应力-应变曲线

合集下载

应力-应变曲线

应力-应变曲线

应力-应变曲线(stress-strain curves)根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。

应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。

应力及应变值按下式计算:式中σi 表示拉伸图上任意点的应力值,δi为i点的延伸率,Pi及Δli为该点的拉力与绝对伸长值,F0及l为试件的断面积和计算长度。

试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σs表示,其求法见屈服点。

拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在细颈部分。

出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σb表示σb =Pmax/F式中Pmax为拉伸图上所记录的最大载荷值。

试件出现细颈后很快即断裂,断裂应力σfσf =Pf/Tf式中Pf 是断裂时的拉力,Ff是断口面积。

试件拉断时的延伸率δf(%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标:矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。

抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。

屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。

应力-应变曲线表征材料受外力作用时的行为。

材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变形过程终结。

所以任何变形过程均包括弹性变形、塑性变形及破断3个典型阶段。

金属的塑性加工过程处于弹性变形与破断二者之间。

首先要创造一定的应力状态条件使金属能发生塑性变形,其次是安排一个使塑性变形尽可能大又不致发生破坏的热力学条件。

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

应力 应变 曲线

应力 应变 曲线

应力应变曲线
应力-应变曲线描述了材料在受到外部力作用下的应力和应变之间的关系。

应力(stress)指的是材料在单位面积上受到的力的大小,通常以强度(N/m^2)作为单位。

应力-应变曲线的横轴通常表示材料的应变(strain),应变指的是材料在受到力后产生的形变程度,通常以长度的相对变化或者角度的相对变化表示。

应力-应变曲线通常可以分为四个阶段:
1. 弹性阶段(Elastic region):当材料受到小应力时,材料会表现出弹性行为,即应变与应力成正比。

在这个阶段,应力增加时材料会发生形变,但一旦外力消失,材料会恢复到原来的形状。

2. 屈服阶段(Yield Point):当材料受到足够大的应力时,材料会超过其弹性限度,开始发生可见的形变。

这个阶段的应力-应变曲线通常表现为一个明显的曲线,材料开始变得塑性。

3. 塑性阶段(Plastic region):在这个阶段,材料受到的应力继续增加,但应变的增加速度逐渐减慢。

材料开始发生不可逆的塑性变形。

4. 断裂阶段(Fracture point):当材料受到过大的应力时,材料会发生断裂,即完全失去其机械性能。

应力-应变曲线的形状和材料的性质,结构和处理方式等因素密切相关。

不同材料(如金属、塑料、陶瓷等)的应力-应变曲线会有所不同,也受到温度、湿度等环境条件的影响。

这在工程设计和材料选择中具有重要的意义,可以帮助工程师评估材料的强度、延展性、可塑性和抗断裂性等性能。

应力-应变曲线

应力-应变曲线
2
9-1 金属的应力-应变曲线 单向静拉伸试验
是应用最广泛的力学性能试验方法之一。 1)可揭示材料在静载下的力学行为(三种失效形式): 即:过量弹性变形、塑性变形、断裂。 2)还可标定出材料的最基本力学性
能指标: 如:屈服强度、抗拉强度、伸长率、
断面收缩率等。
3
1、拉伸力-伸长曲线
2. 铸铁、陶瓷:只有第I阶段
3. 中、高碳钢:没有第II阶段
7
3、真应力S-真应变e 曲线
3、真应力S-真应变e 曲线:(流变曲线)
在实践的塑性变形中,试样的截面积与长度也在不断发生着变化,在研究 金属塑性变形时,为了获得真实的变形特性,应当按真应力和真应变来进 行分析。
流变曲线真实反映变形过程中,随应变量增大,材料性质的变化。
若应力足够大,位错可从溶质 原子簇中挣脱,载荷就下降。
若溶质原子足够快地扩散开, 就可将位错重新锁住,则须再 增大载荷才使变形继续下去。
23
4)第Ⅳ种类型:弹性-不均匀塑性-均匀塑性变形 许多体心立方铁基合金和有色合金,应力-应变曲线在弹性
与均匀塑性变形间有一狭窄一段属不均匀塑变区。即从弹性 向塑性变形的过渡明显。
L0
L1
L0
但是,各次拉伸真应变量e之和等于一次拉伸的真应变量。
ln L1 ln L2 ln L2
L0
L1
L0
14
5、不同类型材料典型的拉伸应力-应变曲线
1)第Ⅰ种类型:完全弹性 可用虎克定律描述其应力σ-应变ε成比例的材料特性。
E
E-材料的弹性模量(杨氏模量)
特点:具有可逆应力-应变曲线 和不出现塑性变形的特征。
工程应力-应变曲线

真应力-应变曲线介绍

真应力-应变曲线介绍

在应力-应变曲线中,应力是F除以试样的原始横截面积,应变是△L除以试样的标距L。

然而在拉伸过程中,试样原始截面逐渐变小,所以实际的应力应该是瞬时试验力F除以瞬时截面面积S。

而实际的真应变,则是瞬时伸长与瞬时长度之比的积分。

由此我们可以得到真应力-应变曲线。

真应力-应变曲线,横坐标为e,表示真实应变值,de=dl/l。

纵坐标为s,表示真应力,s=F/A。

其中F、A、l均表示瞬时值。

OP段仍为弹性变形部分。

PB段为产生颈缩前的均匀变形阶段,斜率D=ds/de为材料的形变强化模数,这个阶段的D随变形增加而减少。

BK段为局部变形阶段,试样开始发生颈缩。

BK前段部分,D为一常数,代表形变强化趋于稳定。

曲线最后发生翘曲,由于颈缩发展到一定程度之后,三向应力不利于变形造成的。

从真实应力-应变曲线可以看出,材料抵抗塑性变形的能力随应变增加而上升的,也就是发生加工硬化。

所以真实应力-应变曲线又称为硬化曲线。

应力应变曲线类型

应力应变曲线类型

应力-应变曲线是用来描述材料在受到外部力作用时,其应力和应变之间的关系的图形。

这些曲线可以用来了解材料的弹性和塑性行为,以及其破坏点等重要信息。

应力-应变曲线的类型可以分为几种常见的情况:
1. 弹性材料的应力-应变曲线:
-在弹性阶段,应力和应变成正比,遵循胡克定律。

-弹性材料在卸载后会完全恢复原始形状。

-典型的弹性曲线是线性上升的,没有明显的屈服点。

2. 塑性材料的应力-应变曲线:
-塑性材料在一定应力下会发生屈服,超过这一点后应变增加但应力基本稳定。

-塑性材料的曲线通常有明显的屈服点。

-塑性变形是不可逆的,材料在卸载后会有永久的变形。

3. 韧性材料的应力-应变曲线:
-韧性材料通常在屈服点之后继续延展,具有良好的抗断裂性能。

-曲线的下降部分较为缓和,表示能够吸收相对大的应变能量。

4. 脆性材料的应力-应变曲线:
-脆性材料通常在屈服点之后迅速断裂,没有明显的延展性。

-曲线的下降部分陡峭,表示应变能量较小,容易断裂。

应力-应变曲线的形状取决于材料的类型,因此不同的材料会具有不同的曲线类型。

这些曲线可以用来评估材料的性能、工程应用以及材料的破坏特性。

钢筋的应力—应变曲线分析

钢筋的应力—应变曲线分析

自开始加载至应力达到A点以前,应力应变成线性关系,A点称比例极限,OA段属于弹性工作阶段。

应力达到Bˊ点后,钢筋进入屈服阶段,产生很大的塑性形变,Bˊ点应力称为屈服强度(流限),在应力-应变曲线中呈现一水平段B〞B,称为流幅。

超过B点后,应力-应变关系重新表现为上升的曲线,B-C段为强化阶段。

曲线最高点C点的应力称为抗拉强度。

此后钢筋试件产生颈缩现象,应力应变关系成为下降曲线,应变继续增大,到D点钢筋被拉断。

D点所对应的横坐标称为伸长率,它标志钢筋的塑性。

伸长率越大,塑性越好。

钢筋塑性除用伸长率标志外,还用冷弯试验来检验。

冷弯就是把直径为D的钢辊转弯转α角而不发生裂纹。

钢筋塑性越好,钢辊直径D可越小,冷弯角α就越大。

屈服强度(流限)是软钢的主要强度指标。

在混凝土中的钢筋,当应力达到屈服强度后,荷载不增加,而应变会继续增大,使得混凝土开展过宽,构件变形过大,结构不能正常使用。

所以软钢钢筋的受拉强度限值以屈服强度为准,钢筋的强化阶段只作为一种安全储备考虑。

钢材中含碳量越高,屈服强度和抗拉强度就越高,伸长率就越小,流幅也相应缩短。

应力-应变曲线

应力-应变曲线

项目部对工程工序施工质量实行班组初检、技术主管复检和专职质检工程师终检“三检”应力-应变曲线-计算公式stress-straincurve在工程中,应力和应变是按下式计算的应力-应变曲线应力(工程应力或名义应力)σ=P/A。

,应变(工程应变或名义应变)ε=(L-L。

)/L。

式中,P为载荷;A。

为试样的原始截面积;L。

为试样的原始标距长度;L 为试样变形后的长度。

应力-应变曲线-特点从此曲线上,可以看出低碳钢的变形过程有如下特点:当应力低于σe时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。

当应力超过σe后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。

如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。

σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。

应力-应变曲线-塑性变形当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。

当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。

在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σk时试样断裂。

σk为材料的条件断裂强度,它表示材料对塑性的极限抗力。

应力-应变曲线-极限抗力上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。

而真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程结构陶瓷材料:如Al2O3,SiC等,淬火态高碳钢、普通 灰铸铁也属这种情况。
L1 L0 L0

L2 L1 L1

L dL L L0

ln
L L0

ln
最终长度 初始长度
工程应变 L L0 L
L0
L0
9
3)真应力S 与工程应力σ关系 当材料拉伸变形是等体积变化(A0L0=AL)过程时, 真应力S 和工程应力σ 之间存在如下关系:
S ( 1)
S F FL F ( L0 L) (1 )
A A0L0 A0 L0
这说明,S >σ 。(ε -工程应变)
10
4)真应变e 与工程应变ε 关系
L dL
L
e ln
L0 L
L0
L L0 L
L0
L0
e ln L ln L0 L ln(1+)
加 )。
② 由试件总长度变化来定义其真应变e,就有可能认为该
长度变化是一步达到的,或任意多步达到的。
e

L1 L0 L0

L2 L1 L1

L dL L L0

ln
L L0

ln
试件最终长度 试件初始长度
13
因此,若试件分几次拉伸(如分2次拉伸),则 各次拉伸工程应变量之和不等于一次拉伸的工程应变量。
9.金属材料的变形与再结晶
1
பைடு நூலகம்
金属材料的变形与再结晶
1 金属的应力-应变曲线 2 金属的塑性变形 3 回复与再结晶 4 金属热变形、蠕变与超塑性
2
9-1 金属的应力-应变曲线
单向静拉伸试验
是应用最广泛的力学性能试验方法之一。 1)可揭示材料在静载下的力学行为(三种失效形式): 即:过量弹性变形、塑性变形、断裂。 2)还可标定出材料的最基本力学性
时的工艺性能作参考。
6
2、工程应力σ -应变ε曲线
工程应力σ-应变ε 曲线: 不能真实反映试件拉伸过程中应力和应变的变化关系。 实际拉伸中,随载荷F 增加,长度 L0 伸长,截面积 A0 相应
减少。
F
A0
L L0 L
L0
L0
工程应力-应变曲线
1. 低C钢、正火、退火调质中C钢,低、中C合金钢某些Al合金及某 些高分子材料具有类似上述曲线。
工程应力-应变曲线 8
真应力S与真应变e
1)真应力 S :试件在某一瞬时承受的拉伸应力。
S

Fi Ai

瞬时载荷 试件瞬时截面积
工程应力 = F
A0
2)真应变 e :试件瞬时伸长量 / 瞬时长度。
若拉伸过程各阶段试件伸长量为一微小增量dL,则试件从L0 伸长到Ln,总应变为:
e

L1 L0 L2 L1 L2 L0
L0
L1
L0
但是,各次拉伸真应变量e之和等于一次拉伸的真应变量。
ln L1 ln L2 ln L2
L0
L1
L0
14
5、不同类型材料典型的拉伸应力-应变曲线
1)第Ⅰ种类型:完全弹性 可用虎克定律描述其应力σ-应变ε成比例的材料特性。
L0
L0
显然,总是 e <ε,且变形量越大,二者的差距越大。
11
4、定义真应力S(应变e)的意义
1)真应力 S 和真应变 e 的定义: 承认了在变形过程中试件长度和直径间相互变化的事实。 因变形过程中体积保持不变,因此
A1L1 A2L2 常数
即长度伸长了,其实际截面积 A 就会相应减少,因此,
低碳钢的拉伸力与伸长曲线
4
2、工程应力σ -应变ε 曲线
(工程)应力σ -应变ε 曲线,曲线形状不变。
由此,可建立材料在静拉伸下的力学性能指标。
应力σ :物体受外载荷作用时,单位截面积上内力。
F 试样原截面积 A0
A0
应变ε :单位长度上的伸长。
弹性变形:应力去除后能够 恢复的变形。σ=Eε
真应力S 工程应力
S

Fi Ai

瞬时载荷 试件瞬时截面积
= F
A0
12
4、定义真应力S (应变e )的意义
2)之所以如此定义真应变:
① 因为每一时刻实际应变e 与瞬时标距长度Li 有关。 若固定每一位移增量ΔL ,瞬时长度 Li 就随之增加,相应
地,应变增量就会减少。
(因随附加每一位移增量ΔL,瞬时标距长度Li 都要随之增
E
E-材料的弹性模量(杨氏模量)
特点:具有可逆应力-应变曲线 和不出现塑性变形的特征。
典型材料:如玻璃、岩石、多种 陶瓷、高交联度的高聚合物和低 温下的某些金属材料。
此类材料抗脆性(低能量)断裂 的能力是极需注意的问题。
15
苏打石灰玻璃:应力-应变曲线只显示弹性变形,没有塑性 变形立即断裂,这是完全脆断的情形。
弹性模量: E
L L0 L
L0
L0
试样标距 L0
弹性极限: σe 屈服极限:σs, σ0.2
加工硬化(应变硬化)
抗拉强度: σb
工程应力-应变曲线
断裂强度: σk
延伸率:δ=(Lk-L0)/L0
断面收缩率:ψ =(F0-Fk)/F0
5
2、工程应力σ -应变ε曲线
能指标: 如:屈服强度、抗拉强度、伸长率、
断面收缩率等。
3
1、拉伸力-伸长曲线
1、拉伸曲线
拉伸力F-绝对伸长△L的关系曲线。
在拉伸力的作用下,退火低碳钢 的变形过程四个阶段: 1)弹性变形:O~e 2)不均匀屈服塑性变形:A~C 3)均匀塑性变形:C~B 4)不均匀集中塑性变形:B~k 5)最后发生断裂。k~
2. 铸铁、陶瓷:只有第I阶段
3. 中、高碳钢:没有第II阶段
7
3、真应力S-真应变e 曲线
3、真应力S-真应变e 曲线:(流变曲线) 在实践的塑性变形中,试样的截面积与长度也在不断发生着变化,在研究
金属塑性变形时,为了获得真实的变形特性,应当按真应力和真应变来进 行分析。 流变曲线真实反映变形过程中,随应变量增大,材料性质的变化。
用静拉伸应力σ -应变ε 曲线,可得出许多重要性能指标:
弹性模量 E :主要用于零件的刚度设计。 屈服强度σs 和抗拉强度σb :主要用于零件的强度设计。 特别是:抗拉强度σb 和弯曲疲劳强度有一定比例关系,进
一步为零件在交变载荷下使用提供参考。 而材料的塑性,断裂前的应变量:主要是为材料在冷热变形
相关文档
最新文档