真实应力应变曲线

合集下载

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线引言在材料力学的研究中,应力和应变是两个重要的概念。

应力是对物体单元面积上的内部力的描述,而应变是物体在受到外力作用下的形变程度。

材料的力学性质可以通过应力-应变曲线来描述。

然而,由于不同的测量方法和条件,得到的应力-应变曲线可能存在一定的差异。

本文将详细探讨名义应力应变曲线和真实应力应变曲线之间的关系。

一. 名义应力应变曲线名义应力应变曲线是指在无外界影响下,通过直接测量外力和承受力的比值得到的应力应变关系曲线。

在测试材料的强度、刚度和塑性等力学性质时,常使用名义应力应变曲线进行研究。

名义应力应变曲线由弹性阶段、屈服点、塑性阶段和破坏点四个主要区域组成。

1. 弹性阶段在名义应力应变曲线的弹性阶段,应变与应力成线性关系,材料在这个阶段内具有完全弹性变形能力。

如果外力移除,材料能够完全恢复其原始形状。

这是因为在弹性阶段内材料分子间发生的位移微小,分子间的作用力可以通过弹性形变来恢复原状。

2. 屈服点当外力继续增大,超过弹性极限时,材料发生塑性变形。

在名义应力应变曲线中,屈服点是指材料从弹性变形进入塑性变形的临界点。

在屈服点之前,应力和应变之间存在一个线性关系,这个线性关系称为胶性区。

屈服点之后的应力应变曲线呈现非线性增长,形成了塑性区。

3. 塑性阶段在塑性阶段,应力应变曲线表现出非线性增长的特点。

由于材料内部发生了位移和位错的形成,原子和分子之间的排列发生改变,使材料的原始形状无法恢复。

塑性阶段内材料受外力的影响,会发生塑性变形和变形硬化。

材料的塑性行为在这个阶段内得到了充分的表现和研究。

4. 破坏点在名义应力应变曲线的最后一个阶段,材料不再具备耐久性能,终会达到破坏点。

此时材料无法承受更多的应力,产生破裂。

破坏点是在研究材料强度时的一个重要参数,它可以反映材料的破坏极限。

二.真实应力应变曲线真实应力应变曲线是指在考虑材料体积的变化后得到的应力应变关系曲线。

由于在受力过程中材料会发生体积的改变,名义应力应变曲线难以完整描述真实的应力应变行为,因此需要引入真实应力的概念。

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线
真应力应变曲线和工程应力应变曲线是材料力学中常用的两种
应力应变关系曲线。

真应力应变曲线是指在材料受力的过程中,考虑到材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的真实应力和真实应变的关系。

真应力是指材料受到的外力与材料初始横截面积之比,真应变是指材料的形变与材料初始长度之比。

由于考虑了材料的变形,真应力应变曲线能够提供更准确的材料性能评价。

工程应力应变曲线是指在材料受力的过程中,忽略了材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的工程应力和工程应变的关系。

工程应力是指材料受到的外力与材料初始横截面积之比,工程应变是指材料的形变与材料初始长度之比。

由于忽略了材料的变形,工程应力应变曲线在工程设计和材料选择中更常用。

真应力应变曲线和工程应力应变曲线之间存在着一定的差异。

在强度屈服点之前,两者的曲线基本一致,但在屈服点之后,由于考虑了材料的几何形状和尺寸的变化,真应力应变曲线会出现更大的应力和应变。

这是因为材料在受力过程中会发生局部收缩和延长,导致应力增大。

相比之下,工程应力应变曲线在屈服点之后呈现出更平缓的曲线。

在工程实践中,真应力应变曲线和工程应力应变曲线都具有重要的作用。

真应力应变曲线可用于材料性能评价和材料强度分析,而工程应力应变曲线则常用于结构设计和材料选择。

不同的材料和应用领域可能会选择不同的应力应变曲线进行分析和设计,以满足具体的工程需求。

第六节真实应力应变曲线课件

第六节真实应力应变曲线课件
低温条件下,材料的屈服强度升高, 真实应力应变曲线呈现较陡峭的上升 趋势,且可能会出现应力集中现象。
应变速率
高应变速率
高应变速率条件下,材料的应力应变响应时间缩短,真实应力应变曲线表现出较高的峰值应力和较短的形变平台 。
低应变速率
低应变速率条件下,材料的应力应变响应时间延长,真实应力应变曲线表现出较低的峰值应力和较长的形变平台 。
02 真实应力应变曲线的测量 方法
直接拉伸法
总结词
直接拉伸法是一种常用的测量真实应力应变曲线的方法,通 过直接对试样施加拉伸力,记录其变形量,从而得到应力应 变关系。
详细描述
在直接拉伸法中,试样通常为长条形,一端固定,另一端施 加逐渐增大的拉伸力,同时测量试样的变形量。通过计算可 以得到应力应变曲线。该方法具有简单、直接的优点,适用 于各种材料。
屈服阶段
屈服阶段
当外力继续增加并超过某一临界值时 ,材料进入屈服阶段,此时材料开始 发生塑性形变,即在外力作用下发生 不可逆的形变。该阶段的应力应变关 系不再呈线性关系。
总结词
描述材料在屈服阶段的应力应变关系 和特点。
详细描述
在屈服阶段,真实应力应变曲线出现 一个拐点,表示材料开始发生塑性形 变。此时,应力应变关系不再呈线性 关系,而是出现一定的非线性。随着 应力的增加,应变迅速增加,但形变 不再完全恢复。这一阶段材料的力学 性质表现为塑性行为,需要较大的外 力才能使材料发生形变。
THANKS FOR WATCHING
感谢您的观看
曲线表现出应变硬化或软化的特性,即随 着应变的增加,材料的应力表现会发生变 化。
屈服点
断裂点
曲线通常会有一个屈服点,表示材料开始 发生屈服,即应力不再随应变线性增加。

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线一、引言在材料力学中,真应力应变曲线和工程应力应变曲线是两个常用的曲线,用于描述材料在受力时的变形情况。

本文将详细探讨这两种曲线的定义、区别以及应用。

二、真应力应变曲线真应力应变曲线又称为物理应力应变曲线,是指在材料受到外力作用时,通过测量材料内部各点的变形情况得到的应力应变曲线。

2.1 定义真应力是指材料在受力过程中所受到的内部分子间相互作用力,真应变是指材料在受力过程中由于分子间相互作用引起的变形程度。

真应力和真应变可以表示为以下公式:真应力 = 真应力/受力面积真应变 = - ln(1 + 真应变)2.2 特点真应力应变曲线通常具有以下特点: - 在小的应力范围内,真应力与工程应力之间的差别较小; - 随着应力的增大,真应力与工程应力的差别逐渐增大; - 真应力应变曲线通常呈现出非线性的特点; - 在材料破裂前,真应变曲线可能发生多次折线。

三、工程应力应变曲线工程应力应变曲线是指在工程实际应用中常用的应力应变曲线,它是通过测量外部载荷和材料变形量得到的应力应变曲线。

3.1 定义工程应力是指外力作用下的应力,工程应变是指外力作用下的变形程度。

工程应力和工程应变可以表示为以下公式:工程应力 = 外力/原始截面积工程应变 = 变形量/原始长度3.2 特点工程应力应变曲线通常具有以下特点: - 在小的应力范围内,工程应力与真应力之间的差别较小; - 随着应力的增大,工程应力与真应力的差别逐渐增大; - 工程应力应变曲线通常呈现出线性的特点; - 在材料破裂前,工程应变曲线可能发生多次折线。

四、真应力应变曲线与工程应力应变曲线的区别与应用真应力应变曲线与工程应力应变曲线之间存在着一些区别,主要体现在以下几个方面。

4.1 测量原理真应力应变曲线是通过测量材料内部各点的变形情况得到的,而工程应力应变曲线是通过测量外部载荷和材料变形量得到的。

因此,两者的测量原理不同。

4.2 曲线形状真应力应变曲线通常呈现出非线性的特点,可能发生多次折线;而工程应力应变曲线通常呈现出线性的特点,不会发生折线现象。

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线一、名义应力应变曲线和真实应力应变曲线的基本概念名义应力应变曲线和真实应力应变曲线是材料力学中常见的两个概念,它们分别描述了材料在外部受到载荷时的变形情况。

其中,名义应力指的是外部载荷与截面积之比,即σ=F/A;而真实应力则指的是在考虑材料内部各种因素(如材料微观结构、晶粒大小等)影响后得到的载荷与截面积之比,即σ'=F/A。

二、名义应力应变曲线和真实应力应变曲线的区别1. 名义应力-应变曲线名义应力-应变曲线通常是指在不考虑材料内部各种因素对其性能影响时得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量(即形变)之间的关系图。

该图通常呈现出一个典型的S型弯曲形状,其中包含了四个主要阶段:弹性阶段、屈服阶段、塑性流动阶段和断裂阶段。

其中,弹性阶段是指材料在受到外界作用时,其形变量与载荷之间呈线性关系的阶段;屈服阶段则是指当材料的应力达到一定值时,其形变量不再随载荷增加而线性增长,而是开始出现非线性变化的阶段;塑性流动阶段则是指当材料的应力继续增大时,其形变量将会进一步增加,并逐渐呈现出一个稳定的流动状态;断裂阶段则是指当材料无法承受更大的应力时,其形变量将会突然增加并最终导致材料破裂。

2. 真实应力-应变曲线真实应力-应变曲线通常是指在考虑了材料内部各种因素对其性能影响后得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量之间的关系图。

该图通常呈现出一个相对平缓、光滑且无明显弯曲点的形态。

这主要是因为在考虑了各种因素影响后,真实应力与名义应力之间存在一定程度上的差异。

具体来说,在弹性阶段,真实应力与名义应力之间的差异较小,但随着载荷的增加,该差异将会逐渐增大,并在材料进入屈服阶段时达到最大值。

此后,在塑性流动阶段中,真实应力与名义应力之间的差异将会逐渐减小,并最终趋于一致。

三、两种曲线的意义和应用1. 名义应力-应变曲线的意义和应用名义应力-应变曲线是描述材料在外部受到载荷时变形情况的重要工具。

真应力-应变曲线介绍

真应力-应变曲线介绍

在应力-应变曲线中,应力是F除以试样的原始横截面积,应变是△L除以试样的标距L。

然而在拉伸过程中,试样原始截面逐渐变小,所以实际的应力应该是瞬时试验力F除以瞬时截面面积S。

而实际的真应变,则是瞬时伸长与瞬时长度之比的积分。

由此我们可以得到真应力-应变曲线。

真应力-应变曲线,横坐标为e,表示真实应变值,de=dl/l。

纵坐标为s,表示真应力,s=F/A。

其中F、A、l均表示瞬时值。

OP段仍为弹性变形部分。

PB段为产生颈缩前的均匀变形阶段,斜率D=ds/de为材料的形变强化模数,这个阶段的D随变形增加而减少。

BK段为局部变形阶段,试样开始发生颈缩。

BK前段部分,D为一常数,代表形变强化趋于稳定。

曲线最后发生翘曲,由于颈缩发展到一定程度之后,三向应力不利于变形造成的。

从真实应力-应变曲线可以看出,材料抵抗塑性变形的能力随应变增加而上升的,也就是发生加工硬化。

所以真实应力-应变曲线又称为硬化曲线。

真实应力应变曲线

真实应力应变曲线

真实应力应变曲线真实应力应变曲线是由正弦曲线建模而成的模型,它反映了力学物体随外力变化而发生的应力变化情况。

它通常用来说明材料在受不均匀载荷作用下的屈服性能,并被广泛用于材料应力应变曲线分析。

一、真实应力应变曲线的构成1.应力曲线:反映材料在外力作用下的变形情况、应力的大小以及变形的大小,也就是可以从曲线上看出应力-变形关系。

2.应变曲线:反映材料在外力作用时承受的变形应变量之间的关系,可以表示材料受力时变形应变的大小。

3.屈服点:材料受力时线性变形突然变形,变形应变仍随着外力增大而增大,此时材料突然失去了线性变形性,即为屈服点。

4.塑性区:在此处,材料应力应变曲线呈现出稳定,但是变形应变较应力有更大的增量,这就是塑性区。

二、真实应力应变曲线的测定1.弹性试验:是材料弹性特性测定的常用试验方法,其特点是受到外力的影响,材料的变形量在一定的范围可逆,当外力能小于一定值时,材料变形量恢复到外力作用前的原状时,此时可以说发生了“完全弹性”现象。

2.延伸试验:是一种测定材料应力应变曲线的常用方法,以延伸速率为定值,通过测定材料在延伸过程中所受应力与延伸量,求出材料应力应变曲线。

3.冲击试验:则是采用冲击装置测定材料应力应变曲线,通过改变冲击速率,测定材料的应力和应变值,最终求出材料的应力应变曲线。

三、真实应力应变曲线的应用1.工程设计中,真实应力应变曲线可以为工程设计提供理论指导,避免结构材料超限或安全。

2.模具设计中,真实应力应变曲线可以为模具设计提供准确的理论指导,以确保模具的结构合理。

3.分析材料性能:通过使用真实应力应变曲线可以准确地分析材料的力学性能,从而推断出材料的屈服角、屈服点、断裂角等。

4.研究材料行为:通过研究真实应力应变曲线,可以更准确地了解材料在受力下的行为,从而为材料受力时的性能设计提供重要依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、标称应力(名义应力、条件应力) -应变曲线
产生缩颈后,虽然载荷下降,但横截 面面积急剧下降,所以标称应力σ并不反映 单向拉伸时试样横截面上的实际应力。同 样,相对应变也并不反映单向拉伸变形瞬 时的真实应变,因试样标距长度存拉伸变 形过程中是不断变化的。所以,标称应 力—应变曲线不能真实地反映材料在塑性 变形阶段的力学特征。
应力为屈服点? s ,或屈服强度? 0.2
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力) -应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
缩颈点b:
均匀塑性变形和局部塑性变形的分界点, 载荷达到最大值,开始出现缩颈,对应
?
1 2
(0 ? p)2 ? ( p ? p)2 ? ( p ? 0)2 ? 22
3p 2
??
3 2
(? 1 ? ? 2 )2 ? (? 2 ? ? 3)2 ? (? 3 ? ? 1)2
?
3 2
(? ? 3 ?0)2 ? (0? ? 3 )2 ? (? 3 ? ? 3)2
?
2 3?3
记录下p和∈3,按上式算出 ? 和 ? ,画出? ~? 曲线。
基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线 真实应力-应变曲线的绘制 Y- ε曲线, Y- ψ曲线:以σ- ε曲线为基础
A0 ? l ? 1? ? A l0
? A ? A0 1? ?
Y ? P ? P (1? ? ) ? ? (1? ? ) A A0
? ? A0 ? A ? 1? A ? 1 ? l0 ? ?
形变形量较大,如锻造≤1.6,反挤≤2.5,拉伸试验曲线不够用。需要
压缩Y- ∈曲线。
压缩试验的优点: ∈压>>1还是均匀变形, ∈可达到2或更大,如 ∈铜 =3.9
缺点:摩擦
措施:充填润滑剂
基于压缩实验和轧制实验确定真实应力 -应变曲线
1.基于圆柱压缩实验确定真实应力 —应变曲线
试样 D0 ? 20 ~ 30mm D0 ? 1 H0
端面车沟槽或浅坑,保存润滑剂,如石腊等。 不开槽或坑,用聚四氟乙烯薄膜
基于压缩实验和轧制实验确定真实应力 -应变曲线
1.基于圆柱压缩实验确定真实应力 —应变曲线
真实应力的计算
?? ln H 0 H
AH ? A0 H 0
或 A0H 0 ? AH
对数应变 ?? ln H 0 H
A?
H0 H
A0
?
e? A0
d. 在Y- ∈坐标平面内确定出Y- ∈曲线(未修正)。
基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
Y- ∈曲线的修正
由于缩颈,即形状变化而产生应力升高的现象称 形状硬化。
基于压缩实验和轧制实验确定真实应力 -应变曲线
1.基于圆柱压缩实验确定真实应力 —应变曲线
拉伸Y- ∈曲线受塑性失稳的限制,精度较低, ∈<0.3,实际塑性成
基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
真实应力-应变曲线分类
真实应力,简称真应力,也就是瞬时的流动应力Y,用单向均匀拉
伸(或压缩)时各加载瞬间的载荷P与该瞬间试样的横截面积A之比
来表示,则
Y? P A
真实应力-应变曲线可分为三类:
(1)Y ? ?;(2)Y ? ? ;(3)Y ? ?
第三章 金属塑性变形的力学基础
第四节 本构方程
第三讲 真实应力应变曲线
单向均匀拉伸实验 压缩和轧制实验
数学表达式 影响因素
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力) -应变曲线
条件:室温,应变速率<10-3/s,退火状态低碳钢,准静力拉伸试验
标称应力:
?? P A0
相对线应变: ? ? ? l l0
PP
Y
?
? A
Байду номын сангаас
A0e?
A?
A0
H0 H
Y ? P ? PH A A0H0
基于压缩实验和轧制实验确定真实应力 -应变曲线
2、基于轧制实验确定真实应力 —应变曲线
对于板料、可采用轧制压缩(即平面应变压缩)实验的方法来求得真实 应力—应变曲线。
板料宽度W、厚度h,锤头宽度b
W ? (6 ~ 10)b
?
3?
应力为抗拉强度 ? b
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力) -应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
破坏点k :
试样发生断裂,是单向拉伸塑性变形的 终止点。
基于拉伸实验确定真实应力-应变曲线
A0
A0
l 1? ?

?? ? 1? ?
及 Y ? ? (1? ?) 算出Y、ψ
基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
Y- ∈曲线
a.求出屈服点σs(一般略去弹性变形)
?
s
?
Ps A0
b.找出均匀塑性变形阶段各瞬间的真实应力Y和对数应变∈
Y? P A
A ? A0l0 ? A0l0 l l0 ? ? l
ln
h hi
压应力 p ? P Wb
h ? (1 ~ 1)b 42
(Wb为常数)
2方向(W方向)无应变∈2=0
润滑(无摩擦)
按σ1>σ2>σ3,排列, σ1=0
换算:σ1=0, σ3=p, ∈2=0, σ2=p/2
??
1 2
(? 1 ? ? 2 )2 ? (? 2 ? ? 3 )2 ? (? 3 ? ? 1)2
P——拉伸载荷;
A0——试样原始横截面积 l0——试样标距的原始长度 Δl——试样标距的伸长量
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力) -应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
屈服点c:
弹性变形与均匀塑性变形的分界点,对应
在单向应力状态下,由于
Y ? 3 p ? 0.866 p 2
??
2 3 ? 3 ? 1.155 ? 3
可将p和∈3换算成单向压缩状态时的Y和∈,得出单向压缩时的Y~∈
?? ln l ? ln l0 ? ? l
l0
l0
或 ?? ln A0 A
基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
Y- ∈曲线
c. 找出断裂时的真实应力Yk'及其对应的对数应变∈k'
Yk '
?
Pk ' Ak '
?? ln lk ' l0
或 ?? ln A0 Ak '
Ak'—试样断裂处的横截面面积(直接测量出)。
相关文档
最新文档