应力应变曲线
应力-应变循环曲线

应力-应变循环曲线应力-应变循环曲线是材料力学中的重要概念,用来描述材料在循环载荷下的变形行为。
循环载荷是指反复施加在材料上的载荷,应力-应变循环曲线则可用来描述材料在这种交替循环载荷下的应力和应变之间的关系。
本文将详细介绍应力-应变循环曲线的概念、特征和应用。
应力-应变循环曲线通常由两个主要的部分组成:弹性阶段和塑性阶段。
在材料的弹性阶段,应变与应力成正比,即应力和应变满足胡克定律。
材料在这个阶段内,完全恢复了外部加载引起的应变,没有残余应变。
应力-应变曲线在这个阶段呈现出一条直线,斜率代表了材料的弹性模量。
当材料超过了弹性极限,进入了塑性阶段,应力-应变曲线就变成了一个回弹曲线。
在每个循环中,材料会出现一个塑性变形区域,在这个区域内,应变与应力的关系是非线性的。
一般来说,塑性变形区域是由初始的弹性后塑性应变(yield strain)和持续的塑性应变组成。
应力-应变循环曲线的特征还包括屈服点和饱和点。
屈服点是指应力-应变曲线上的一个特殊点,表示了材料的屈服强度。
在屈服点之后,材料会出现明显的应力软化效应,即应力下降。
而饱和点则表示了材料在循环载荷下的最大应变能力。
应力-应变循环曲线的形状和特征会受到多种因素的影响,包括加载速率、温度和材料的微观结构等。
这些因素都会对材料的塑性变形机理和位错运动产生影响。
例如,加载速率的增加会导致材料的强化效应,使得应力-应变曲线呈现出更陡峭的斜率和更高的屈服强度。
而温度的增加则会导致材料的软化效应,使得应力-应变曲线呈现出更平缓的斜率和较低的屈服强度。
应力-应变循环曲线的研究在材料科学和工程领域具有重要的意义。
它不仅可以用来评估材料的力学性能和可靠性,还可以用来设计和优化结构的工作寿命和耐久性。
通过分析应力-应变循环曲线,可以获得材料的弹塑性性质、疲劳特性和损伤行为等信息,有助于提高材料的使用寿命和安全性。
总之,应力-应变循环曲线是描述材料在循环载荷下的力学响应的重要工具。
应力应变曲线

应力-应变曲线(stress-strain curves)根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。
应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。
应力及应变值按下式计算:式中σi 表示拉伸图上任意点的应力值,δi为i点的延伸率,Pi及Δli为该点的拉力与绝对伸长值,F0及l为试件的断面积和计算长度。
试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σs表示,其求法见屈服点。
拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在细颈部分。
出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σb表示σb =Pmax/F式中Pmax为拉伸图上所记录的最大载荷值。
试件出现细颈后很快即断裂,断裂应力σfσf =Pf/Tf式中Pf 是断裂时的拉力,Ff是断口面积。
试件拉断时的延伸率δf(%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标:矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。
抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。
屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。
应力-应变曲线表征材料受外力作用时的行为。
材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变形过程终结。
所以任何变形过程均包括弹性变形、塑性变形及破断3个典型阶段。
金属的塑性加工过程处于弹性变形与破断二者之间。
首先要创造一定的应力状态条件使金属能发生塑性变形,其次是安排一个使塑性变形尽可能大又不致发生破坏的热力学条件。
真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线一、引言在材料力学中,真应力应变曲线和工程应力应变曲线是两个常用的曲线,用于描述材料在受力时的变形情况。
本文将详细探讨这两种曲线的定义、区别以及应用。
二、真应力应变曲线真应力应变曲线又称为物理应力应变曲线,是指在材料受到外力作用时,通过测量材料内部各点的变形情况得到的应力应变曲线。
2.1 定义真应力是指材料在受力过程中所受到的内部分子间相互作用力,真应变是指材料在受力过程中由于分子间相互作用引起的变形程度。
真应力和真应变可以表示为以下公式:真应力 = 真应力/受力面积真应变 = - ln(1 + 真应变)2.2 特点真应力应变曲线通常具有以下特点: - 在小的应力范围内,真应力与工程应力之间的差别较小; - 随着应力的增大,真应力与工程应力的差别逐渐增大; - 真应力应变曲线通常呈现出非线性的特点; - 在材料破裂前,真应变曲线可能发生多次折线。
三、工程应力应变曲线工程应力应变曲线是指在工程实际应用中常用的应力应变曲线,它是通过测量外部载荷和材料变形量得到的应力应变曲线。
3.1 定义工程应力是指外力作用下的应力,工程应变是指外力作用下的变形程度。
工程应力和工程应变可以表示为以下公式:工程应力 = 外力/原始截面积工程应变 = 变形量/原始长度3.2 特点工程应力应变曲线通常具有以下特点: - 在小的应力范围内,工程应力与真应力之间的差别较小; - 随着应力的增大,工程应力与真应力的差别逐渐增大; - 工程应力应变曲线通常呈现出线性的特点; - 在材料破裂前,工程应变曲线可能发生多次折线。
四、真应力应变曲线与工程应力应变曲线的区别与应用真应力应变曲线与工程应力应变曲线之间存在着一些区别,主要体现在以下几个方面。
4.1 测量原理真应力应变曲线是通过测量材料内部各点的变形情况得到的,而工程应力应变曲线是通过测量外部载荷和材料变形量得到的。
因此,两者的测量原理不同。
4.2 曲线形状真应力应变曲线通常呈现出非线性的特点,可能发生多次折线;而工程应力应变曲线通常呈现出线性的特点,不会发生折线现象。
应力应变曲线类型

应力-应变曲线是用来描述材料在受到外部力作用时,其应力和应变之间的关系的图形。
这些曲线可以用来了解材料的弹性和塑性行为,以及其破坏点等重要信息。
应力-应变曲线的类型可以分为几种常见的情况:
1. 弹性材料的应力-应变曲线:
-在弹性阶段,应力和应变成正比,遵循胡克定律。
-弹性材料在卸载后会完全恢复原始形状。
-典型的弹性曲线是线性上升的,没有明显的屈服点。
2. 塑性材料的应力-应变曲线:
-塑性材料在一定应力下会发生屈服,超过这一点后应变增加但应力基本稳定。
-塑性材料的曲线通常有明显的屈服点。
-塑性变形是不可逆的,材料在卸载后会有永久的变形。
3. 韧性材料的应力-应变曲线:
-韧性材料通常在屈服点之后继续延展,具有良好的抗断裂性能。
-曲线的下降部分较为缓和,表示能够吸收相对大的应变能量。
4. 脆性材料的应力-应变曲线:
-脆性材料通常在屈服点之后迅速断裂,没有明显的延展性。
-曲线的下降部分陡峭,表示应变能量较小,容易断裂。
应力-应变曲线的形状取决于材料的类型,因此不同的材料会具有不同的曲线类型。
这些曲线可以用来评估材料的性能、工程应用以及材料的破坏特性。
三种材料应力应变曲线

三种材料应力应变曲线
引言
在材料力学中,研究材料的应力应变关系对于了解材料的力学特性至
关重要。
不同材料的应力应变曲线展现了材料在外力作用下的变形行为和力学性能。
本文将介绍三种常见材料的应力应变曲线,包括弹性材料、塑性材料和粘弹性材料。
弹性材料
弹性材料是指在一定的应力范围内,材料在外力作用下能够恢复到原
始形状的材料。
它们遵循胡克定律,即应力与应变成线性关系。
弹性材料的应力应变曲线呈现出一个直线,称为弹性阶段。
塑性材料
与弹性材料不同,塑性材料在一定应力范围内会发生不可逆变形。
当
应力超过一定临界值时,材料发生屈服,并出现明显的塑性变形。
塑性材料的应力应变曲线可以分为四个阶段:线性弹性阶段、屈服阶段、硬化阶段和流动阶段。
在屈服阶段后,应力随应变的增加而逐渐增加,材料进入了塑性变形的阶段。
粘弹性材料
粘弹性材料具有介于弹性和塑性之间的特性。
它们在受力后会发生瞬
时弹性变形,但随着时间的推移,仍然存在不可逆的塑性变形。
粘弹性材料的应力应变曲线呈现出一种特殊的“S”形状曲线,称为粘弹性阶段。
结论
三种材料的应力应变曲线展示了不同材料在外力作用下的变形特性。
弹性材料在一定应力范围内能恢复到原始形状;塑性材料在超过临界应力后出现明显的塑性变形;粘弹性材料表现出瞬时弹性和随时间的塑性变形。
深入了解这些应力应变曲线有助于我们理解材料的力学性能,为工程设计和材料选择提供参考。
金属材料应力应变曲线PPT(完整版)

发生弹性变形,所以ab段称为弹性阶段。b点所对
应的应力值记作σe ,称为材料的弹性极限。
弹性极限与比例极限非常接近,工程实际中通常对二者不
作严格区分,而近似地用比例极限代替弹性极限。
(2)屈服阶段 屈服点 s
曲线超过b点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加,材 料好像失去了抵抗变形的能力,把这种应力不增 加而应变显著增加的现象称作屈服,bc段称为屈
4.塑性指标
试件拉断后,弹性变形消失,但塑性变形仍保
留下来。工程上用试件拉断后遗留下来的变形
屈服阶段曲线最低点所对应的应力 称为屈服点(或屈服极限)。
表示材料的塑性指标。常用的塑性指标有两个: 工程上一般不允许构件发生塑性变形,并把塑性变形作为塑性材料破坏的标志,所以屈服点 是衡量材料强度的一个重要指标。
服阶段。屈服阶段曲线最低点所对应的应力 s
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上升,说
L 3、强化阶段ce(恢复抵抗变形的能力)(均匀塑性变形)
%
金属材料的压缩试样,一般制成短圆柱形,柱的高度约为直径的1.
A A1 强度极限(对最大均匀塑性变形的抗力)
断面收缩率 : 100 % 在屈服以前,压缩时的曲线和拉伸时的曲线基本重合,屈服以后随着压力的增大,试样被压成“鼓形”,最后被压成“薄饼”而不发
金属材料应力应变曲线
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
应力应变曲线面积

应力应变曲线面积
应力应变曲线是工程材料力学机构性能的重要参数和指标,它们在金属结构的设计、安全评定、材料改性、建立力学模型等方面均有重要的意义。
简单说,应力应变曲线面积就是材料的可塑性、抗冲击和韧性的量化表征。
材料的应力应变曲线即面积,也可以称为拉伸曲线面积,它表示材料在应力性能受到变形时受到伸长的能量密度。
通常情况下,材料的应力应变曲线面积越大,则说明该材料内部可塑性、抗冲击及韧性越强,能够承受更大的应力和变形。
从应力应变曲线的面积上看,材料的冲击强度被反映在应力应变曲线的上部,在上部的许多应力应变曲线面积决定了材料的冲击强度高低。
另外,应力应变曲线的下部一般反映出材料是否具备高强度,也就是说它承受高应力时产生的变形是否足够小。
应力应变曲线的上部和下部越大,说明材料有较高的冲击强度和高强度,可以应用到工程中。
从应力应变曲线的位移量可以看出材料的耐久性强度,如果材料的应力应变曲线的位移量越大,则说明材料的耐久性越强,可以将它应用到高速射击、消安和搬运等加工工序中。
总之,材料的应力应变曲线面积可以反映材料内部可塑性、抗冲击和韧性等特性,是衡量材料力学性能的重要指标之一,它不仅影响材料的研发和制造,也决定了材料在工程应用中的性能表现。
因此,研发材料的任务是尽可能的提高材料的应力应变曲线面积,以满足用户的需求和要求。
拉伸试验应力应变曲线

拉伸试验应力应变曲线
拉伸试验是材料力学性能测试中常用的一种试验方法,用于测定材料在拉伸过程中的应力应变关系。
下面是拉伸试验中典型的应力应变曲线的一般特征:
1. 弹性阶段(OA 段):
在拉伸试验开始时,应力应变曲线呈现线性关系,材料在这个阶段表现出弹性行为。
在弹性阶段,材料在去除载荷后能够完全恢复到原来的形状,没有永久变形。
2. 屈服阶段(AB 段):
当应力增加到一定值时,材料开始出现屈服现象,应力应变曲线出现非线性部分。
屈服阶段的起始点称为屈服点(yield point),此时材料开始发生塑性变形。
3. 塑性阶段(BC 段):
在屈服点之后,材料进入塑性阶段,应力应变曲线呈现非线性关系。
在这个阶段,材料发生永久性变形,即使去除载荷也无法完全恢复到原来的形状。
4. 强化阶段(CD 段):
在塑性阶段之后,应力应变曲线继续上升,但斜率逐渐减小。
这
个阶段称为强化阶段,材料的强度逐渐增加,但塑性变形也在不断增加。
5. 颈缩阶段(DE 段):
当应力达到材料的极限强度时,材料开始出现颈缩现象,即局部截面缩小。
在颈缩阶段,应力应变曲线迅速下降,最终导致材料断裂。
需要注意的是,拉伸试验应力应变曲线的具体形状和特征会因材料的性质和试验条件而有所不同。
以上描述的是一般情况下典型的应力应变曲线特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力应变曲线
应力应变曲线四个阶段是:
(1)弹性阶段ob:这一阶段试样的变形完全是弹性的,全部卸除荷载后,试样将恢复其原长。
(2)屈服阶段bc:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内波动。
如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。
(3)强化阶段ce试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂Bef试样伸长到一定程度后,荷载读数反而逐渐降低。
曲线的横坐标是应变,纵坐标是外加的应力。
曲线的形状反应材料在外力作用下发生的脆性、塑性、屈服、断裂等各种形变过程。
这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线外形相似,但是坐标不同。
原理上,聚合物材料具有粘弹性,当应力被移除后,一部分功被用于摩擦效应而被转化成热能,这一过程可用应力应变曲线表示。
金属材料具有弹性变形性,若在超过其屈服强度之后 继续加载,材料发生塑性变形直至破坏。
这一过程也可用应力应变曲线表示。
该过程一般分为:弹性阶段、屈服阶段、强化阶段、局部变形四个阶段。