北师大版八年级数学下知识点汇总
北师大八年级数学下册知识点重点总结重点难点

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc, cb c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc, cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为ab x >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a b x <; 5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)一元一次不等式解集图示叙述语言表达x>b两大取较大x>a两小取小a<x<b大小交叉中间找无解在大小分离没有解(是空集)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
北师大版八年级数学下册第一、二章综合复习知识点+练习题(无答案)

最新北师大版初二数学下册第一、二章综合复习第一章三角形的证明知识要点:等腰三角形(含等边三角形)、直角三角形的性质定理及判定定理;线段垂直平分线的性质定理及判定定理;角平分线的性质定理及判定定理。
1.通过探索、猜测、计算、证明得到的定理:(1)与等腰三角形、等边三角形有关的结论:性质:等腰三角形的两个底角相等,即等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等.等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°;等边三角形的三条角平分线、三条中线、三条高互相相等.判定:有两个角相等的三角形是等腰三角形;有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.(2)与直角三角形有关的结论:勾股定理的逆定理;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;斜边和一直角边对应相等的两个直角三角形全等.(HL)(3)与一般三角形有关的结论:在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明).2.命题的逆命题及其真假:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题.一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理.3.尺规作图线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形角平分线的性质定理和判定定理;用尺规作已知角的平分线。
已知线段AB,用直尺和圆规作出它的垂直平分线:三角形的垂直平分线性质:。
4.角的性质定理:逆定理:已知角ABC,用直尺和圆规作出它的角平分线:三角形的角平分线性质:【典型例题】例1.如图,AB=AC,90⊥。
初二数学下册全部知识点

数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(完整版)北师大版八年级下册数学复习知识点及例题相结合

一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
新北师大版八年级初二数学下册知识点总结归纳

北師大版八年級數學下冊各章知識要點總結第一章三角形的證明一、全等三角形判定、性質:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的對應邊相等、對應角相等。
二、等腰三角形的性質定理:等腰三角形有兩邊相等;(定義)定理:等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。
推論1:等腰三角形頂角的平分線、底邊上的中線及底邊上的高線互相重合。
(三線合一)推論2:等邊三角形的各角都相等,並且每一個角都等於60°。
等腰三角形是以底邊的垂直平分線為對稱軸的軸對稱圖形;三、等腰三角形的判定1. 有關的定理及其推論定理:有兩個角相等的三角形是等腰三角形(簡寫成“等角對等邊”。
)推論1:三個角都相等的三角形是等邊三角形。
推論2:有一個角等於60°的等腰三角形是等邊三角形。
2. 反證法:先假設命題的結論不成立,然後推導出與定義、基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立。
這種證明方法稱為反證法四、直角三角形1、直角三角形的性質直角三角形的兩銳角互餘直角三角形兩條直角邊的平方和等於斜邊的平方;在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半;在直角三角形中,斜邊上的中線等於斜邊的一半。
2、直角三角形判定如果三角形兩邊的平方和等於第三邊的平方,那麼這個三角形是直角三角形;3、互逆命題、互逆定理在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那麼這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題.如果一個定理的逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理稱為互逆定理,其中一個定理稱為另一個定理的逆定理.五、線段的垂直平分線、角平分線1、線段的垂直平分線。
性質:線段垂直平分線上的點到這條線段兩個端點的距離相等;三角形三條邊的垂直平分線相交於一點,並且這一點到三個頂點的距離相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全册知识点总结第一章三角形的证明一、全等三角形判定、性质:定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1 、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2 、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3 、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1 、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2 、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1..定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.. 基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变. 如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,< span="">说明:比较大小: 作差法a>b <===> a- b> 0a=b <===> a- b= 0 a<b <===> a- b< 03.. 不等式的解:能使不等式成立的未知数的值,叫做不等式的解4.. 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5..解不等式:求不等式解集的过程叫做解不等式。
边界:有等号的是实心圆点,无等号的是空心圆圈6.. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式7.. 解不等式的步骤: 1、去分母; 2、去括号; 3、移项、合并同类项;4、系数化为1。
8.. 列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)( 根据不等量) 关系式列不等式(组) (4)解不等式组;(5)检验(6)作答。
9 一元一次不等式与一次函数教材第50页10 . 一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一个一次不等式组。
一元一次不等式组中各个不等式的解集的公共部分,焦作这个一元一次不等式组的解集。
求不等式组的解第三章图形的平移与旋转一、图形的平移1 平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a.平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
b. 图形平移三要素:原位置、平移方向、平移距离。
2平移的规律(性质):经过平移,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等、对应角相等。
注意:平移后,原图形与平移后的图形全等。
3 简单的平移作图:平移作图要注意:①方向;②距离。
整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
二、图形的旋转1 旋转的定义:在平面内,将一个图形饶一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心;转动的角称为旋转角。
关键: a.旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。
b. 图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。
2 旋转的规律( 性质):一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等。
注意:旋转后,原图形与旋转后的图形全等。
3 简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。
整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。
三、中心对称1..概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心。
2..中心对称的基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。
(2)成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分。
3..中心对称图形概念:中心对称图形、对称中心把一个平面图形绕某个点旋转180°,如果旋转后的图形能够和原来的图形重合,那么这个图形叫做中心对称图形。
这个点叫做它的对称中心。
4 、中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。
5、图形的平移、轴对称(折叠)、中心对称(旋转)的对比6、图案的分析与设计①首先找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。
②图案设计的基本手段主要有:轴对称、平移、旋转三种方法。
第四章因式分解一、公式:1..因式分解定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式。
2.公因式:把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.3.提公因式法:如果一个多项式的各项含有公因式,那末就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法4.. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.5.公式法:2 _ 2 2 2(1)ma+mb+mc=m( a+b+c) (2)a b =( a+b)( a- b) (3 )a ±2 a b+b = (a±b )26.、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.7、因式分解与整式乘法是相反方向的变形。
(1)把几个整式的积化成一个多项式的形式,是乘法运算.(2)把一个多项式化成几个整式的积的形式,是因式分解.补充:十字相乘法第五章分式与分式方程1.. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,其中A称为分式的分子,B称为分式的分母。
对于任意一个分式,坟墓都不能为零。
2.. 注意事项(1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
(3)分式的值为零的条件:分子为零且分母不为零3.. 分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
用式子表示注意:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C≠0,以及隐含的B≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
4.. 分式的乘除:两个分式相乘,把分子相乘的积作为积的分子,分母相乘的积作为积的分母;两个分式相除,把除式的分子、分母颠倒位置后再与被除式相乘.即: ,5.. 分式乘方:把分子、分母分别乘方. 即:逆向运用,当n为整数时,仍然有成立.6..最简分式:分子与分母没有公因式的分式,叫做最简分式.7.. 分式的通分和约分:关键先是分解因式(1)分式的约分:利用分式的基本性质,把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
(2)最简分式:分子与分母没有公因式的分式(3)分式的通分:根据分式的基本性质,把几个异分母的分式化成同分母的分式,这一过程称为分式的通分。
(4)最简公分母:最简单的公分母简称最简公分母。
8.. 分式的加减:(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是: (2)异号分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算;上述法则用式子表示是:9.. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
10.. 分式方程:分母中含未知数的方程叫做分式方程。
增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。
11.. 分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
12.. 列分式方程解应用题: 步骤:(1)审题(2)设未知数(3)列方程(4)解方程(5)检验(6)写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。