将一X 边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyOAM (图5) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值X 围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的X 围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2)中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ACD P Q解:∵∠APQ=90°,∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年XX 市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008XX 内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008XXXX)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值X 围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值X 围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年XX 市)随着绿城XX 近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉与树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +==∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08XX 聊城)如图,把一X 长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm ,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm . (2)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm 时, 长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08XX)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。
中考数学二次函数实际应用与极值含答案
二次函数应用与极值问题1、如图17某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?2、如图所示,有一座抛物线拱桥,在正常水位时,水面AB的宽为20m,如果水位上升3m,水面CD的宽是10m。
(1)、建立如右图所示的直角坐标系,求此抛物线的解析式。
(2)、现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距离此桥280km(桥长忽略不计),货车正以每小时40km的速度开往乙地,当行驶1小时后,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨,(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行)。
试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少?3、某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间按相同的间距0.2米用5跟立柱加固,拱高OC为0.6米。
(1)、以O为原点,OC所在的直线为y轴建立平面直角坐标系。
请根据以上的数据,求出抛物线y=ax²的解析式;(2)、计算这段栅栏所需立柱的总长度(精确的到0.1米)4、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?5、凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
中考备考——二次函数最值题型史上最全.doc
中考备考——二次函数最值题型史上最全例题1本题从解决实际问题出发,利用了二次函数最值来解决问题,体现了数学的实用性。
例题1解析教师点评:本题考查了二次函数的应用;等边三角形的判定与性质;矩形的性质;最值问题;二次函数的最值;属于综合性问题。
解题关键:根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积。
二次函数还可以和平面几何相结合:例题2教师点评:抛物线与x轴的交点;二次函数的最值;最值问题;动点型综合题型。
解题关键:根据三角形面积构建二次函数关系式,利用二次函数性质解决问题。
还可以综合性更强、题目更复杂:【分析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S 关于k的关系上,由二次函数的性质即可得出结论。
例题3(1)解析例题3(2)解析例题3(3)解析教师点评:本题综合了二次函数和一次函数性质,是一道综合性非常强的函数问题。
解题关键:准确表示出抛物线顶点坐标,然后根据函数表达式,代入三角形面积公式求解。
总结:二次函数向来是中考命题的热门题型,是因为二次函数可以和数学很多知识结合,容易命出复杂题型,所以二次函数的题目也有一定的难度。
而二次函数最值的解题思路:充分利用二次函数表达式与图像的特点,就可以解决。
中考数学二次函数解答题题型全归纳 专题03 线段最值问题(学生版)
专题03 线段最值问题横坐标相同【例1】如图,已知二次函数的图象经过点(3,3)A、(4,0)B和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为(,0)D m,并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,求APO的最大面积.【变式训练1】如图,抛物线2y x bx c =++与x 轴交于(1,0)A -,(3,0)B 两点,过点A 的直线l 交抛物线于点(2,)C m .(1)求抛物线的解析式.(2)点P 是线段AC 上一个动点,过点P 作x 轴的垂线交抛物线于点E ,求线段PE 最大时点P 的坐标.【变式训练2】把抛物线21:23C y x x =++先向右平移3个单位长度,再向下平移3个单位长度得到抛物线2C .(1)求抛物线2C 的函数关系式;(2)点1(4,)A y 和点2(,)B m y 在抛物线2C 上,若21y y <,结合图象求m 的取值范围;(3)若抛物线2C 的顶点为C ,点P 是线段AC 上的一个动点,过点P 作y 轴的平行线交抛物线2C 于点Q .当线段PQ 最长时,求点P 的坐标.【变式训练3】抛物线2:G y ax c =+与x 轴交于A 、B 两点,与y 交于(0,1)C -,且4AB OC =. (1)直接写出抛物线G 的解析式: ;(2)如图1,点(1,)D m -在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若2CMN S ∆=,求点M 的坐标.【例1】已知抛物线2y x bx c =++与x 轴的交点为(1,0)A -和点B ,与y 轴的交点为(0,3)C -,直线:1L y x =-与抛物线的交点为点A 和点D .(1)求抛物线和直线L 的解析式;(2)如图,M 为抛物线上一动点(不与A 、D 重合),当点M 在直线L 下方时,过点M 作//MN x 轴交直线L 于点N ,求MN 的最大值.【例1】如图,二次函数2y ax bx c =++交x 轴于点(1,0)A 和点(3,0)B ,交y 轴于点C ,抛物线上一点D 的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,//PE x 轴,//PF y 轴,求线段EF 的最大值;【变式训练1】如图,在平面直角坐标系中,已知点A的坐标是(1,0)-,且3==,OB OC OA 动点P在过A、B、C三点的抛物线上(1)求抛物线的解析式(2)如图1,抛物线上是否存在点P,使得BCP∆是以BC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由(3)如图2,过动点P作PE y⊥轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连结EF,当点P在什么位置时,线段EF最短,求出EF长的最小值.点到直线的距离【例1】已知二次函数2y ax bx c =++经过与y 轴的交点(0,5)C ,与x 轴相交于点(1,0)A -、(5,0)B 两点.(1)求此二次函数的解析式.(2)如图一,若点M 是抛物线上一点,且在直线BC 上方,当10BCM S ∆=时,求点M 的坐标.(3)如图二,点P 是抛物线上的任意一点,且在直线BC 上方,PQ BC ⊥交BC 一点Q ,求线段PQ 的最大值.【变式训练1】如图,在平面直角坐标系中,直线122y x =-与x 轴交于点B ,与y 轴交于点C ,二次函数212y x bx c =++的图象经过B ,C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的解析式及点A 的坐标.(2)点M 是线段BC 上的一动点,动点D 在直线BC 下方的二次函数图象上.设点D 的横坐标为m .过点D 作DM BC ⊥于点M ,求线段DM 的长关于m 的函数解析式,并求线段DM 的最大值.【变式训练2】如图,已知:抛物线(1)(3)=+-交x轴于A、C两点,交y轴于B.且y a x xOB CO=.2(1)求点A、B、C的坐标及二次函数解析式;(2)在直线AB上方的抛物线上有动点E,作EG x⊥轴交x轴于点G,交AB于点M,作⊥于点F.若点M的横坐标为m,求线段EF的最大值.EF AB【变式训练3】如图,二次函数22y ax bx =++的图象与x 轴相交于点(1,0)A -、(4,0)B ,与y 轴相交于点C .(1)求该函数的表达式;(2)点P 为该函数在第一象限内的图象上一点,过点P 作PQ BC ⊥,垂足为点Q ,连接PC . ①求线段PQ 的最大值;【例2】如图,在平面直角坐标系中,一次函数24y x =+与x 轴、y 轴分别交于点D 、E ,二次函数234(0)y mx mx m m =--<与x 轴交于A 、B 两点.(1)A 点坐标 ,B 点坐标 ;(2)在x 轴上方的抛物线上是否存在P 点,使得以点A 、B 、P 为顶点的三角形与DEO ∆相似?若存在,求m 的值;若不存在,请说明理由;(3)点Q 为(2)中抛物线上的动点,当Q 到直线DE 距离最小时,求Q 点坐标及最小值.【变式训练1】如图1,抛物线2y ax c =+与x 轴交于点A 、B ,与y 轴交于点C ,P 为x 轴下方抛物线上一点,若24OC OA ==.(1)求抛物线解析式;(2)如图2,若ABP ACO ∠=∠,求点P 的坐标;(3)如图3,点P 的横坐标为1,过点P 作PE PF ⊥,分别交抛物线于点E ,F .求点A 到直线EF 距离的最大值.线段比值【例1】如图,抛物线212y x bx c =-++与x 轴交于点(1,0)A -和点(4,0)B ,与y 轴交于点C ,连接BC ,点P 是线段BC 上的动点(与点B ,C 不重合),连接AP 并延长AP 交抛物线于点Q ,连接CQ ,BQ ,设点Q 的横坐标为m .(1)求抛物线的解析式和点C 的坐标;(2)当BCQ ∆的面积等于2时,求m 的值;(3)在点P 运动过程中,PQ AP是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【变式训练1】已知抛物线26y ax bx =+-与x 轴交于(2,0)A -,(3,0)B 两点,与y 轴交于点C ,连结BC .(1)填空:a = ,b = ;(2)如图1,若D 为抛物线上BC 下方一动点(不与C ,B 重合),连OD 交BC 于E ,求DE OE的最大值;(3)如图2,点P 在抛物线上,且12BCO PBA ∠=∠,请直接写出P 点的坐标.【变式训练2】如图,抛物线234y ax ax a =--的图象经过点(0,2)C ,交x 轴于点A 、B (点A 在点B 左侧),连接BC ,直线1(0)y kx k =+>与y 轴交于点D ,与BC 上方的抛物线交于点E ,与BC 交于点F .(1)求抛物线的解析式及点A 、B 的坐标;(2)EF DF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由.【变式训练3】如图1,在平面直角坐标系中,直线4y x =+与抛物线21(2y x bx c b =-++,c 是常数)交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1)求该抛物线的解析式;(2)P 是抛物线上一动点(不与点A 、B 重合), ①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求PD OD的最大值;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的应用》中考题集锦——最值问题 第1题已知:m,n是方程2650xx的两个实数根,且mn,
抛物线2yxbxc的图象经过点A(0m,),B(0n,). (1) 求这个抛物线的解析式; (2) 设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标
和BCD△的面积;(注:抛物线2yaxbxc(0)a的顶点坐标为2424bacbaa,); (3) P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH△分成面积之比为2:3的两部分,请求出P点的坐标.
答案:解:(1)解方程2650xx,得15x,21x. 由mn,有1m,5n. 所以点A,B的坐标分别为10A,,05B,.
将10A,,05B,的坐标分别代入2yxbxc,
得105bcc,.解这个方程组,得45bc,. 所以抛物线的解析式为245yxx. (2)由245yxx,令0y,得2450xx. 解这个方程,得15x,21x. 所以C点的坐标为50,. 由顶点坐标公式计算,得点29D,.
D B A O C x
y
D H y
B E
A x O
P M
C 过D作x轴的垂线交x轴于M, 则12795222DMCS△,
1295142MDBOS梯形,
1255522BOCS△.
所以2725141522BCDDMCBOCMDBOSSSS梯形△△△. (3)设P点的坐标为0a,, 因为线段BC过B,C两点,所以BC所在的直线方程为5yx. 那么,PH与直线BC的交点坐标为5Eaa,, PH与抛物线245yxx的交点坐标为245Haaa,. 由题意,得①32EHEP,即2345552aaaa. 解这个方程,得32a或5a(舍去). ②23EHEP,即2245553aaaa. 解这个方程,得23a或5a(舍去).
P点的坐标为302,或203,.
第3题某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出
销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)
(不含进价)与年销售量y(万件)存在函数关系1042.5zy. (1)求y关于x的函数关系式; (2)试写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利年销售总金额年销售产品的总进价年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少? (3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
1 3 5 0 10 30 50 70 90 x(元)
y(万件) 答案:解:(1)由题意,设ykxb,图象过点(705),,(903),, 570390.kbkb,∴解得11012.kb,11210yx∴.
(2)由题意,得(40)(40)(1042.5)wyxzyxy 1112(40)101242.51010xxx
20.117642.5xx
21(85)8010x.
当85元时,年获利的最大值为80万元. (3)令57.5w,得20.117642.557.5xx.
整理,得217070000xx. 解得170x,2100x. 由图象可知,要使年获利不低于57.5万元,销售单价应在70元到100元之间,又因为销售单价越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.
第4题东方专卖店专销某种品牌的计算器,进价12元/只,售价20元/只.为了促销,专卖店决定凡是买
10只以上的,每多买一只,售价就降低0.10元(例如,某人买20只计算器,于是每只降价0.10(2010)1
元,就可以按19元/只的价格购买),但是最低价为16元/只. (1)求顾客一次至少买多少只,才能以最低价购买?
(2)写出当一次购买x只时(10x),利润y(元)与购买量x(只)之间的函数关系式; (3)有一天,一位顾客买了46只,另一位顾客买了50只,专卖店发现卖了50只反而比卖了46只赚的钱少,为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/只至少要提高到多少?为什么?
答案:(1)设顾客一次至少购买x只,则0.1(10)4x,解得50x. 或设顾客购买x只,由0.1(10)4x≥解得50x≥,或由0.1(10)4x≤解得50x≤,可同等给分. (2)当1050x≤时,2[200.1(10)12]0.19yxxxx 当50x时,(2016)4yxx. (3)方法(一)列表 x „ 40 41 42 43 44 45 46 47 48 49 50 „
80 57.5
80 70 100 x(元)
w(万件) O y „ 200 200.9 201.6 202.1 202.4 202.5 202.4 202.1 201.6 200.9 200 „
由表格可知,最低售价为200.1(4510)16.5元
方法(二)利润220.190.1(45)202.5yxxx,因为卖的越多赚的越多,即y随x的增大而增大,由二次函数图象可知,45x≤, 当45x时,最低售价为200.1(4510)16.5元.
第5题利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后
再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5
吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元? (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
答案:解:(1)260240457.56010(吨). (2)260(100)457.510xyx, 化简得:23315240004yxx. (3)223331524000(210)907544yxxx. 利达经销店要获得最大月利润,材料的售价应定为每吨210元. (4)我认为,小静说的不对. 理由:方法一:当月利润最大时,x为210元,
而对于月销售额22603457.5(160)19200104xWxx来说,当x为160元时,月销售额W最大. 当x为210元时,月销售额W不是最大. 小静说的不对. 方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.1732518000, 当月利润最大时,月销售额W不是最大. 小静说的不对. (说明:如果举出其它反例,说理正确,也相应给分)
第6题利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5
吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元. 设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的二次函数关系式(不要求写出x的取值范围);
(3)请把(2)中的二次函数配方成2yaxhk的形式,并据此说明该经销店要获得最大月利润,售价应定为每吨多少元; (4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
答案:解:(1)260240457.56010(吨). (2)260(100)(457.5)10xyx, 化简得:23315240004yxx. (3)223331524000(210)907544yxxx. 利达经销店要获得最大月利润,材料的售价应定为每吨210元. (4)我认为,小静说的不对. 理由:方法一:当月利润最大时,x为210元,
而对于月销售额22603457.5(160)19200104xWxx来说, 当x为160元时,月销售额W最大. 当x为210元时,月销售额W不是最大. 小静说的不对. 方法二:当月利润最大时,x为210元,此时,月销售额为17325元; 而当x为200元时,月销售额为18000元.1732518000, 当月利润最大时,月销售额W不是最大. 小静说的不对.
第7题在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情
况进行了调查统计,得到如下数据: 销售价x(元/千克) 25 24 23 22 销售量y(千克) 2000 2500 3000 3500
(1)在如图的直角坐标系内,作出各组有序数对()xy,所对应的点.连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之间的函数关系式;
(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?