北师大版初二下册数学知识点汇总

合集下载

北师大版八年级下册数学各章知识要点总结(很有用)

北师大版八年级下册数学各章知识要点总结(很有用)

北师大版八年级数学下册各章知识要点总结第一章 一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。

6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b, 则a ±c>b ±c ;<2>、若a>b, c>0 则ac>bc ,若c<0, 则ac<bc不等式的其他性质:反射性:若a>b,则b<a; 传递性:若a>b,且b>c,则a>c三、解不等式的步骤: 1、去分母; 2、去括号; 3、移项、合并同类项; 4、系数化为1。

四、解不等式组的步骤:1、解出不等式的解集。

2、在同一数轴表示不等式的解集。

3、写出不等式组的解集。

五、列一元一次不等式组解实际问题的一般步骤:(1) 审题; (2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组) (4)解不等式组;检验并作答。

六、常考题型:1、求4x-6<7x-12的非负数解.2、已知3(x-a)=x-a+1的解适合2(x-5) < 8a,求a 的范围.3、当m 取何值时,3x+m-2(m+2)=3m+x 的解在-5和5之间。

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。

一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。

定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。

基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

北师大版初二下数学目录及知识点(最新整理)

北师大版初二下数学目录及知识点(最新整理)

两直线平行,内错角相等 两直线平行,同旁内角互补 一般地,如果两条直线都和第三条直线平行,那么这两条直线也相互平行
5. 三角形内角和定理的证明
三角形内角和定理:三角形三个内角的和等于180
四边形的内角和等于 360 度 6 关注三角形的外角 三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角 回顾与思考: 1. 直观是重要的,但它有时也会欺负人,你还能找出这样的例子吗 2. 请你用自己的语言说一下什么叫定义、命题、公理和定理 3. 什么条件下两条直线平行?两条直线平行又会怎样?这两类命题的条件和结论有什么
3.运用公式法 平方差、 十字相乘法特点:二次项系数是 1,常数项是两数积、一次项系数是这两个因数的和
完全平方:形如 a2 2ab b2和a2 2ab b2 的式子称为完全平方式。
分解因式的方法:提公因式法、运用公式法、十字相乘法 回顾与思考:1.举例说明什么是分解因式 2.分解因式与整式乘除有什么关系 3. 分解因式常用方法有哪些?
6.一元一次不等式组 关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。 一元一次不等式组中各个不等式的解集的公共部分,叫这个一元一次不等式组的解集。 用数轴表示不等式组的解集 提高:不等式表示的平面区域 回顾与思考:1.不等式有哪些基本性质,它与等式的基本性质有什么异同? 2.解一元一次不等式和解一元一次方程有什么异同? 3.举例说明在数轴上如何表示一元一次不等式(组)的解集 4.说运用不等式解决实际问题的基本过程以及个人体会 5.举例说明不等式、函数、方程的联系
(1)两个角对应相等的两个三角形相似;
(2)三边对应成比例的两个三角形相似;
(3)两边对应成比例且夹角相等的两个三角形相似。 直角三角形形似的条件: (1)一对锐角对应相等,两直角三角形相似 (2)斜边和一条直角边对应成比例,两直角三角形相似 (3)被斜边上的高分成是两个三角形相似,并与原三角形相似

八年级下册数学北师知识点总结

八年级下册数学北师知识点总结

八年级下册数学北师知识点总结本文将对八年级下册数学北师知识点进行全面总结,帮助学生更好地掌握课程内容。

一、代数式的应用
1. 一次函数的表示与应用
2. 二次函数的表示与应用
3. 线性方程组与解法
4. 二元一次方程组的应用
5. 不等式的基本性质及应用
二、几何图形的认识
1. 三角形的基本性质
2. 三角形中的角平分线定理
3. 相似三角形及其应用
4. 圆的定义及性质
5. 弧长、扇形面积的计算
6. 圆的切线与切线定理
三、函数的知识
1. 函数的概念及性质
2. 一次函数的图像及性质
3. 二次函数的图像及性质
4. 指数函数与对数函数
5. 幂函数与反比例函数
四、统计与概率
1. 统计调查及其方法
2. 统计图的绘制及应用
3. 概率及其计算方法
4. 条件概率及其应用
5. 排列组合及其应用
五、解析几何
1. 坐标系与直线方程
2. 直线的截距式与一般式
3. 圆的方程及其性质
4. 双曲线及其基本知识
六、立体几何
1. 空间图形的基本认识
2. 球的认识及其性质
3. 空间旋转体的认识及其性质
4. 几何体的表面积及体积计算
七、数学建模
1. 数学建模的基本方法
2. 数学模型的设计与建立
3. 数学模型的求解与应用
八、数学思维
1. 判断与推理能力的培养
2. 问题解决能力的提升
3. 数学思维的应用技巧。

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结北师大版八年级下册数学主要包括以下知识点:
1. 分式:
- 分式的概念和性质
- 分式的化简和展开
- 分式的四则运算(加减乘除)
- 分式方程的解法
2. 二次根式:
- 二次根式的概念和性质
- 二次根式的化简和展开
- 二次根式的运算(加减乘除)
- 二次根式的求值和应用
3. 平面图形与变换:
- 平行四边形、菱形和正方形的性质和判定
- 三角形的内角和外角性质
- 相似三角形的判定和性质
- 平面图形的位似变换(翻转、旋转、平移)
4. 数据与统计:
- 统计图表的读取和分析
- 数据的表示和处理(频数、频率、平均数等)
- 抽样调查和用样本估计总体
5. 方程与不等式:
- 一元一次方程的概念和性质
- 一元一次方程的解法(整数解、分数解、无解)
- 一元一次方程应用问题的解法
- 一元一次不等式的概念和性质
- 一元一次不等式的解法
6. 概率与统计:
- 随机事件的概念和性质
- 独立事件、互斥事件和相反事件
- 事件的概率计算
- 概率的应用(排列组合、事件的发生次数等)
这些是北师大版八年级下册数学的主要知识点总结,希望对你有帮助。

如果你还有其他问题,请继续提问。

八年级下册数学北师大版第一章

八年级下册数学北师大版第一章

八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。

性质:中心对称图形必定是旋转180度后重合的图形。

2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。

性质:中心对称图形的所有点都关于某一点对称。

3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。

性质:轴对称图形的对称轴两侧的图形是全等的。

4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。

如果两个图形关于某直线对称,那么它们的对应角相等。

5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。

性质:全等三角形的对应边相等,对应角相等。

6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。

边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。

角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。

角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。

7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。

8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。

9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。

性质:对边平行、对角相等、对角线互相平分。

10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。

性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。

(完整版)北师大版八年级下册数学复习知识点及例题相结合

(完整版)北师大版八年级下册数学复习知识点及例题相结合

一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。

北师大版八年级(下)数学知识点归纳总结

北师大版八年级(下)数学知识点归纳总结

第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。

定理2 全等三角形的对应角相等。

推论1 全等三角形的面积相等。

推论2 全等三角形的周长相等。

2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。

(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。

(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。

(三线合一) 推论 2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。

【说明】①等腰直角三角形的两个底角相等且等于45°。

②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b<a <2C④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A =180°—2∠B ,∠A =∠B =2180A∠-︒2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。

定理:有两个角相等的三角形是等腰三角形。

(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。

定理2 等边三角形的三个内角都相等,并且每个角都等于60°。

推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。

2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。

定理:三个角都相等的三角形是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初二下册数学知识点汇总
下面是小编为了帮助同学们学习数学知识而整理的北师大版初二下册数学知识点汇总,希望可以帮助到同学们!
第一章一元一次不等式和一元一次不等式组
一、不等关系
※1、一般地,用符号(或), (或)连接的式子叫做不等式.
2、要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.
※3、准确翻译不等式,正确理解非负数、不小于等数学术语.
非负数大于等于0(=== 0和正数不小于0
非正数小于等于0(=== 0和负数不大于0
二、不等式的基本性质
※1、掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果ab,那么a+cb+c, a-cb-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果ab,并且c0,那么acbc, .
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果ab,并且c0,那么ac
※2、比较大小:(a、b分别表示两个实数或整式)
一般地:
如果ab,那么a-b是正数;反过来,如果a-b是正数,那么a
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
a===0
a=b a-b=0
a a-b0
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三、不等式的解集:
※1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
※2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.
3、不等式的解集在数轴上的表示:
用数轴表示不等式的解集时,要确定边界和方向:
①边界:有等号的是实心圆圈,无等号的是空心圆圈;
②方向:大向右,小向左
四、一元一次不等式:
※1、只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.
※2、解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.
※3、解一元一次不等式的步骤:
①去分母;
②去括号;
③移项;
④合并同类项;
⑤系数化为1(不等号的改变问题)
※4、一元一次不等式基本情形为axb(或ax
①当a0时,解为 ;
②当a=0时,且b0,则x取一切实数;
当a=0时,且b0,则无解;
③当a0时, 解为 ;
5、不等式应用的探索(利用不等式解决实际问题)
列不等式解应用题基本步骤与列方程解应用题相类似,即:
①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;
②设: 设出适当的未知数;
③列: 根据题中的不等关系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 写出答案,并检验答案是否符合题意.
五、一元一次不等式与一次函数
六、一元一次不等式组
※1、定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.
※2、一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.
几个不等式解集的公共部分,通常是利用数轴来确定.
※3、解一元一次不等式组的步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.
两个一元一次不等式组的解集的四种情况(a、b为实数,且a
一元一次不等式解集图示叙述语言表达
xb 两大取较大
xa 两小取小
a
无解在大小分离没有解
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说
“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

(是空集)
由精品小编整理的北师大版初二下册数学知识点汇总就到这里了,希望同学们喜欢!
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

相关文档
最新文档