工程力学之应力状态分析和强度计算

合集下载

工程力学中的杆件受力分析和应力分布

工程力学中的杆件受力分析和应力分布

工程力学中的杆件受力分析和应力分布工程力学是研究物体在受力作用下的力学行为及其工程应用的学科。

在工程力学中,对于杆件的受力分析和应力分布是非常重要的内容。

杆件是指在力的作用下只能沿着轴向伸缩的直细长构件,通常用来承受拉力或压力。

在本文中,我们将探讨杆件受力分析的方法以及应力分布的计算方式。

一、杆件受力分析在杆件受力分析中,主要考虑的是杆件所受的外力作用以及杆件内部所存在的支反力。

首先,我们需要明确杆件所受的外力有哪些类型。

常见的外力包括拉力、压力、剪力和扭矩等。

在分析杆件受力时,我们通常采用自由体图的方法,即将杆件与其它部分分开,将作用在该部分上的所有外力和内力用矢量图表示出来。

对于杆件受力分析,我们需要应用平衡条件,即受力平衡和力矩平衡条件。

受力平衡条件要求受力杆件在平衡状态下,合力为零,合力矩为零。

力矩平衡条件要求受力杆件在平衡状态下,合力矩为零。

通过应用这些平衡条件,我们可以得到杆件内部的支反力以及所受外力的大小和方向。

二、应力分布计算一旦我们确定了杆件所受的外力以及杆件内部的支反力,接下来我们需要计算杆件上的应力分布情况。

应力是指杆件某一截面上内部单位面积上所承受的力的大小。

常见的应力类型有拉应力、压应力和剪应力等。

在杆件内部,由于受力的存在,会导致杆件内部存在正应力和剪应力。

正应力是指作用在截面上的力沿截面法线方向的分量,而剪应力是指作用在截面上的力沿截面切线方向的分量。

根据杆件破坏的准则,我们通过计算截面上的应力分布来评估杆件的强度是否满足要求。

在计算杆件的应力分布时,一种常用的方法是应用梁弯曲理论。

根据梁弯曲理论,我们可以通过计算杆件的弯矩和截面形状来确定截面各点上的应力分布。

杆件的弯矩可以通过受力分析和力矩平衡条件来计算,而截面形状可以通过测量或者根据设计参数确定。

另外,我们还可以利用有限元分析方法来计算杆件的应力分布。

有限元分析是一种数值计算方法,通过将复杂的结构分解为许多小的单元,然后通过数值模拟的方式来计算每个单元上的应力分布。

工程力学习题答案7 廖明成

工程力学习题答案7 廖明成

第七章 杆类构件的应力分析与强度计算习 题7.1 图示阶梯形圆截面杆AC ,承受轴向载荷1200 kNF =与2100 kN F =, AB 段的直径mm 401=d 。

如欲使BC 与AB 段的正应力相同,试求BC 段的直径。

题7.1图解:如图所示:物体仅受轴力的作用,在有两个作用力的情况下经分析受力情况有:AB 段受力:1NAB F F = BC 段受力:12NBC F F F =+AB 段正应力:1221440.04NAB NAB AB AB F F F A d σππ⨯===⨯ BC 段正应力:()12222244NBC NBC BCBC F F F F A d d σππ+⨯===⨯ 而BC 与AB 段的正应力相同 即,BC AB σσ= 解出:249d mm ==7.2 图示轴向受拉等截面杆,横截面面积2500 mm A =,载荷50 kN F =。

试求图示斜截面()o30=α m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

mm题7.2图解:拉杆横截面上的正应力605000010050010N F F Pa MPa A A σ︒-====⨯ 应用斜截面上的正应力和剪应力公式:2300cos σσα︒︒= 030sin 22στα︒︒=有图示斜截面m-m 上的正应力与切应力为:3075MPa σ︒= 3043.3MPa τ︒=当0=α时,正应力达到最大,其值为max 0100MPa σσ︒== 即:拉压杆的最大正应力发生在横截面上,其值为100MPa 。

当45=α时,切应力最大,其值为0max 502MPa στ︒==即拉压杆的最大切应力发生在与杆轴成45的斜截面上,其值为50MPa 。

7.3图示结构中AC 为钢杆,横截面面积21200 mm A =,许用应力[]1160 Mpa σ=;BC 为铜杆,横截面面积22300 mmA =,许用应力[]2100 Mpa σ=。

工程力学中的应力和应变分析

工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。

应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。

本文将就工程力学中的应力和应变进行详细分析。

一、应力分析应力是指物体单位面积上的内部分子间相互作用力。

根据作用平面的不同,可以分为法向应力和剪切应力两种。

1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。

根据物体受力状态的不同,可以分为拉应力和压应力两种。

- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。

拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。

- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。

压应力的计算公式与拉应力类似。

2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。

剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。

二、应变分析应变是指物体由于外力的作用而产生的形变程度。

根据变形情况,可以分为线性弹性应变和非线性应变。

1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。

线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。

2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。

非线性应变的计算公式较为复杂,需要根据具体情况进行分析。

三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。

1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。

根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。

2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。

工程力学中的杆件和梁的应力分析

工程力学中的杆件和梁的应力分析

工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。

在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。

本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。

一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。

在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。

杆件的应力可以分为正应力和切应力。

1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。

正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。

正应力可以分为拉应力和压应力两种情况。

当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。

拉应力是正值,表示杆件受拉的状态。

当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。

压应力是负值,表示杆件受压的状态。

2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。

切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。

切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。

切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。

二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。

在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。

1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。

在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。

弯矩可以通过力学平衡和弹性力学原理进行计算。

弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。

2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。

截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb

工程力学-应力状态

工程力学-应力状态
σ 30 100 50 2 100 50 2
sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院

如何在工程力学中进行应力分析?

如何在工程力学中进行应力分析?

如何在工程力学中进行应力分析?在工程力学领域,应力分析是一项至关重要的任务。

它能够帮助工程师了解结构或材料在受到外力作用时内部的受力情况,从而评估其强度、稳定性和可靠性,为设计安全、高效的工程结构提供关键的依据。

那么,如何进行有效的应力分析呢?首先,我们需要明确应力的基本概念。

应力,简单来说,就是单位面积上所承受的内力。

当物体受到外力作用时,内部会产生抵抗这种外力的力,这种力在单位面积上的表现就是应力。

应力的单位通常是帕斯卡(Pa)或兆帕(MPa)。

在实际的工程力学中,进行应力分析的第一步是确定所研究对象的受力情况。

这包括对各种外力的分析,如集中力、分布力、力偶等。

例如,在桥梁设计中,需要考虑车辆的重量产生的集中力,以及风荷载产生的分布力。

为了准确地描述这些外力,我们通常会建立一个力学模型,将复杂的实际情况简化为易于分析的形式。

接下来,选择合适的分析方法是关键。

常见的应力分析方法有理论分析法、实验法和数值模拟法。

理论分析法基于力学的基本原理和公式进行推导和计算。

例如,对于简单形状和受力情况的结构,可以使用材料力学中的公式来计算应力。

比如,对于受拉伸或压缩的直杆,可以通过力除以横截面积来计算正应力;对于受扭转的圆轴,可以通过扭矩除以抗扭截面系数来计算切应力。

然而,这种方法通常只适用于简单的几何形状和受力情况,对于复杂的结构往往难以直接应用。

实验法是通过对实际结构或模型进行物理实验来测量应力。

常见的实验方法包括电测法、光测法等。

电测法是在结构表面粘贴电阻应变片,当结构受力产生变形时,应变片的电阻会发生变化,通过测量电阻的变化可以推算出应变,进而计算出应力。

光测法则利用光的干涉原理,如光弹性法,来观察结构内部的应力分布。

实验法能够直接获取实际结构的应力数据,但往往成本较高,且实验过程可能会对结构造成一定的破坏。

数值模拟法则是借助计算机软件对结构进行建模和分析。

常见的数值方法有有限元法、边界元法等。

有限元法将结构离散成有限个单元,通过求解每个单元的平衡方程,得到整个结构的应力和变形。

材料力学第六章 应力状态理论和强度理论

材料力学第六章 应力状态理论和强度理论

单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics


前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学之应力状态分析和强度计算
工程力学是研究物体受力和变形规律的学科,其基础之一就是应力状态分析和强度计算。

应力状态分析主要是通过计算和评估物体内部的应力分布情况,强度计算则是根据应力状态来确定物体的强度和稳定性。

应力状态分析是力学中的一个重要步骤,它不仅可以用来评估物体的受力情况,还可以为工程设计提供依据。

在进行应力状态分析时,首先需要确定物体所受的外力,然后利用力学原理和相关公式计算物体内部的应力分布。

具体来说,首先我们需要确定物体所受的外力,包括静力、动力以及热力等,这些外力会作用在物体的不同部位上。

然后,通过应用牛顿第二定律、平衡方程等力学原理,可以计算得到物体内部的应力分布情况。

在实际工程中,通常使用数值计算方法来解决这些力学方程,比如有限元法和边界元法等。

强度计算则是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。

在进行强度计算时,首先需要确定物体的强度参数,比如抗拉强度、屈服强度、抗剪强度等。

然后,根据物体所受的应力状态,通过应力分析和计算,可以得到物体内部的应力大小。

接下来,比较物体内部的应力和其强度参数,就可以判断物体是否安全和稳定。

应力状态分析和强度计算在各个工程领域中都有广泛的应用。

在土木工程中,它可以用来评估建筑物、桥梁和道路等结构的受力情况,以确保它们的安全使用。

在机械工程中,它可以用来评估机械零件和设备的强度和稳定性,以确保它们能够正常
工作。

在航空航天工程中,它可以用来评估飞机和航天器在各种飞行状态下的受力情况,以确保它们在高速和极端环境下的安全性。

总之,应力状态分析和强度计算是工程力学的重要内容,它们不仅可以为工程设计提供依据,还可以用来评估物体的强度和稳定性。

在实际应用中,我们可以通过数值计算的方法来解决应力分析和强度计算问题,从而确保工程项目的安全性和可靠性。

在工程实践中,应力状态分析和强度计算是非常重要的步骤,涉及到许多领域,如结构工程、材料工程、土木工程等。

下面将重点介绍这两个方面的应用。

应力状态分析是通过计算和评估物体内部应力分布情况来研究物体的受力状态。

在结构工程中,应力状态分析常常用于评估建筑物、桥梁、水坝等的受力情况。

通过对建筑物的结构进行应力分析,可以确定主要受力构件的应力分布情况,以评估其承载能力和安全性。

同样,在桥梁设计中,应力状态分析可以帮助工程师确定桥梁梁体和桥墩的应力分布及变形情况,从而更好地设计和改进桥梁结构。

在材料工程中,应力状态分析也非常重要。

材料的力学性能与应力状态密切相关,了解材料受力情况可以帮助我们设计和选择合适的材料。

例如,在机械设计中,对零件进行应力状态分析可以确定其所受的最大应力,从而选择合适的材料和加工工艺以满足设计要求。

此外,在材料工程中,应力状态分析还可以用来确定材料疲劳寿命和断裂特性,以提高材料的可靠性和使用寿命。

强度计算是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。

在工程中,强度计算是非常关键的一步,可以避免结构破坏和事故的发生。

在航空航天工程中,对飞机和航天器进行强度计算是确保其安全飞行和操作的关键。

例如,对飞机机身进行强度计算可以确定其在各种运行条件下的安全性能,以确保机身结构不会发生破裂和变形。

同样,在航天器设计中,强度计算可以评估航天器承受高温和高压环境下的强度和稳定性,以保证其在极端条件下的功能和性能。

除了结构工程和航空航天工程,应力状态分析和强度计算还有许多其他的应用领域。

在汽车工程中,对汽车零件进行应力分析和强度计算可以确保汽车在各种路况下的安全性和稳定性。

在能源工程中,应力状态分析可以用来评估石油井和天然气井的稳定性和强度,以确保能源开采的安全和高效进行。

在电力工程中,应力分析和强度计算可以用于评估输电线路和变压器的受力情况,以确保电力系统的安全运行。

总而言之,应力状态分析和强度计算是工程力学中非常重要的一部分。

它们可以通过计算和评估物体的应力分布情况,帮助我们了解物体的受力状态,从而保证工程项目的安全性和可靠性。

在工程实践中,我们可以应用不同的方法和技术,如数值计算和实验测试,来进行应力状态分析和强度计算。

通过不断改进和优化这些分析和计算方法,我们可以更好地理解和应用工程力学的原理,并为实际工程设计和生产提供有效的支持。

相关文档
最新文档