惠州市2012届高三第二次调研考试(文数)
最新广东省惠州市高三第二次调研考试(文科数学)(参考答案及评分标准)

广东省惠州市2011届高三第二次调研考试数学试题(文科)本试卷共5页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中s 是锥体的底面积,h 是锥体的高. 圆锥的侧面积公式S rl π=,其中r 为底面半径,l 为母线.球的表面积公式24S R π=,其中R 为球的半径.一、选择题:本大题共10 小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求. 1.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =U ,则a 的值为( ) A.0 B.1 C.2 D.4 2.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( ) A .1- B .0 C .1 D .1-或1 . 3.已知条件p :1x ≤,条件q :1x<1,则p 是⌝q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件4.函数2(0)23()(0)2ln x x x f x x x≤⎧+-=⎨>-+⎩ 的零点个数为 ( )A.3B.2C.1D.05.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+, 则曲线()y f x =在点(1,(1))f 处切线的斜率为( ) A.3 B.5 C.2 D.4 6.已知函数sin 2y x =,要得到函数sin(2)3y x π=+的图象,只需将()f x 的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向右平移6π个单位 D .向左平移6π个单位7.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )8.已知等差数列{}n a 的前n 项和为n S ,且满足32132S S -=,则数列{}n a 的公差是( )A .12B .1C .2D .3 9.若椭圆221x y m n+=与双曲线221(,,,x y m n p q p q -=均为正数)有共同的焦点1F ,2F ,P 是两曲线的一个公共点,则12||||PF PF ⋅等于( ) A .22p m - B .p m -C .m p -D .22m p -10.在平面向量中有如下定理:设点,,,O P Q R 为同一平面内的点,则,,P Q R 三点共线的充要条件是:存在实数t ,使(1)OP t OQ tOR =-+u u u r u u u r u u u r.如图,在ABC ∆中,点E 为AB 边的中点,点F 在AC 边上,且2CF FA =,BF 交CE 于点M ,设AM x AE y AF =+u u u u r u u u r u u u r,则( )A .43,55x y ==B .34,55x y ==C .23,55x y ==D .32,55x y ==sOA . sOsOsOB .C .D . BCAEFM(第10题图)NMCABO二、填空题(本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只需选做其中一题,两题全答的,只以第一小题计分.)(一)必做题:第11、12、13题为必做题,每道试题都必须做答。
广东省惠州市2012届理科数学二模

广东省惠州市2012届高三模拟考试数学 (理科)及答案本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.集合{4,5,3}M m =-,{9,3}N =-,若MN ≠∅,则实数m 的值为( )A .3或1-B .3C .3或3-D .1- 2.设,a b 为实数,若复数121ii a bi+=++,则( ) A .1,3a b ==B .3,1a b ==C .13,22a b == D .31,22a b == 3.“0a >”是“20a a +≥”的( )条件 A .充分非必要B .必要非充分C .充要D .非充分非必要4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =, 则10S 等于( )A .18B .24C .60D .905.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为 ( ) A .10 B .20 C .30 D .406.函数的部分图象如图示,则将的图象向右平移个单位后,得到的 图象解析式为 ( )A .B .C .D .()sin()(0,0,||)2f x A x A πωφωφ=+>><()y f x =6πy =sin 2x y =cos2x y =2sin(2)3x π+y =7.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( ) A .3 B .332 C .34 D .358.定义函数,若存在常数C ,对任意的,存在唯一的,使得,则称函数在D 上的均值为C .已知,则函数上的均值为( )ABC .D .10二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.10.右图是某算法的程序框图,则程序运行后输出的结果是 .11.1232,2()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,则((2))f f 的值为 . 12.由曲线2y x =,3y x =围成的封闭图形面积为 .13.已知52x ⎛ ⎝的展开式中的常数项为T ,()f x 是以T 为周期的 偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是 .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
广东省深圳市2012届高三年级第二次调研考试(word版)数学理

2012年深圳市高三年级第二次调研考试数学(理科) 2012.4本试卷共6页,21小题,满分150分.考试用时120分钟. 一、选择题:本大题共 8 个小题,每小题 5 分,共 40 分. 1.集合{m i |*n N }(其中i 是虚数单位)中元素的个数是 A .1 B .2 C .4 D .无穷多个 2.设随机变量,若,则c 等于A .0B .1C .2D .3 3.已知命题p :“存在正实数a,b ,使得;lg (a +b )=lga +lgb ”;命题q :“空间两条直线异面的充分必要条件是它们不同在任何一个平面内”.则它们的真假是 A .p ,q 都是真命题 B .p 是真命题,q 是假命题 C .p ,q 都是假命题 D .p 是假命题,q 是真命题4.在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这 六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有 A .6种 B .36种 C .72种 D .120种 5.设,,,若a ,1,b 成等比数列,且c ,1,d 成等差数列,则下列不等式恒成立的是6.设函数若f (x )的值域为R ,则常数a 的取值范围是7.如图1,直线l 和圆c ,当l 从0 开始在平面上绕点O 按逆时针方向匀速转动(转动角度不超过900)时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图象大致是8.如果函数y =|x |-1的图象与方程的曲线恰好有两个不同的公共点,则实数的取值范围是二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题为必做题.9.在实数范围内,方程|x |+|x +1|=1的解集是 . 10.某机器零件的俯视图是直径为24 mm 的圆(包括圆心),主 视图和侧视图完全相同,如图2所示.则该机器零件的体积是______mm 3(结果保留 ).11.已知平面向量a ,b 满足条件a +b =(0,1),a -b =(-1,2),则ab =_______12.执行图3中程序框图表示的算法,若输入m=5533,n=2012,则输出d =_____(注:框图中的赋值符号“=”也可以写成“←”或“:=”)13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验. 根据收集到的数据(如下表),由最小二乘法求得回归方程.现发现表中有一个数据模糊看不清,请你推断出该数据的值为 . (二)选做题:第14、15题为选做题,考生只能从中选做一题. 14.(坐标系与参数方程选做题)在极坐标系中,已知直线把曲线所围成的区域分成面积相等的两部分,则常数a的值是 . 15.(几何证明选讲选做题)如图4,AB 是圆O 的直径, 弦AD 和BC 相交于点P ,连接CD .若∠APB =120°, 则CDAB等于 .三、解答题:本大题共6 小题,满分80 分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数(1)求f(x)的最大值;(2)设△ABC中,角A、B的对边分别为a、b,若B=2A,且,求角C的大小.17.(本小题满分12分)深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回.(1)设第一次训练时取到的新球个数为,求的分布列和数学期望;(2)求第二次训练时恰好取到一个新球的概率.18.(本小题满分14分)如图5,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形,其中A与A '重合,且BB'<DD'<CC'.(1)证明AD'//平面BB'C'C,并指出四边形AB'C'D’的形状;(2)如果四边形中AB'C'D’中,,正方形的边长为,求平面ABCD与平面AB'C'D’所成的锐二面角的余弦值.19.(本小题满分14分)已知数列满足:,且a(1)求通项公式n(2)设的前n项和为S n,问:是否存在正整数m、n,使得若存在,请求出所有的符合条件的正整数对(m,n),若不存在,请说明理由.20.(本小题满分14分)如图6,已知动圆M过定点F(1,0)且与x轴相切,点F 关于圆心M 的对称点为F',动点F’的轨迹为C.(1)求曲线C的方程;(2)设是曲线C上的一个定点,过点A任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点P 、Q.①证明:直线PQ的斜率为定值;②记曲线C位于P 、Q两点之间的那一段为l.若点B在l上,且点B到直线PQ的距离最大,求点B的坐标.21.(本小题满分14分)已知函数f(x)=x-xlnx ,,其中表示函数f(x)在x=a处的导数,a为正常数.(1)求g(x)的单调区间;(2)对任意的正实数,且,证明:(3)对任意的2012年深圳市高三年级第二次调研考试数学(理科)参考答案及评分标准 2012.4一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题为必做题.9.]0,1[- 10.π2880 11.1- 12.503 13.68 (注:第9题答案也可以写成}01|{≤≤-x x ,如果写成01≤≤-x ,不扣分.) (二)选做题:第14、15题为选做题,考生只能从中选做一题. 14.(坐标系与参数方程选做题)1- 15.(几何证明选讲选做题)21三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(sin )(π-+=x x x f ,R ∈x .(1)求)(x f 的最大值;(2)设△ABC 中,角A 、B 的对边分别为a 、b ,若A B 2=且)6(2π-=A f a b ,求角C 的大小. 解:(1))6cos(sin )(π-+=x x x f x x x sin 21cos 23sin ++= ……………………2分 ⎪⎪⎭⎫ ⎝⎛+=x x cos 21sin 233)6sin(3π+=x .(注:也可以化为)3cos(3π-x ) …4分所以)(x f 的最大值为3. …………………………………………………………6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(2)因为)6(2π-=A f a b ,由(1)和正弦定理,得A B 2sin 32sin =.………………7分又A B 2=,所以A A 2sin 322sin =,即A A A 2s in 3c o s s in =,………………9分而A 是三角形的内角,所以0sin ≠A ,故A A s i n 3c o s =,33tan =A , ………………11分所以6π=A ,32π==A B ,2ππ=--=B A C . ……………………………………12分17.(本小题满分12分)深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.解:(1)ξ的所有可能取值为0,1,2. ………………………………………1分设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ, ………………………………………3分53)1()(2613131====C C C P A P ξ, ………………………………………5分51)2()(26232====C C P A P ξ. ………………………………………7分所以ξ的分布列为(注:不列表,不扣分)ξ1512531510=⨯+⨯+⨯=ξE . ……………………………………8分(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++.而事件B A 0、B A 1、B A 2互斥,所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++.由条件概率公式,得253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ), …………………………………9分2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ), …………………………………10分151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ). …………………………………11分所以,第二次训练时恰好取到一个新球的概率为7538151258253)(210=++=++B A B A B A P . …………………………………12分18.(本小题满分14分)如图5,已知正方形ABCD 在水平面上的正.投影(投影线垂直于投影面)是四边形''''D C B A ,其中A 与'A 重合,且'''CC DD BB <<.(1)证明//'AD 平面C C BB '',并指出四边形'''D C AB 的形状;(2)如果四边形'''D C AB 中,2'=AD ,5'=AB ,正方形ABCD 的边长为6, 求平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值. 证明:(1)依题意,⊥'BB 平面'''D C AB ,⊥'CC 平面'''D C AB ,⊥'DD 平面'''D C AB ,所以'//'//'DD CC BB . ……………2分(法1)在'CC 上取点E ,使得'DD CE =, 连结BE ,E D ',如图5-1.因为'//DD CE ,且'DD CE =,所以E CDD '是平行四边形,DC E D //',且DC E D ='.又ABCD 是正方形,AB DC //,且AB DC =, 所以ABE D //',且ABE D =',故'ABED 是平行四边形, ………………………………4分从而BE AD //',又⊂BE 平面C C BB '',⊄'AD 平面C C BB '', 所以//'AD 平面C C BB ''. ………………………………………………………………6分15-图CD)'(A A B'C 'D 'B E四边形'''D C AB 是平行四边形(注:只需指出四边形'''D C AB 的形状,不必证明).……7分(法2)因为'//'CC DD ,⊂'CC 平面C C BB '',⊄'DD 平面C C BB '', 所以//'DD 平面C C BB ''.因为ABCD 是正方形,所以BC AD //,又⊂BC 平面C C BB '',⊄AD 平面C C BB '', 所以//AD 平面C C BB ''. ………………………………………………………………4分而⊂'DD 平面'ADD ,⊂AD 平面'ADD ,D AD DD = ',所以平面//'ADD 平面C C BB '',又⊂'AD 平面'A D D,所以//'AD 平面C C BB ''. …………6分四边形'''D C AB 是平行四边形(注:只需指出四边形'''D C AB 的形状,不必证明).……7分解:(2)依题意,在Rt △'ABB 中,1)5()6(''2222=-=-=AB AB BB ,在Rt △'ADD 中,2)2()6(''2222=-=-=AD AD DD ,所以3021''''=-+=-+=AA DD BB CC .(注:或312''''=+=+=+=BB DD EC CE CC ) ………………………………………8分连结AC ,'AC ,如图5-2, 在Rt △'ACC 中,33)32(''2222=-=-=CC AC AC .所以222''''AB C B AC =+,故'''C B AC ⊥.……10分(法1)延长CB ,''B C 相交于点F ,则31''''==CC BB FC FB ,而2''=C B ,所以223'=FC . 连结AF ,则AF 是平面ABCD 与平面'''D C AB 的交线.在平面'''D C AB 内作AF G C ⊥',垂足为G , 连结CG .因为⊥'CC 平面'''D C AB ,⊂AF 平面'''D C AB ,所以AF CC ⊥'. 从而⊥AF 平面G CC ',AF CG ⊥.所以'C G C ∠是平面ABCD 与平面'''D C AB 所成的一个锐二面角. …………………………12分25-图CD)'(A A B'C 'D 'B FG在Rt △F AC '中,553223)3(2233'''22=⎪⎭⎫⎝⎛+⨯=⨯=AF F C A C G C , 在Rt △G CC '中,53035533''2222=⎪⎪⎭⎫ ⎝⎛+=+=G C CC CG . 所以66''cos cos ==∠=CG G C CGC θ, 即平面ABCD 与平面'''D C AB 所成的锐二面角θ的余弦值为66.……………………14分(法2)以'C 为原点,A C '为x 轴,''B C 为y 轴,建立空间直角坐标系(如图5-3),则平面'''D C AB 的一个法向量)1,0,0(=n .设平面ABCD 的一个法向量为),,(z y x =m , 因为)0,0,3(A ,)1,2,0(B ,)3,0,0(C , 所以)1,2,3(-=,)2,2,0(-=,而AB ⊥m ,BC ⊥m , 所以0=∙AB m 且0=∙BC m ,即⎪⎩⎪⎨⎧=+-=++-022023z y z y x , 取1=z ,则2=y ,3=x ,所以平面ABCD 的一个法向量为)1,2,3(=m .(注:法向量不唯一,可以是与)1,2,3(=m 共线的任一非零向量)……………………12分661001)2()3(|110203||||||,cos |cos 222222=++⨯++⨯+⨯+⨯==><=∙n m n m n m ||θ.所以平面A B C D 与平面'''D C AB 所成的锐二面角θ的余弦值为66. …………………14分 (法3)由题意,正方形ABCD 在水平面上的正.投影是四边形''''D C B A , 所以平面A B C D 与平面'''D C AB 所成的锐二面角θ的余弦值ABCDD C AB S S '''=. …………………12分D而6)6(2==ABCD S ,632''''''=⨯=⨯=AC C B S D C AB ,所以66cos =θ, 所以平面A B C D 与平面'''D C AB 所成的锐二面角θ的余弦值为66. …………………14分 19.(本小题满分14分)已知数列}{n a 满足:11=a ,22=a ,且3)1)(cos 2(2+-+=+n n a n a π,*N ∈n . (1)求通项公式n a ;(2)设}{n a 的前n 项和为n S ,问:是否存在正整数m 、n ,使得122-=n n mS S ?若存在,请求出所有的符合条件的正整数对),(n m ,若不存在,请说明理由. 解:(1)当n 是奇数时,1cos -=πn ;当n 是偶数时,1cos =πn .所以,当n 是奇数时,22+=+n n a a ;当n 是偶数时,n n a a 32=+. ……………………2分又11=a ,22=a ,所以1a ,3a ,5a ,…,12-n a ,…是首项为1,公差为2的等差数列;2a ,4a ,6a ,…,n a 2,…是首项为2,公比为3的等比数列. ……………………4分所以,⎪⎩⎪⎨⎧⨯=-为偶数为奇数n n n a nn ,32,12. ………………………………………………6分(2)由(1),得)()(24212312n n n a a a a a a S +++++++=-)3262()]12(31[1-⨯++++-+++=n n132-+=n n ,13321321122212-+=⨯--+=-=---n n a S S n n n n n n . ………………………8分所以,若存在正整数m 、n ,使得122-=n n mS S ,则133211313211212122-+⨯+=-+-+==----n n n S S m n n n n n n 3332111=⨯+≤--n n . ………………9分显然,当1=m 时,122122)13(113--=-+⨯≠-+=n n n n S n n S ;当2=m 时,由1222-=n n S S ,整理得1321-=-n n .显然,当1=n 时,11013211-=≠=-;当2=n 时,1233212-==-,所以)2,2(是符合条件的一个解. ……………………………11分当3≥n 时, +⨯+⨯+=+=----2211111221)21(3n n n n C C 2111421--++≥n n C C 3422+-=n n1)2(22-+-=n n12->n . …………………………12分当3=m 时,由1223-=n n S S ,整理得1=n , 所以)1,3(是符合条件的另一个解.综上所述,所有的符合条件的正整数对),(n m ,有且仅有)1,3(和)2,2(两对. ……14分(注:如果仅写出符合条件的正整数对)1,3(和)2,2(,而没有叙述理由,每得到一组正确的解,给2分,共4分) 20.(本小题满分14分)如图6,已知动圆M 过定点)1,0(F 且与x 轴相切,点F 关于圆心M 的对称点为'F ,动点'F 的轨迹为C . (1)求曲线C 的方程;(2)设),(00y x A 是曲线C 上的一个定点,过点A 任意作两条倾斜角互补的直线,分别与曲线C 相交于另外两点P 、Q .① 证明:直线PQ 的斜率为定值;② 记曲线C 位于P 、Q 两点之间的那一段为L .若点B 在L 上,且点B 到直线PQ 的距离最大,求点B 的坐标.解:(1)(法1)设),('y x F ,因为点)1,0(F 在圆M 上, 且点F 关于圆心M 的对称点为'F ,所以)21,2(+y x M , …………1分 且圆M 的直径为22)1(|'|-+=y x FF .…………2分由题意,动圆M 与y 轴相切,所以2)1(2|1|22-+=+y x y ,两边平方整理得:y x 42=,所以曲线C的方程为y x 42=. ………………………………………………5分16-图(法2)因为动圆M 过定点)1,0(F 且与x 轴相切,所以动圆M 在x 轴上方, 连结'FF ,因为点F 关于圆心M 的对称点为'F ,所以'FF 为圆M 的直径. 过点M 作x MN ⊥轴,垂足为N ,过点'F 作x E F ⊥'轴,垂足为E (如图6-1).在直角梯形'EOFF 中,1|'||||'|||2||2|'|+=+===E F FO E F MN MF F F , 即动点'F 到定点)1,0(F 的距离比到x 轴的距离大1. …………………………………………3分又动点'F 位于x 轴的上方(包括x 轴上),所以动点'F 到定点)1,0(F 的距离与到定直线1-=y 的距离相等.故动点'F 的轨迹是以点)1,0(F 为焦点,以直线1-=y 为准线的抛物线. 所以曲线C的方程为y x 42=. ………………………………………………5分(2)①(法1)由题意,直线AP 的斜率存在且不为零,如图6-2.设直线AP 的斜率为k (0≠k ),则直线AQ 的斜率为k -. ……………………………6分因为),(00y x A 是曲线C :y x 42=上的点,所以4200x y =,直线AP 的方程为)(402x x k x y -=-. 由⎪⎩⎪⎨⎧-=-=)(440202x x k x y y x , 解之得⎪⎩⎪⎨⎧==4200x y x x 或⎪⎩⎪⎨⎧+-=+-=4)4(4200k x y k x x , 所以点P 的坐标为)4)4(,4(200k x k x +-+-, 以k -替换k ,得点Q 的坐标为)4)4(,4(200k x k x +--. ………………………………8分所以直线PQ 的斜率23216)4()4(4)4(4)4(00002020x k kx k x k x k x k x k PQ -=-=+----+--+=为定值.………………10分(法2)因为),(00y x A 是曲线C :y x 42=上的点,所以4200x y =,)4,(20x x A . 26-图又点P 、Q 在曲线C :y x 42=上,所以可设)4,(211x x P ,)4,(222x x Q , …………6分而直线AP ,AQ 的倾斜角互补,所以它们的斜率互为相反数,即022220120214444x x x x x x x x ---=--,整理得0212x x x -=+. …………8分所以直线PQ 的斜率2424440021122122x x x x x x x x k PQ -=-=+=--=为定值. ………………10分②(法1)由①可知,P )4)4(,4(200k x k x +-+-,Q )4)4(,4(200k x k x +--, 20x k PQ-=,所以直线PQ 的方程为)4(24)4(0020k x x x k x y -+-=+--,整理得016422200=-++k x y x x . ……………………………………11分设点)4,(2x x B 在曲线段L 上,因为P 、Q 两点的横坐标分别为k x 40+-和k x 40--,所以B 点的横坐标x 在k x 40+-和k x 40--之间,即||4||400k x x k x +-≤≤--, 所以||4||40k x x k ≤+≤-,从而22016)(k x x ≤+.点B 到直线PQ 的距离42|162|164|16442|20220022022020+-++=+-+⨯+=x k x x x x x k x x x x d 4216)(42142|16)(|202202020220++++-=+-+=x k x x x x k x x . ………12分当0x x -=时,421622max +=x k d .注意到||4||4000k x x k x +-≤-≤--,所以点)4,(200x x -在曲线段L 上. 所以,点B 的坐标是)4,(200x x -. ……………………………………………………………14分(法2)由①可知,2x k PQ -=,结合图6-3可知,若点B 在曲线段L 上,且点B 到直线PQ 的距离最大, 则曲线C 在点B 处的切线PQ l //. ………………11分设l :b x x y +-=20,由方程组⎪⎩⎪⎨⎧=+-=yx bx x y 4220, 消去y ,得04202=-+b x x x .令△0)4(14)2(20=-⨯⨯-=b x ,整理,得420x b -=.……12分代入方程组,解得0x x -=,420x y =.所以,点B 的坐标是)4,(200x x -. ……………………………………………………………14分(法3)因为抛物线C :y x 42=关于y 轴对称,由图6-4可知,当直线AP 的倾斜角大于︒0且趋近于︒0时,直线AQ 的倾斜角小于︒180且趋近于︒180,即当直线AP 的斜率大于0且趋近于0时,直线AQ 的斜率小于0且趋近于0.从而P 、Q 两点趋近于点)4,(200x x A 关于y 轴的对称点)4,('200x x A -. ………………11分由抛物线C 的方程y x 42=和①的结论,得42x y =,PQ x x x x k xx y =-=='-=-=22|000.所以抛物线C 以点)4,('200xx A -为切点的切线PQ l //. ……………………12分所以曲线段L 上到直线PQ 的距离最大的点就是点'A ,即点B 、点'A 重合. 所以,点B 的坐标是)4,(200xx -. ……………14分 21.(本小题满分14分)已知函数x x x x f ln )(-=,)()()(a f x x f x g '-=,其中)(a f '表示函数)(x f 在a x =处的导数,a 为正常数.(1)求)(x g 的单调区间;(2)对任意的正实数21,x x ,且21x x <,证明:)()()()()()(11212212x f x x x f x f x f x x '-<-<'-;46-图(3)对任意的*N ∈n ,且2≥n ,证明:nn f n ln 2ln )1(1ln 13ln 12ln 1⋅+-<+++ . 解:(1)x x f ln )('-=,a x x x x x g ln ln )(+-=,xaa x a f x f x g lnln ln )()()(=+-='-'='. ……………………………………2分所以,),0(a x ∈时,0)('>x g ,)(x g 单调递增; ),(∞+∈a x 时,0)('<x g ,)(x g 单调递减.所以,)(x g 的单调递增区间为],0(a ,单调递减区间为),[∞+a . ……………………4分(2)(法1)对任意的正实数21,x x ,且21x x <, 取1x a =,则),(12∞+∈x x ,由(1)得)()(21x g x g >, 即)()()()()()(21221111x g x f x x f x f x x f x g ='->'-=, 所以,)()()()(11212x f x x x f x f '-<-……①; ………………………6分取2x a =,则),0(21x x ∈,由(1)得)()(21x g x g <, 即)()()()()()(22222111x g x f x x f x f x x f x g ='-<'-=, 所以,)()()()(21212x f x x x f x f '->-……②.综合①②,得)()()()()()(11212212x f x x x f x f x f x x '-<-<'-. ………………………8分(法2)因为x x f ln )('-=,所以,当)1,0(∈x 时,0)(>'x f ;当),1(∞+∈x 时,0)(<'x f .故)(x f 在]1,0(上单调递增,在),1[∞+上单调递减.所以,对任意的正实数21,x x ,且21x x <,有)1(21f x x f <⎪⎪⎭⎫ ⎝⎛,)1(12f x x f <⎪⎪⎭⎫⎝⎛.……………6分由)1(21f x x f <⎪⎪⎭⎫⎝⎛,得1ln 121212<-x xx x x x ,即0)ln (ln 12212<---x x x x x ,所以0)ln (ln )()()()(1221211212<---='---x x x x x x f x x x f x f . 故)()()()(11212x f x x x f x f '-<-.……①;由)1(12f x x f <⎪⎪⎭⎫⎝⎛,同理可证)()()()(21212x f x x x f x f '->-.……②.综合①②,得)()()()()()(11212212x f x x x f x f x f x x '-<-<'-. ………………………8分(3)对2,,2,1-=n k ,令xk x x k ln )ln()(+=ϕ(1>x ),则22))(ln ()ln()(ln )(ln )ln(ln )('x k x x k x k x x x x x k x k x x x k +++-=+-+=ϕ,显然k x x +<<1,)ln(ln 0k x x +<<,所以)ln()(ln k x k x x x ++<, 所以0)('<x k ϕ,)(x k ϕ在),1(∞+上单调递减.由2≥-k n ,得)2()(k k k n ϕϕ≤-,即2ln )2ln()ln(ln k k n n +≤-.所以)ln()2ln(ln 2ln k n k n -+≤,2,,2,1-=n k . ……………………………10分 所以⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+++2ln 1ln 1)1ln(13ln 1ln 12ln 1ln 13ln 12ln 12n n n n 2ln ln ln 2ln )1ln(3ln 3ln )1ln(ln 2ln 2ln ln n n n n n n +++-+-++=nnn n n n ln 2ln ln 2ln ln 2ln 3ln )1ln(ln 2ln 2ln ln ++++-++≤⎪⎭⎫ ⎝⎛+++=n n ln 2ln ln 3ln 2ln 2 . ………………………………12分又由(2)知n n f n f n f ln )(')()1(-=<-+,所以)1()(ln +-<n f n f n .)1()()3()2()2()1(ln 2ln 1ln +-++-+-<+++n f n f f f f f n)1(1)1()1(+-=+-=n f n f f .所以,nn f n n n ln 2ln )1(1ln 2ln ln 3ln 2ln ln 13ln 12ln 1+-<+++≤+++ .……………………14分。
【2012惠州一模】(文数)

广东省惠州市2012届高三第三次调研考试题 数学文一、选择题1、设全集{}1,2,3,4,5U =, {}1,3,5A =, {}2,4B =,则U A B C ⋃为( )A. {}2B. {}1,3C. {}3D. {}1,2,3,52、复数2(1)i -的虚部为( )A.-2B.2C. 2i -D. 2i3、不等式204xx -≥+的解集为( ) A. (]4,2- B. []4,2- C. (][),42,-∞-⋃+∞ D. ()[),42,-∞-⋃+∞4、“a =-2”是“直线a x+2y =0垂直于直线x +y =1”的( )条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要5、公差不为零的等差数列{}n a 中,a 1+a 2+a 3=9,且a 1,a 2,a 5成等比数列,则数列{}n a 的公差为( )A.1B.2C.3D.46、已知f (x )是定义在R 上的奇函数,且f (x +4)=f (x ),当()0,2x ∈时,f (x )=x +2,则f (7)=( )A.-3B.3C.-1D.17、设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若,l m m α⊥⊂,则l α⊥B. 若,l l m α⊥ ,则m α⊥C. 若,l m αα⊂ ,则l mD. 若,l m αα ,则l m8、以下给出的是计算111...2420++的值的一个程序框图,其中判断框内应填入的条件是( )A. 10i >B. 10i <C. 10i ≥D. 20i >9、定义运算a bc d =ad -bc ,则函数f (x )= 2sin 12cos x x -的图像的一条对称轴是( ) A. 2π B. 4πC. πD.010、若椭圆22221y xa b +=(a >b >0),的离心率为12,右焦点为F(c ,0),方程220a bx c x ++=的两个实根分别为1x 和2x ,则点P (1x ,2x )到原点距离为( )A.B. 2C.2D. 74二、填空题(一)必做题11、为了保证食品安全,现采用分层抽样的方法对某市场的甲、乙、丙、丁四个厂家生产的奶粉进行检测,若甲、乙、丙、丁四个厂家生产的奶粉分别为120袋、100袋、80袋、60袋,已知甲乙两个厂家抽取的袋数之和为22袋,则四个厂家一共抽取 袋.12、已知23600x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则3z x y =+的最大值为 .13、已知6a =,b = ()(3)108a b a b -⋅+=- ,则a 与b 的夹角,a b <> = .(二)选做题14、(坐标系与参数方程)在极坐标系中,点3(2,)2π到直线l :3cos 4sin 3ρθρθ-=的距离为 .15、(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,PA=2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB=1,则圆O 的半径R 的长为 .三、解答题16.(本小题12分)在A B C ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,又4cos 5A =. (1)求21cos 2cos 22AA ++的值.(2)若b =2,A B C ∆的面积S =3,求a 的值.如图,从参加环保知识竞赛的学生中抽出40名,其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:(1)80 90这一组的频率和频数分别是多少?(2)估计这次环保竞赛的平均数、众数、中位数。
2012年深圳市高三年级第二次调研考试理科数学试卷及参考答案

绝密★启用前试卷类型:A2012年深圳市高三年级第二次调研考试数学(理科)2012.4.23本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:如果事件A B、互斥,那么P A B P A P B+=+()()();如果事件A B、相互独立,那么P AB P A P B=()()();若锥体的底面积为S,高为h,则锥体的体积为13V Sh=.一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.集合{}*|n i n N∈(其中i为虚数单位)中元素的个数是A.1B.2C.4D.无穷多个2.设随机变量2~(1,3)X M,若()()P X c P X c≤=>,则c等于A.0 B.1 C.2 D.33.已知命题p:“存在正实数ba,,使得baba lglg)lg(+=+”;命题q:“空间两条直线异面的充分必要条件是它们不同在任何一个平面内”.则它们的真假是A.p,q都是真命题 B.p是真命题,q是假命题C.p,q都是假命题 D.p是假命题,q是真命题4.在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有A.6种 B.36种 C.72种 D.120种5.设Rdcba∈,,,,若ba,1,成等比数列,且dc,1,成等差数列,则下列不等式恒成立的是A.2a b cd+≤ B.2a b cd+≥C.||2a b cd+≤ D.||2a b cd+≥6.设函数22,2(),2x a xf xx a x⎧+>⎪=⎨+≤⎪⎩,若)(xf的值域为R,则常数a的取值范围是A.(][)12-∞-+∞,, B.[]1,2-C.(][)2-∞-+∞,1, D.[]2,1-7.如图1,直线l和圆C,当l从l开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过︒90)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是A. B. C. D.8.如果函数||1y x=-的图象与方程221x yλ+=的曲线恰好有两个不同的公共点,则实数λ的取值范围是A.(][)101,,-∞- B.[)11-, C.{}10-, D.[]()101-+∞,,二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题.9.在实数范围内,方程|||1|1x x++=的解集为.10.某机器零件的俯视图是直径为mm24的圆(包换圆心),主视图和侧视图完全相同,如图2所示,则该机器零件的体积是3mm(结果保留π).11.已知平面向量α,β满足条件(1,0)αβ+=,(12)αβ-=-,,则a b⋅=.12.执行图3中程序框图表示的算法,若输入55332012m n==,,则输出d=.13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程ˆ.现发现表中有一个数据模糊不清,请你推断出该数据的值为 .(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程选做题)在极坐标系中,已知直线:(sin cos )l a ρθθ-=把曲线C :θρcos 2=所围成的区域分成面积相等的两部分,则常数a 的值是 . 15.(几何证明选讲选做题)如图4,,A B 是圆O 的直径,弦A D 和B C 相交于点P ,连接C D .若120APB ︒∠=, 则C D A B= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()sin cos(),6f x x x x R π=+-∈.(1)求函数()f x 的最大值;(2)设A B C ∆中,角C B A ,,的对边分别为c b a ,,,若A B 2=且)6(2π-=A af b ,求角C 的大小.17.(本小题满分12分)深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新篮球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球的个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.18.(本小题满分14分)如图5,已知正方形A B C D 在水平面上的正投影(投影线垂直于投影面)是四边形A B C D '''',其中A 与A '重合,且B B D D C C '''<<.(1)证明//D A '平面C C B B ''; (2)如果A B C D '''中,AD '=AB '=A B C D 的边长为6,求平面A B C D 与平面A B C D '''所成的锐二面角θ的余弦值.19.(本小题满分14分)已知数列{}n a 满足:11=a ,22=a ,且3)1)(cos 2(2+-+=+n n a n a π,*N n ∈. (1)求通项公式n a ;(2)设{}n a 的前n 项和为n S ,问:是否存在正整数,m n 使得221n n S m S -=?若存在,请求出所有的符合条件的正整数对),(n m ,若不存在,请说明理由.20.(本小题满分14分)如图6,已知动圆M 过定点)1,0(F 且与x 轴相切,点F 关于圆心M 的对称点为F ',动点F '的轨迹为C .(1)求曲线C 的方程;(2)设),(00y x A 是曲线C 上的一个定点,过点A 任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点Q P ,.①证明:直线PQ 的斜率为定值;②记曲线C 位于Q P ,两点之间的那一段为L ,若点B 在L 上,且点B 到直线PQ 的距离最大,求点B 的坐标.21.(本小题满分14分)已知函数x x x x f ln )(-=,)()()(a f x x f x g '-=,其中)(a f '表示函数()f x 在a x =导数,a 为正常数.(1)求()g x 的单调区间;(2)对任意的正实数12,x x 且12x x <,证明:21221211()()()()()()x x f x f x f x x x f x ''-<-<-; (3)对任意的*n N ∈,且2n ≥,证明:1111(1)ln 2ln 3ln ln 2ln f n nn-++++<⋅ .2012年深圳市高三年级第二次调研考试数学(理科)答案及评分标准 2012.4.23说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.9. []1,0-; (也可写作{}01|≤≤-x x ,如果写成01≤≤-x ,不扣分) 10. π2880; 11.1-; 12.503; 13.68; 14.1-; 15.12.三、解答题16.(本小题满分12分)已知函数()sin cos(),6f x x x x R π=+-∈.(1)求函数()f x 的最大值;(2)设A B C ∆中,角C B A ,,的对边分别为c b a ,,,若A B 2=且)6(2π-=A af b ,求角C 的大小.17.(本小题满分12分)深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新篮球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球的个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.19.(本小题满分14分)已知数列{}n a 满足:11=a ,22=a ,且3)1)(cos 2(2+-+=+n n a n a π,*N n ∈.(1)求通项公式n a ;(2)设{}n a 的前n 项和为n S ,问:是否存在正整数,m n 使得221n n S m S -=?若存在,请求出所有的符合条件的正整数对),(n m ,若不存在,请说明理由.21.(本小题满分14分)已知函数x x x x f ln )(-=,)()()(a f x x f x g '-=,其中)(a f '表示函数()f x 在a x =导数,a 为正常数.(1)求()g x 的单调区间;(2)对任意的正实数12,x x 且12x x <,证明:21221211()()()()()()x x f x f x f x x x f x ''-<-<-;(3)对任意的*n N ∈,且2n ≥,证明:1111(1)ln 2ln 3ln ln 2ln f n nn-++++<⋅ .2012年深圳市高三年级第二次调研考试数学(理科)共11页第页11。
2012年深圳市高三年级第二次调研考试数学(文科)

绝密★启用前 试卷类型:A2012年深圳市高三年级第二次调研考试数学(文科) 2012.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:若锥体的底面积为S ,高为h ,则锥体的体积为Sh V 31=.若柱体的底面积为S ,高为h ,则柱体的体积为V Sh =. 若球的半径为r ,则球的体积为34π3V r =.一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}0,2{=A ,}2,1{=B ,则集合()A BA B =A .∅B .}2{C .}1,0{D .}2,1,0{ 2. i 为虚数单位,则复数i (1i)⋅-的虚部为A .iB .i -C .1D .1-3. 为了了解某学校2000名高中男生的身体发育 情况,抽查了该校100名高中男生的体重情况. 根据所得数据画出样本的频率分布直方图,据 此估计该校高中男生体重在70~78kg 的人数为 A .240 B .160 C .80 D .604. 在平面直角坐标系中, 落在一个圆内的曲线可以是A .1xy =B .y ⎩⎨⎧=为无理数为有理数x x x d ,0,1)( C .321x y -= D.2sin y =5. ta n 2012︒∈A. (0,3B. 3C. (1,3--D. (0)3-6. 若对任意正数x ,均有21a x <+,则实数a 的取值范围是A. []1,1-B. (1,1)-C. ⎡⎣D. (7.曲线1()2xy =在0x =点处的切线方程是A. l n 2l n 2x y +-=B. l n 210x y +-=C. 10x y -+=D. 10x y +-=kg )第3题图8.已知命题p :“对任意,a b *∈N , 都有lg()lg lg a b a b +≠+”;命题q :“空间两条直线为异面直线的充要条件是它们不同在任何一个平面内”.则 A. 命题“p q ∧”为真命题 B. 命题“p q ∨”为假命题 C. 命题“()p q ⌝∧”为真命题 D. 命题“()p q ∨⌝”为真命题9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2cm 的圆(包括圆心),则该零件的体积是 A .4π33cm B .8π33cm C .4π 3cm D .20π33cm10. 线段A B 是圆221:260C x y x y ++-=的一条直径,曲线2C 以,A B为焦点.若P 是圆1C 与双曲线2C 的一个公共点,则PA PB +=A.B.C.D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题:第11、12、13题为必做题.11. 按照右图的工序流程,从零件到成品最少要经过______道加工和检验程序,导致废 品的产生有_____种不同的情形.12. 已知递增的等比数列{}n a 中,28373,2,a a a a +=⋅=则1310a a = .13. 无限循环小数可以化为有理数,如11350.1,0.13,0.015,999333=== , 请你归纳出0.017= (表示成最简分数,,N )m n m n*∈.第11题图第9题图(二)选做题:第14、15题为选做题,考生只能从中选做一题. 14. (坐标系与参数方程选做题)在极坐标系中,直线l t ρθ=(常数0)t >)与曲线:2sin C ρθ=相切,则t = .15.(几何证明选讲选做题)如图,AB 是半圆的直径,弦A C 和弦B D 相交于点P ,且3A B D C =,则sin A P D ∠= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在A B C ∆中,角A 为锐角,记角,,A B C 所对的边分别为,,.a b c 设向量(cos ,sin ),A A =m (cos ,sin ),A A =-n 且m 与n 的夹角为π.3(1)求⋅m n 的值及角A 的大小; (2)若a c ==A B C ∆的面积S .17.(本小题满分12分)设函数c bx x x f ++=2)(,其中,b c 是某范围内的随机数,分别在下列条件下,求事件A “(1)5f ≤且(0)3f ≤”发生的概率. (1) 若随机数,{1,2,3,4}b c ∈;(2) 已知随机函数Rand()产生的随机数的范围为{}10≤≤x x , ,b c 是算法语句4Rand()b =*和4Rand()c =*的执行结果.(注: 符号“*”表示“乘号”)如图,四棱柱1111ABC D A B C D -的底面A B C D 是平行四边形,,E F 分别在棱11,BB D D 上,且1AF EC .(1)求证:1AE FC ;(2)若1A A ⊥平面A B C D ,四边形1A E C F 是边长为6的正方形,且1BE =,2D F =,求线段1C C 的长, 并证明:1.AC EC ⊥19.(本小题满分14分)已知二次函数()f x 的最小值为4,-且关于x 的不等式()0f x ≤的解集为{}13,R x x x -≤≤∈,(1)求函数()f x 的解析式;(2)求函数()()4ln f x g x x x=-的零点个数.A 1BCDC 1B 1D 1FE如图,,M N 是抛物线21:4C x y =上的两动点(,M N 异于原点O ),且O M N ∠的角平分线垂直于y 轴,直线M N 与x 轴,y 轴分别相交于,A B .(1) 求实数,λμ的值,使得O B O M O N λμ=+;(2)若中心在原点,焦点在x 轴上的椭圆2C 经过,A M . 求椭圆2C 焦距的最大值及此时2C 的方程.21.(本小题满分14分)定义数列{}n a : 121,2a a ==,且对任意正整数n ,有122(1)(1)1nn n n a a ++⎡⎤=+-+-+⎣⎦. (1)求数列{}n a 的通项公式与前n 项和n S ;(2)问是否存在正整数,m n ,使得221n n S m S -=?若存在,则求出所有的正整数对(,)m n ;若不存在,则加以证明.2012年深圳市高三年级第二次调研考试数学(文科)参考答案及评分标准2012-4-23说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 2. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分. 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题考查基本知识和基本运算。
广东省惠州市2012届理科数学二模
省市2012届高三模拟考试数学 (理科)与答案本试卷共4页,21小题,满分150分。
考试用时120分钟。
须知:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.集合{4,5,3}M m =-,{9,3}N =-,若MN ≠∅,则实数m 的值为( )A .3或1-B .3C .3或3-D .1- 2.设,a b 为实数,若复数121ii a bi+=++,则( ) A .1,3a b ==B .3,1a b ==C .13,22a b ==D .31,22a b ==3.“0a >”是“20a a +≥”的( )条件 A .充分非必要B .必要非充分C .充要D .非充分非必要4.公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =, 则10S 等于( )A .18B .24C .60D .905.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为 ( )A .10B .20C .30D .406.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析式为( )A .y =sin 2xB .y =cos 2xC .y =2sin(2)3x π+D .y =sin(2)6x π- y1 6π1112πxO7.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为() A .3B .332C .34D .358.定义函数D x x f y ∈=),(,若存在常数C ,对任意的D x ∈1,存在唯一的D x ∈2,使得C x f x f =+2)()(21,则称函数)(x f 在D 上的均值为C .已知]100,10[,lg )(∈=x x x f ,则函数]100,10[lg )(∈=x x x f 在上的均值为( )A .107B .43 C .23D .10 二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是人.10.右图是某算法的程序框图,则程序运行后输出的结果是.11.1232,2()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,则((2))f f 的值为. 12.由曲线2y x =,3y x =围成的封闭图形面积为. 13.已知52x ⎛ ⎝的展开式中的常数项为T ,()f x 是以T 为周期的 偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-,函数()()g x f x kx k =--有4个零点,则实数k 的取值围是.(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
广东省惠州市高三第二次调研考试(全科)广东省惠州市高
惠州市2015届高三第二次调研考试数 学 试 题 (文科) 2014.10本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁.考试结束后,将答题卡一并交回. 参考公式:锥体的体积公式,其中为锥体的底面积,为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.设集合,集合,则= ( ) A .B .C .D .2.复数(为虚数单位)在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知命题2,240x R x x ∀∈-+≤,则为 ( )A .2,240x R x x ∀∈-+≥ B .2000,240x R x x ∃∈-+> C .2,240x R x x ∀∉-+≤ D .2000,240x R x x ∃∉-+>4.已知向量,,则( )A. B. C. D. 5.下列函数中,在区间上为增函数的是( ) A . B . C . D .6.若变量满足约束条件220020x y x y x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则的最小值为( )A .B .C .D . 7.已知函数()()sin f x A x ωϕ=+的部分图象如图所示,则函数的表达式是( )A. B. C.2()2sin(2)3f x x π=+D. 8.方程20([0,1])x x n n ++=∈有实根的概率为 ( ) A . B . C . D . 9.圆心在,半径为的圆在轴上截得的弦长等于 ( )A .B .C .D .10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为 ( ) A . B . C .D .二、填空题:(本大题共5小题,分为必做题和选做题两部分.每小题5分,满分20分) (一)必做题:第11至13题为必做题,每道试题考生都必须作答. 11.抛物线的准线方程是 . 12.在等比数列中,,,则_________. 13.在△中,,,,则_________.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
2012年深圳市高三年级第二次调研考试文科数学
2012年深圳市高三年级第二次调研考试数学(文科) 2012.4本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:若锥体的底面积为S ,高为h ,则锥体的体积为Sh V 31=.若柱体的底面积为S ,高为h ,则柱体的体积为V Sh =. 若球的半径为r ,则球的体积为34π3V r =.一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}0,2{=A ,}2,1{=B ,则集合()A BA B =A .∅B .}2{C .}1,0{D .}2,1,0{2. i 为虚数单位,则复数i (1i)⋅-的虚部为A .iB .i -C .1D .1-3. 为了了解某学校2000名高中男生的身体发育 情况,抽查了该校100名高中男生的体重情况. 根据所得数据画出样本的频率分布直方图,据 此估计该校高中男生体重在70~78kg 的人数为 A .240 B .160 C .80 D .604. 在平面直角坐标系中, 落在一个圆内的曲线可以是A .1xy =B .y ⎩⎨⎧=为无理数为有理数x x x d ,0,1)( C .321x y -= D.2sin y =5. tan 2012︒∈A. (0,3B. ,1)3C. (1,3--D. (0)3-6. 若对任意正数x ,均有21a x <+,则实数a 的取值范围是 A. []1,1- B. (1,1)-C. ⎡⎣D. (7.曲线1()2xy =在0x =点处的切线方程是A. l n 2l n 2x y +-=B. l n 210x y +-=C. 10x y -+=D. 10x y +-=8.已知命题p :“对任意,a b *∈N , 都有lg()lg lg a b a b +≠+”;命题q :“空间两条直线为异面直线的充要条件是它们不同在任何一个平面内”.则 A. 命题“p q ∧”为真命题 B. 命题“p q ∨”为假命题 C. 命题“()p q ⌝∧”为真命题 D. 命题“()p q ∨⌝”为真命题9. 某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2cm 的圆(包括圆心),则该零件的体积是kg )第3题图第9题图A .4π33cm B .8π33cmC .4π 3cmD .20π33cm10. 线段AB 是圆221:260C x y x y ++-=曲线2C 以,A B为焦点.若P 是圆1C 与双曲线2C 的一个公共点,则PA PB +=A.B.C.D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题:第11、12、13题为必做题.11. 按照右图的工序流程,从零件到成品最少 要经过______道加工和检验程序,导致废 品的产生有_____种不同的情形.12. 已知递增的等比数列{}n a 中,28373,2,a a a a +=⋅=则1310a a = .13. 无限循环小数可以化为有理数,如11350.1,0.13,0.015,999333=== , 请你归纳出0.017= (表示成最简分数,,N )m n m n*∈.(二)选做题:第14、15题为选做题,考生只能从中选做一题. 14. (坐标系与参数方程选做题)在极坐标系中,直线l t ρθ=(常数0)t >)与曲线:2sin C ρθ=相切,则t = .15.(几何证明选讲选做题)如图,AB 是半圆的直径,弦A C 和弦BD 相交于点P ,且3A B D C =,则sin A P D ∠= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在A B C ∆中,角A 为锐角,记角,,A B C 所对的边分别为,,.a b c 设向量第11题图PDC A第15题图(cos ,sin ),A A =m (cos ,sin ),A A =-n 且m 与n 的夹角为π.3(1)求⋅m n 的值及角A 的大小; (2)若a c ==A B C ∆的面积S .17.(本小题满分12分)设函数c bx x x f ++=2)(,其中,b c 是某范围内的随机数,分别在下列条件下,求事件A “(1)5f ≤且(0)3f ≤”发生的概率. (1) 若随机数,{1,2,3,4}b c ∈;(2) 已知随机函数R a n d ()产生的随机数的范围为{}10≤≤x x , ,b c 是算法语句4R a n d ()b =*和4Rand()c =*的执行结果.(注: 符号“*”表示“乘号”)18.(本小题满分14分)如图,四棱柱1111ABC D A B C D -的底面A B C D 是平行四边形,,E F 分别在棱11,BB D D 上,且1AF EC . (1)求证:1AE FC ;(2)若1A A ⊥平面A B C D ,四边形1AEC F 是边长为6的正方形,且1BE =,2D F =,求线段1C C 的长, 并证明:1.AC EC ⊥A 1BCDC 1B 1D 1FE19.(本小题满分14分)已知二次函数()f x 的最小值为4,-且关于x 的不等式()0f x ≤的解集为{}13,R x x x -≤≤∈,(1)求函数()f x 的解析式;(2)求函数()()4ln f x g x x x=-的零点个数.20.(本小题满分14分)如图,,M N 是抛物线21:4C x y =上的两动点(,M N 异于原点O ),且O M N ∠的角平分线垂直于y 轴,直线M N 与x 轴,y 轴分别相交于,A B .(1) 求实数,λμ的值,使得O B O M O N λμ=+;(2)若中心在原点,焦点在x 轴上的椭圆2C 经过,A M . 求椭圆2C 焦距的最大值及此时2C 的方程.21.(本小题满分14分)定义数列{}n a : 121,2a a ==,且对任意正整数n ,有122(1)(1)1nn n n a a ++⎡⎤=+-+-+⎣⎦. (1)求数列{}n a 的通项公式与前n 项和n S ;(2)问是否存在正整数,m n ,使得221n n S m S -=?若存在,则求出所有的正整数对(,)m n ;若不存在,则加以证明.2012年深圳市高三年级第二次调研考试数学(文科)参考答案及评分标准2012-4-23说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2. 对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题考查基本知识和基本运算。
惠州市高三第二次调研考试数 学(文科)答案
惠州市2013届高三第二次调研考试数学文科数学答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案BACCCBBDCA1.【解析】(1)1z i i i =+=-+,所以z 对应的点在复平面的第二象限, 故选B . 2.【解析】由MN ≠∅可知39m -=-或33m -=,故选A . 3.【解析】31336()2S a a ==+且3112 =4 d=2a a d a =+∴.故选C4.【解析】2(5,2)a b k -=-,由()2aa b -得2(2k)50--=,解得12k =-,故选C5.【解析】选C 分K=2m ,K=2m+1)(z m ∈两种情况讨论可得结果.6.【解析】32(3)28,(3)39,(3)(3),f g f g ====<故(3)(3)9h g ==,故选 B.7.【解析】选B 垂直于同一个平面的两条直线互相平行。
8.【解析】选D 椭圆的右焦点为F (2,0)4,22==∴p p即 9.【解析】选C21,0131165112222-=-=∴=+++++=++-a a a a a a a a 或得10.【解析】选A ,由题可知()11x f x e =->-,22()43(2)11g x x x x =-+-=--+≤,若有()(),f a g b =则()(1,1]g b ∈-,即2431b b -+->-,解得2222b <二、填空题11.64 12. ①③ 13. 4 14.22155 11.【解析】由图可知甲得分的中位数为36,乙得分中位数为28,故和为64.12.【解析】②两条异面直线可以平行于同一个平面; ③若b a b //,则α⊥,这与a,b 为异面直线矛盾;④两条异面直线在同一个面内的射影可以是:两条平行直线、两条相交直线、一点一直线.13.【解析】数形结合作出函数x x y 42-=的图像,再作出y=a 的图像观察即得. 14.【解析】化极坐标方程为直角坐标22=y 及A )2,2(-,再数形结合可得. 15.【解析】先用切割线定理求出BC 的长度,然后距离221()52d r BC =-=三、解答题 16.解:(1)函数()sin cos f x m x x =+()x R ∈的图象经过点π2⎛⎫ ⎪⎝⎭,1sincos122m ππ∴+= ,1m ∴= …………………….2分()sin cos 2)4f x x x x π∴=+=+ …………………….3分∴函数的最小正周期2T π= ……………………4分(2)32()2)2)24442f ππππαααα+=++=+==………6分 3cos 5α∴=又因为(0,)2πα∈ 24sin 1cos 5αα∴=-=…………………………………………………………9分242(2)2)2222cos 444f πππααααα∴-=-+=== (12)分17.解:(1)由样本数据知,30件产品中,一等品有6件,二等品有9件,三等品有15件. ……………………3分∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2, ……4分二等品的频率为90.330=,故估计该厂产品的二等品率为0.3, ……………………5分 三等品的频率为150.530=,故估计该厂产品的三等品率为0.5.………………………6分(2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的有3件,…7分记等级系数为7的3件产品分别为1C 、2C 、3C ,等级系数为8的3件产品分别为1P 、2P 、3P ,则从样本的一等品中随机抽取2件的所有可能为:)(21,C C ,)(31,C C ,)(11,P C ,)(21,P C ,)(31,P C ,)(32,C C ,)(12,P C , )(22,P C ,)(32,P C ,)(13,P C ,)(23,P C ,)(33,P C ,12(,),P P )(31,P P )(32,P P , 共15种, …………10分记从“一等品中随机抽取2件,2件等级系数都是8”为事件A , 则A 包含的基本事件有 12(,),P P 1323(,),(,)P P P P 共3种, ………11分 故所求的概率31()155P A ==. ……………………12分 18. 解:(1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD ,…… 1分 ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. …… 3分∵D 为AC 的中点,∴OD 为△1AB C 的中位线, ∴ 1//OD AB . …… 5分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . …… 7分 (2)∵三棱柱111-ABC A B C ,∴侧棱11CC AA ,又∵1AA ⊥底面ABC ∴侧棱1CC ABC ⊥面,故1CC 为三棱锥1C BCD -的高,112A A CC ==,…… 10分DC 1A 1B 1CBAO11132222BCD ABC S S BC AB ∆∆⎛⎫=== ⎪⎝⎭…… 12分 11111321332D BCC C BCD BCD V V CC S --∆∴===⋅⋅=…… 14分19. 解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线垂足为N ,由题意知: MF MN = ………………2分 即动点M 到定点F 与到定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为x y 42= …………5分(2)若直线l 的斜率不存在,则与抛物线C 相切,只有一个交点,不合题意;若直线l 的斜率为0,则与抛物线C 相交,只有一个交点,不合题意;………………………………………………6分 故设直线l 的方程为1(0)y kx k =+≠由214y kx y x=+⎧⎨=⎩得2440ky y -+= ………8分 ∆16160k =->, 1k ∴<且0k ≠………9分设),(11y x P ,),(22y x Q ,则124y y k=,2212122116y y x x k ==…11分 由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,…12分 即2410k k +=,解得114k =-< …………13分 ∴ 直线l 存在,其方程为114y x =-+即440x y +-= ………………14分 20.解:(1)∵3a ,5a 是方程045142=+-x x 的两根,且数列}{n a 的公差d >0,oA x()1,0F MN1x =-∴3a =5,5a =9,公差.23535=--=a a d ∴.12)5(5-=-+=n d n a a n ………3分又当n =1时,有11112b b S -==113b ∴=当).2(31),(21,2111≥=∴-=-=≥---n b b b b S S b n n n n n n n n 有时 ∴数列{n b }是首项113b =,公比13q =等比数列, ∴111.3n n n b b q-==…………6分 (2)由(1)知112121,,33n n n n n n n n c a b c ++-+=== …………8分 ∴11121214(1)0.333n n n n n n n n c c ++++---=-=≤∴.1n n c c ≤+ …………………………10分 (3)213n n n nn c a b -==,设数列{}n c 的前n 项和为n T ,12313521........3333n n n T -=++++ (1)13n T ∴=23411352321 (33333)n n n n +--+++++ (2) ………………12分 (1)(2)-得:2312122221.....333333n n n n T +-=++++-=2311111212(.....)33333n n n +-++++-化简得:113n n n T +=- ………………………14分21.解:(1)∵()f x 是定义域为R 的奇函数, ∴0(0)(1)1(1)0f a k a k =--=--=…… 1分 ∴2k =…… 2分(2)()(01)xxf x a a a a -=->≠且10,1,0,01,0)1(<<∴≠><-∴<a a a aa f 且又 ,……3分 而xy a =在R 上单调递减,xy a -=在R 上单调递增,故判断()x x f x a a -=-在R 上单调递减,……4分不等式化为2()(4)f x tx f x +<-,24x tx x ∴+>-,2(1)40x t x ∴+-+>恒成立,2(1)16t ∴∆=--,解得35t -<<……8分 (3)3(1)2f =,132a a ∴-=,即22320a a --=, 2a ∴=或12a =-(舍去)……9分222()222(22)(22)2(22)2x x x x x x x x g x m m ----∴=+--=---+令()22xxt f x -==-,由(1)可知()22xxf x -=-为增函数,1x ≥,3(1)2t f ∴≥=……11分 令222()22()2h t t mt t m m =-+=-+- (32t ≥)………12分 若32m ≥,当t m =时,2min ()222h t m m =-=-∴=………… 13分 若32m <,当32t =时,min 17253()324122h t m m =-=-∴=>舍去 综上可知2m =…14分。