向量的线性运算技巧及练习题

合集下载

抚顺市初中数学向量的线性运算技巧及练习题含答案

抚顺市初中数学向量的线性运算技巧及练习题含答案

抚顺市初中数学向量的线性运算技巧及练习题含答案一、选择题1.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.2.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键3.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u rr,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r r r ;C .()12BO b a =-+u u u r r r ; D .()12BO b a =-u u u r r r .【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选4.已知a r 、b r为非零向量,下列判断错误的是( ) A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.5.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.6.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.7.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立;④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.8.下列各式不正确的是( ).A .0a a -=r r rB .a b b a +=+r r r rC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r 方向不同,则a b ≠r r,所以D 选项错误. 故选D. 【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( ) A .++ B .-+C .+-D .--【答案】B 【解析】 【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论. 【详解】 如图,,则-+故选B . 【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.若2a b c +=r r ,3a b c -=r r ,而且c r ≠0,a r 与r b 是( )A .a r 与r b 是相等向量B .a r 与r b 是平行向量C .a r 与r b 方向相同,长度不等D .a r 与r b 方向相反,长度相等【答案】B 【解析】 【分析】根据已知条件求得52a c =r r ,1b 2c =-r r,由此确定a r 与b r 位置和数量关系.【详解】解:由2a b c +=r r ,3a b c -=r r ,而且c r ≠0,得到:52a c =r r ,1b 2c =-r r ,所以a r 与b r 方向相反,且|a r|=5|b r |.观察选项,只有选项B 符合题意. 故选:B . 【点睛】本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握.11.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 . A. AB CD =-u u u r u u u r,故该选项错误;B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C . 【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.13.在下列关于向量的等式中,正确的是( )A .AB BC CA =+u u u r u u u r u u u r B .AB BC AC =-u u u r u u u r u u u r C .AB CA BC=-u u u r u u u r u u u r D .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确.故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.14.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.15.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v()222OA OB +=u u u v u u u v 故选B.16.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.17.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r与b r方向相同 D .a r与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r ,计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.18.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C.本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.19.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误.D、由=-得到∥,故本选项说法正确.故选D.【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.。

最新初中数学向量的线性运算技巧及练习题含答案(1)

最新初中数学向量的线性运算技巧及练习题含答案(1)

最新初中数学向量的线性运算技巧及练习题含答案(1)一、选择题1.对于非零向量a r、b r,如果2|a r|=3|b r|,且它们的方向相同,那么用向量a r表示向量b r正确的是( ) A .b r =32a r B .b r =23a r C .b r =﹣32a r D .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r 、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.2.已知向量,若与共线,则( )A .B .C .D .或【答案】D 【解析】 【分析】 要使与,则有=,即可得知要么为0,要么,即可完成解答. 【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D. 【点睛】本题考查了向量的共线,即=是解答本题的关键.3.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u ru u u r u u u r u u u r r, 故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.4.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .5.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r; B .AB BA u u u v u u u v =; C .0AB BA +=u u u r u u u r ; D .0AB BA +=u u u r u u u r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大6.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a br r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r, ∴11BD BC b 22==u u u r u u u r r .∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.8.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( ) A .2a b =r rB .//a c r r,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =r r ,可以推出//a b rr .本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b rr .本选项符合题意;D 选项:由12a c =r r ,2bc =r r ,可以推出//a b r r .本选项不符合题意; 故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.9.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A 【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴. 故选A. 【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.10.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r,正确; ③若ma mb =rr(m 是实数)时,则有a b =rr,错误,当m=0时不成立; ④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n =,正确; 故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.11.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u uv v ,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】 根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论.【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量B .AD u u u r 与BD u u u r是平行向量C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuur 是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r 是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误; B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD ,∴AD=BC ,∴AD BC =-u u u r u u u r ,,该选项错误;故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.13.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u r AE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.14.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.15.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.16.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致 B .a r ∥b r ,并且a r 和b r方向相反 C .a r 和b r方向互相垂直 D .a r 和b r之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r, ∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.17.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误, 故选C.18.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r与b r方向相同 D .a r与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r ,计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.19.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v -【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v =-12b v,故本选项不符合题意.故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.若0a r、0b r 都是单位向量,则有( ).A .00a b =r rB .00a b =-r rC .00a b =r rD .00a b =±r r【答案】C 【解析】 【分析】由0a r 、0b r 都是单位向量,可得00a b =r r.注意排除法在解选择题中的应用.【详解】解:∵0a r 、0b r 都是单位向量 ∴00a b =r r故选C. 【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.。

平面向量的线性运算及练习试题

平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,a b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量. ②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型. (2)向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC 。

说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,(3)特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:(a +b ) +c =a + (b +c )知识点二:向量的减法(1)相反向量:与a 长度相同、方向相反的向量.记作 -a 。

新初中数学向量的线性运算技巧及练习题含答案(2)

新初中数学向量的线性运算技巧及练习题含答案(2)

新初中数学向量的线性运算技巧及练习题含答案(2)一、选择题1.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r ,∴AC u u u r =AB BC m n +=+u u ur u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r , ∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】解:∵,∴,∴AD∥BC,AD=2BC.∴四边形ABCD为梯形.【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.若非零向量、满足|-|=||,则( )A.|2|>|-2|B.|2|<|-2|C.|2|>|2-|D.|2|<|2-|【答案】A【解析】【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A、C满足;当两向量不共线,构造三角形,从而排除C,进而解答本题.【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A、C满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC;令,,则,∴且;又BA+BC>AC ∴∴.故选A.【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.4.在中,已知是边上一点,,则( ) A.B.C.D.【答案】A【解析】【分析】根据A,B,D三点共线得出入的值,即可完成解答.【详解】解:在∆ABC 中,已知D 是AB 边上一点,若=2,,则,∴,故选A.【点睛】本题考查了平面向量的基本定理,识记定理内容并灵活应用是解答本题的关键.5.如图,已知向量a r,b r,c r,那么下列结论正确的是( )A .a b c +=rrrB .b c a +=rr rC .a c b +=rr rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r, 即a c b +=-r r r 故选D .6.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( )A .2a b =rrB .//a c r r,//b c r rC .||||a b =rrD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a br r .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D选项:由12a c=r r,2b c=r r,可以推出//a brr.本选项不符合题意;故选:C.【点睛】考查了平面向量,解题关键是熟记平行向量的定义.7.点C在线段AB上,且35AC AB=u u u r u u u r,若AC mBC=u u u r u u u r,则m的值等于().A.23B.32C.23-D.32-【答案】D【解析】【分析】根据已知条件即可得:25AC ABCB AB==-u u u r u u u r u u u r u u u r,从而得出:52AB BC=-u u u r u u u r,再代入35AC AB=u u u r u u u r中,即可求出m的值.【详解】解:∵点C在线段AB上,且35AC AB=u u u r u u u r∴25AC ABCB AB==-u u u r u u u r u u u r u u u r∴5522CBAB BC==-u u u r u u u r u u u r∴55322335BC BC A CA B⎛⎫=-⎝==-⎪⎭u u u r u u u r u u u r u u u r故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键. 8.在平行四边形ABCD中,AC与BD交于点M,若设AB a=u u u r r,AD b=u u u r r,则下列选项与1122a b-+rr相等的向量是().A.MAu u u rB.MBu u u rC.MCu u u u rD.MDu u u u r【答案】D【解析】【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB u u u r 是单位向量,则BA u u u r不是单位向量 C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA u u u r 、OB uuu r是单位向量D .计算向量的模与单位长度无关 【答案】C 【解析】 【分析】根据单位向量的定义及意义判断即可. 【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB u u u r是单位向量时,1AB =uu u r ,而此时1AB BA ==u u u r u u u r ,即BA u u u r 也是单位向量,故选项B不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA u u u r 、OB u u u r都等于这个单位长度,这时OA u u u r 、OB uuu r都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C. 【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.11.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.13.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确.故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.14.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.15.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致B .a r ∥b r ,并且a r 和b r方向相反C .a r 和b r方向互相垂直D .a r 和b r之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r,∴a r ∥b r ,a r 与b r的方向相反,故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.16.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r r; C .DC a b =-+u u u r r rD .DC a b =--u u u r r r.【答案】C 【解析】 【分析】由平行四边形性质,得DC AB =u u u r u u u r ,由三角形法则,得到OA AB OB +=u u u r u u u r u u u r,代入计算即可得到答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴DC AB =u u u r u u u r,∵OA a =u u u r r ,OB b =u u u r r,在△OAB 中,有OA AB OB +=u u u r u u u ru u u r , ∴AB OB OA b a a b =-=-=-+u u u r u u u r u u u r rr rr, ∴DC a b =-+u u u rr r; 故选择:C. 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.17.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r代入3a b c -=r r r ,计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.18.已知非零向量a r 、b r 和c r,下列条件中,不能判定a b r r P 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rr D .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r 不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r r B .()()330a b b a ++-=r r r r C .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r 【答案】D【解析】【分析】 根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++r r r r r r ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r r r r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r ,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确; 故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.。

初中数学向量的线性运算技巧及练习题含答案(1)

初中数学向量的线性运算技巧及练习题含答案(1)

初中数学向量的线性运算技巧及练习题含答案(1)一、选择题1.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.2.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +rrB .12a b -r rC .12a b -+r r D .12a b --r r 【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.3.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r, ∴11BD BC b 22==u u u r u u u r r .∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.4.已知3a →=,2b =r,而且b r和a r的方向相反,那么下列结论中正确的是( ) A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v 的方向相反,可得两者的关系,即可求解. 【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反 ∴32a b =-v v故选D. 【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.5.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u rr,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r r r ;C .()12BO b a =-+u u u r r r ; D .()12BO b a =-u u u r r r .【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选6.点C 在线段AB 上,且35AC AB =u u u r u u u r ,若AC mBC =u u u r u u u r,则m 的值等于( ).A .23B .32C .23-D .32-【答案】D 【解析】 【分析】根据已知条件即可得:25AC AB CB AB ==-u u u r u u u r u u u r u u u r ,从而得出:52AB BC =-u u u r u u ur ,再代入35AC AB =u u u r u u u r中,即可求出m 的值.【详解】解:∵点C 在线段AB 上,且35AC AB =u u u r u u u r∴25AC AB CB AB ==-u u u r u u u r u u u r u u u r∴5522CB AB BC ==-u u u r u u u r u u u r∴55322335BC B C A C A B ⎛⎫=- ⎝==-⎪⎭u u u r u u u r u u u r u u u r故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键.7.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r r D .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.8.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【答案】B 【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r ,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.9.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键10.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量B .AD u u u r 与BD u u u r是平行向量C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r ,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD , ∴AD=BC ,∴AD BC =-u u u r u u u r ,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.11.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v -【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v =-12b v,故本选项不符合题意.故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.12.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r , ∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.13.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同 D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.14.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.15.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( ) A .||2||a b =r r ;B .a r ∥b r ;C .a r 与b r方向相反; D .20a b +=r r .【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与b r 方向相反,但还是相互平行,∴a r ∥b r,该选项不符合题意错误;C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.16.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r , 计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.17.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =u u u r u u u rB .12CB AB =u u u r u u u rC .0AC BC u u u r u u u r +=D .0AC CB +=u u u r u u u r r【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.解:A 、12CA BA =u u u r u u u r,故本选项错误;B 、12CB AB =u u u r u u u r,故本选项正确;C 、0AC BC +=u u u r u u u r r,故本选项错误;D 、AC CB AB +=u u u r u u u r u u u r,故本选项错误.故选B .18.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.19.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP uuu r可以用点P 的坐标表示为:OP uuu r =(m ,n ).已知OA u u u r =(x 1,y 1),OB uuu r=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r互相垂直,在下列四组向量中,互相垂直的是( )A .OC u u u r =(3,20190),OD uuu r =(﹣3﹣1,1)B .OE uuu r 2﹣1,1),OF uuu r2,1)C .OG u u u r 318,2),OH u u u r 2)2,8)D .OM u u u u r 52),ON u u u r52,22) 【答案】A 【解析】 【分析】根据向量互相垂直的定义作答. 【详解】A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC u u u r 与OD uuu r互相垂直,故本选项符合题意.B 2﹣12+1)+1×1=2﹣1+1=2≠0,则OE uuu r 与OF uuu r不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG u u u r 与OH u u u r 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM u u u u r 与ON u u u r 不垂直,故本选项不符合题意.故选:A .【点睛】 本题考查了平面向量,解题的关键是掌握向量垂直的定义.20.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r 的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =r rC .5a b =-r rD .||2||a b =r r【答案】D【解析】分析:根据平面向量的性质即可判断.详解:A . ∵a r ∥c b r r ,∥c r ,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r ,∴a b P u u r r ,故本选项,不符合题意;C . ∵a r =﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D . ∵|a r |=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.。

2020-2021初中数学向量的线性运算技巧及练习题附答案解析(1)

2020-2021初中数学向量的线性运算技巧及练习题附答案解析(1)

2020-2021初中数学向量的线性运算技巧及练习题附答案解析(1)一、选择题1.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是()A.b=32a B.b=23a C.b=﹣32a D.b=-23a【答案】B【解析】【分析】根据已知条件得到非零向量a、b的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a|=3|b|,∴|b|23=|a|.又∵非零向量a与b的方向相同,∴23b a =.故选B.【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.2.如图,已知△ABC中,两条中线AE、CF交于点G,设,,则向量关于、的分解式表示正确的为()A.B.C.D.【答案】B【解析】【分析】由△ABC中,两条中线AE、CF交于点G可知,,求出的值即可解答.【详解】∵∴∵∴故本题答案选B.【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.3.在矩形ABCD 中,如果AB 3BC 模长为1,则向量(AB +BC +AC ) 的长度为( )A .2B .4C 31D 31【答案】B【解析】【分析】先求出AC AB BC =+,然后2AB BC AC AC ++=,利用勾股定理即可计算出向量(AB +BC +AC )的长度为【详解】 22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴故选:B.【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.4.如果向量a 与单位向量e 方向相反,且长度为12,那么向量a 用单位向量e 表示为( ) A .12a e = B .2a e = C .12a e =-D .2a e =- 【答案】C【解析】 由向量a 与单位向量e 方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a 与单位向量e 方向相反,且长度为12,∴12a e =-. 故选C .5.已知233m a b =-,1124n b a =+,那么4m n -等于( ) A .823a b - B .443a b - C .423a b - D .843a b - 【答案】A【解析】 根据向量的混合运算法则求解即可求得答案,注意解题需细心. 解:∵233m a b =-,1124n b a =+, ∴4m n -=2112834()32232433a b b a a b b a a b --+=---=-. 故选A .6.计算45a a -+的结果是( )A .aB .aC .a -D .a -【答案】B【解析】 【分析】按照向量之间的加减运算法则解题即可【详解】 -4a+5a=a ,所以答案为B 选项【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ,那么向量AO 用向量a b ⋅表示为( )A .12a b B .2133a b C .2233a b D .1124a b 【答案】B【解析】【分析】利用三角形的重心性质得到:23AO AD;结合平面向量的三角形法则解答即可.【详解】∵在△ABC中,AD是中线,BC b,∴11BD BC b22.∴1b2 AD AB BD a又∵点O是△ABC的重心,∴23AO AD,∴221 AO AD a b333.故选:B.【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD是解题的关键.8.下列命题:①若a b=,b c=,则c a=;②若a∥b,b∥c,则a∥c;③若|a|=2|b|,则2a b=或a=﹣2b;④若a与b是互为相反向量,则a+b=0.其中真命题的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解.【详解】①若a b=,b c=,则c a=,正确;②若a ∥b ,b ∥c ,则a ∥c ,正确;③若|a |=2|b |,则2a b =或a =﹣2b ,错误,因为两个向量的方向不一定相同或相反;④若a 与b 是互为相反向量,则a +b =0,正确.综上所述,真命题的个数是3个.故选C .9.已知平行四边形ABCD ,O 为平面上任意一点.设=,=, =,=,则( )A .+++=B .-+-=C .+--=D .--+= 【答案】B【解析】【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;; 而; ∴B 正确.故选B.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.下列式子中错误的是( ).A .2a a a +=B .()0a a +-=C .()a b a b -+=--D .a b b a -=- 【答案】D【解析】【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解.【详解】A. a 与a 大小、方向都相同,∴2a a a +=,故本选项正确;B. a 与a -大小相同,方向相反,∴()0a a +-=,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--,故本选项正确;D.根据向量的交换律,可知a b b a-=-+,故本选项错误.故选D.【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.11.设,m n为实数,那么下列结论中错误的是()A.m na mn a()=()B.m n a ma na++()=C.m a b ma mb+(+)=D.若0ma=,那么0a=【答案】D【解析】【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.【详解】根据向量的运算法则,即可知A(结合律)、B、C(乘法的分配律)是正确的,D中的0是有方向的,而0没有,所以错误.解:∵A、B、C均属于向量运算的性质,是正确的;∵D、如果a=0,则m=0或a=0.∴错误.故选D.【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.12.若2a b c+=,3a b c-=,而且c≠0,a与b是()A.a与b是相等向量B.a与b是平行向量C.a与b方向相同,长度不等D.a与b方向相反,长度相等【答案】B【解析】【分析】根据已知条件求得52a c=,1b2c=-,由此确定a与b位置和数量关系.【详解】解:由2a b c+=,3a b c-=,而且c≠0,得到:52a c=,1b2c=-,所以a与b方向相反,且|a|=5|b|.观察选项,只有选项B 符合题意.故选:B .【点睛】本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握.13.下列说法正确的是( )A .()0a a +-=B .如果a 和b 都是单位向量,那么a b =C .如果||||a b =,那么a b =D .12a b =-(b 为非零向量),那么//a b 【答案】D【解析】【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案.【详解】解:A 、()a a +-等于0向量,而不是0,故A 选项错误;B 、如果a 和b 都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-(b 为非零向量),可得到两个向量是共线向量,可得到//a b ,故D 选项正确.故选:D.【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.14.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC 与BD 是相等向量B .AD 与BD 是平行向量C .AD 与BD 是相反向量D .AD 与BC 是相等向量【答案】B【解析】【分析】由AC=BD ,可得AD=BD ,即可得AD 与BD 是平行向量,AD BC AC BD =-=-,,继而证得结论.【详解】A、∵AC=BD,∴AC BD=-,该选项错误;B、∵点C、D是线段AB上的两个点,∴AD与BD是平行向量,该选项正确;C、∵AC=BC,∴AD≠BD,∴AD与BD不是相反向量,该选项错误;D、∵AC=BD,∴AD=BC,∴AD BC=-,,该选项错误;故选:B.【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.15.下列判断错误的是()A.0•=0aB.如果a+b=2c,a-b=3c,其中0c≠,那么a∥bC.设e为单位向量,那么|e|=1D.如果|a|=2|b|,那么a=2b或a=-2b【答案】D【解析】【分析】根据平面向量的定义、向量的模以及平行向量的定义解答.【详解】A、0•=0a,故本选项不符合题意.B、由a+b=2c,a-b=3c得到:a=52c,b=﹣12c,故两向量方向相反,a∥b,故本选项不符合题意.C、e为单位向量,那么|e|=1,故本选项不符合题意.D、由|a|=2|b|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意.故选D.【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.16.在ABCD中,AC与BD相交于点O,AB a=,AD b=,那么OD等于()A.1122a b+B.1122a b--C.1122a b-D.1122a b-+【答案】D 【解析】【分析】由四边形ABCD是平行四边形,可得12OD BD=,,又由BD BA AD=+,即可求得OD的值.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD=12 BD,∴12OD BD=,∵BD BA AD a b=+=-+,∴12OD BD==111()222a b a b-+=-+故选:D.【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.17.如图,在平行四边形ABCD中,设AB a=,AD b=,那么向量OC可以表示为. ( )A.1122a b+B.1122a b-C.1122a b-+D.1122a b--【答案】A 【解析】【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+ 【点睛】 本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.18.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( ) A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 【答案】C 【解析】 【分析】【详解】解:∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C.19.设e 为单位向量,2a =,则下列各式中正确的是( )A .2a e =B .a e a =C .2a e =D .112a =± 【答案】C【解析】 【分析】根据e 为单位向量,可知1e =,逐项进行比较即可解题. 【详解】解:∵e 为单位向量, ∴1e =,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =,1e =,∴2a e =,正确,D 中忽视了向量的方向性,错误故选C.【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.20.以下等式正确的是( ).A .0a a -=B .00a ⋅=C .()a b b a -=--D .km k m = 【答案】C【解析】【分析】根据平面向量的运算法则进行判断.【详解】解:A. 0a a -=,故本选项错误;B. 00a ⋅=,故本选项错误;C. ()a b b a -=--,故本选项正确;D. km k m =⋅,故本选项错误.故选:C.【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.。

最新初中数学向量的线性运算技巧及练习题附答案(2)

最新初中数学向量的线性运算技巧及练习题附答案(2)

最新初中数学向量的线性运算技巧及练习题附答案(2)一、选择题1.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.2.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点【详解】解:由向量的加法原理知所以A、B、D三点共线.【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.3.如图,已知△ABC中,两条中线AE、CF交于点G,设,,则向量关于、的分解式表示正确的为()A.B.C.D.【答案】B【解析】【分析】由△ABC中,两条中线AE、CF交于点G可知,,求出的值即可解答.【详解】∵∴∵∴故本题答案选B.【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.4.已知233m a b=-rr r,1124n b a=+rr r,那么4m n-r r等于()A.823a b-rrB.443a brr-C.423a b-rrD.843a b-rr【答案】A【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .5.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大6.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r,那么向量AE u u u r用向量a brr、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =,1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q , 1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.7.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.8.已知3a →=,2b =r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反∴32a b =-v v故选D. 【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.11.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论. 【详解】解:∵2BD CD = ∴2233BD BC b ==u u u v u u u v v ∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r r D .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r∥c b rr,∥c r,∴a b P u u r r,故本选项,不符合题意; B .∵a r=2c b rr,=3c r,∴a b P u u r r,故本选项,不符合题意; C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.13.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.14.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.15.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致B .a r ∥b r ,并且a r 和b r方向相反C .a r 和b r方向互相垂直D .a r 和b r之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r,∴a r ∥b r ,a r 与b r的方向相反,故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.16.已知e r是单位向量,且2,4a e b e =-=vvv v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误,故选C.17.已知5a b =r r,下列说法中,不正确的是( )A .50a b -=rrB .a r与b r方向相同 C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.18.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r rr ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B .【点睛】本题考查了向量的性质.19.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B.20.已知a r 、b r为非零向量,下列判断错误的是( ) A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意. B 、如果||a r=||b r,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r =2|e r|=2,故D 选项不符合题意. 故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.。

2024年上海数学中考一轮复习 第6讲 平面向量的线性运算(3种题型)含详解

2024年上海数学中考一轮复习 第6讲 平面向量的线性运算(3种题型)含详解

第06讲平面向量的线性运算(3种题型)【知识梳理】一、平面向量的相关概念(1)向量:既有大小、又有方向的量叫做向量;(2)向量的长度:向量的大小也叫做向量的长度(或向量的模);(3)零向量:长度为零的向量叫做零向量,记作0;(4)相等的向量:方向相同且长度相等的两个向量叫做相等的向量;(5)互为相反向量:方向相反且长度相等的两个向量叫做互为相反向量;(6)平行向量:方向相同或相反的两个向量叫做平行向量.二、平面向量的加减法则(1)几个向量相加的多边形法则;(2)向量减法的三角形法则;(3)向量加法的平行四边形法则.三、实数与向量相乘的运算设k 是一个实数,a 是向量,那么k 与a 相乘所得的积是一个向量,记作ka.(1)如果0k ≠,且0a ≠ ,那么ka 的长度ka k a =;ka 的方向:当k >0时ka 与a 同方向;当k <0时ka 与a反方向.(2)如果k =0或0a = ,那么0ka =.四、实数与向量相乘的运算律设m 、n 为实数,则(1)()()m na mn a =;(2)()m n a ma na +=+;(3)()m a b ma mb +=+ .五、平行向量定理如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma =.六、单位向量单位向量:长度为1的向量叫做单位向量.设e 为单位向量,则1e =.单位向量有无数个;不同的单位向量,是指它们的方向不同.对于任意非零向量a ,与它同方向的单位向量记作0a.由实数与向量的乘积可知:0a a a = ,01a aa=七、向量的线性运算向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算.如25a b + 、3a b - 、()23a b + 、3553a a b ⎛⎫-+- ⎪⎝⎭ 等,都是向量的线性运算.一般来说,如果a 、b 是两个不平行的向量,c 是平面内的一个向量,那么c 可以用a 、b表示,并且通常将其表达式整理成c xa yb =+的形式,其中x 、y 是实数.八、向量的合成与分解如果a 、b 是两个不平行的向量,c ma nb =+ (m 、n 是实数),那么向量c 就是向量ma 与nb 的合成;也可以说向量c 分解为ma 、nb 两个向量,这时,向量ma 与nb 是向量c 分别在a 、b 方向上的分向量,ma nb + 是向量c 关于a 、b的分解式.平面上任意一个向量都可以在给定的两个不平行向量的方向上分解.【考点剖析】题型一:实数与向量相乘一、填空题二、解答题10.(2023·上海·一模)如图,在梯形ABCD 中,//AD BC ,2BC AD =,对角线AC 、BD 相交于点O ,设AD a = ,AB b =.试用a 、b 的式子表示向量 AO .(1)求DE 的长;(2)如果CB a = ,CD b = ,试用题型二:向量的相关概念一、单选题11.(2022·上海·九年级专题练习)关于非零向量a ,b ,c,下列选项中错误的是()A .如果=a b ,那么||||a b = B .如果a ,b 都是单位向量,那么||||a b = C .如果2a b =r r ,那么a b∥ D .如果c a b =+,那么||||||c a b =+ 二、填空题一、单选题A .AD a b=+ 二、填空题2.(2023·上海奉贤·统考二模)如图,在平行四边形ABCD 中,BD 为对角线,E 是边DC 的中点,连接BE .如果设AD a = ,BD b = ,那么BE = ________(含a b 、的式子表示).3.(2023·上海普陀·统考二模)如图,在ABC 中,中线AD 、BE 交于点F ,设BA a = ,BC b = ,那么向量AF用向量a ,b表示为______.4.(2023·上海闵行·统考二模)如图,已知梯形ABCD ,AD ∥BC ,BC=2AD ,如果=AD a ,AB b =,那么AC =_____6.(2023·上海杨浦·统考三模)7.(2023·上海虹口·校联考二模)AD b = ,用向量a 、b 表示向量8.(2023·山西太原·山西大附中校考模拟预测)如图,已知点:2:5AD AB =,如果向量BC a =,那么9.(2023·安徽阜阳·统考一模)如图,那么AC = ______.(用向量a 、b表示10.(2023春·九年级课时练习)如图,在正六边形ABCDEF 中,设BA a = ,AE b = ,那么向量BF用向量a 、b 表示为______.三、解答题11.(2023·黑龙江绥化·校考模拟预测)在梯形ABCD 中,AD BC ∥,点E 在边CD 上.请按要求完成下列各题:(1)结合图形计算:AE EB +=______.(2)在图中求作AE EC -的差向量.(作图时只需保留痕迹不必写作法)12.(2023·上海松江·统考一模)如图,已知ABC 中,点D 、E 分别在边AB 、AC 上,DE BC ∥,2AD DB =.(1)如果4BC =,求DE 的长;(2)设AB a=,DE b = ,用a 、b 表示AC .13.(2023·上海·一模)如图,在ABC 中,BE 平分ABC ∠,DE BC ∥,3AD =,2DE =.(1)求:AE AC 的值;(2)设AB a = ,BC b = 求向量BE (用向量a b 、表示).14.(2023·上海·一模)如图,在ABC 中,BCD A ∠∠=,=5AD ,4DB =.(1)求BC 的长;(2)若设CA a = ,CB b = ,试用a 、b的线性组合表示向量CD .【过关检测】一.选择题(共8小题)1.(2023•崇明区一模)已知为单位向量,向量与方向相反,且其模为||的4倍;向量与方向相同,且其模为||的2倍,则下列等式中成立的是()A .=2B .=﹣2C .=D .=﹣2.(2023•杨浦区一模)已知一个单位向量,设、是非零向量,下列等式中,正确的是()A .B .C .D .3.(2023•奉贤区一模)如果C 是线段AB 的中点,那么下列结论中正确的是()A.B.C.D.4.(2023•普陀区一模)已知k为实数,是非零向量,下列关于的说法中正确的是()A.如果k=0,那么B.如果k是正整数,那么表示k个相加C.如果k≠0,那么D.如果k≠0,k与的方向一定相同5.(2022秋•杨浦区校级期末)下列说法中不正确的是()A.如果m、n为实数,那么B.如果k=0或,那么C.如果k≠0,且,那么的方向与的方向相同D.长度为1的向量叫做单位向量6.(2022秋•嘉定区校级期末)如图,在△ABC中,点D是在边BC上一点,且BD=2CD,,,那么等于()A.B.C.D.7.(2022秋•青浦区校级期末)已知非零向量、,且有=﹣2,下列说法中,不正确的是()A.||=2||B.∥C.与方向相同D.+2=8.(2022秋•徐汇区校级期末)若非零向量和互为相反向量,则下列说法中错误的是()A.B.C.D.二.填空题(共10小题)9.(2023•长宁区一模)计算:=.10.(2023•宝山区一模)计算:=.11.(2023•虹口区二模)如图,在▱ABCD中,点E在边AD上,且AE=2ED,CE交BD于点F,如果,,用向量、表示向量=.12.(2023•金山区二模)如图,已知D、E分别是△ABC的边AB、AC上的点,且DE∥BC,联结BE,如果,,当时,那么=.(用含、的式子表示)13.(2023•金山区一模)如图,AB与CD相交于点E,AC∥BD,联结BC,若AE=2,BE=3,设,,那么=(用含、的式子表示).14.(2022秋•杨浦区校级期末)如图,已知在△ABC中,AD=2,AB=5,DE∥BC.设,,试用向量、表示向量=.15.(2023•静安区二模)如图,已知四边形ABCD中,点P、Q、R分别是对角线AC、BD和边CD的中点.如果设,,那么向量PQ=(用向量、表示).16.(2023•徐汇区二模)如图,已知在△ABC中,点D是边AC上一点,且CD=2AD.设=,=,那么向量=.(用的形式表示,其中x、y为实数)17.(2023•杨浦区二模)在△ABC中,点D是AC的中点,,,那么=(用、表示).18.(2023•虹口区一模)如图,在△ABC中,点D在边AC上,已知△ABD和△BCD的面积比是1:2,,,那么用向量、表示向量为.三.解答题(共4小题)19.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.20.(2023•静安区校级一模)如图,已知在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,AE=EC.(1)求证:DE∥BC;(2)设,,试用向量、表示向量.21.(2022秋•杨浦区期末)如图,在梯形ABCD中,AD∥BC,BC=2AD,对角线AC、BD相交于点O,设=,=,试用、的式子表示向量.22.(2022秋•浦东新区校级期末)如图,已知平行四边形ABCD,点M、N是边DC、BC的中点,设=,=.(1)求向量(用向量、表示);(2)在图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量).第06讲平面向量的线性运算(3种题型)【知识梳理】一、平面向量的相关概念(7)向量:既有大小、又有方向的量叫做向量;(8)向量的长度:向量的大小也叫做向量的长度(或向量的模);(9)零向量:长度为零的向量叫做零向量,记作0 ;(10)相等的向量:方向相同且长度相等的两个向量叫做相等的向量;(11)互为相反向量:方向相反且长度相等的两个向量叫做互为相反向量;(12)平行向量:方向相同或相反的两个向量叫做平行向量.二、平面向量的加减法则(4)几个向量相加的多边形法则;(5)向量减法的三角形法则;(6)向量加法的平行四边形法则.三、实数与向量相乘的运算设k 是一个实数,a 是向量,那么k 与a 相乘所得的积是一个向量,记作ka .(3)如果0k ≠,且0a ≠ ,那么ka 的长度ka k a = ;ka 的方向:当k >0时ka 与a 同方向;当k <0时ka 与a 反方向.(4)如果k =0或0a = ,那么0ka = .四、实数与向量相乘的运算律设m 、n 为实数,则(4)()()m na mn a = ;(5)()m n a ma na +=+ ;(6)()m a b ma mb +=+ .五、平行向量定理如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma = .六、单位向量单位向量:长度为1的向量叫做单位向量.设e 为单位向量,则1e = .单位向量有无数个;不同的单位向量,是指它们的方向不同.对于任意非零向量a ,与它同方向的单位向量记作0a .由实数与向量的乘积可知:0a a a = ,01a a a= 七、向量的线性运算向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算.如25a b + 、3a b - 、()23a b + 、3553a a b ⎛⎫-+- ⎪⎝⎭ 等,都是向量的线性运算.一般来说,如果a 、b 是两个不平行的向量,c 是平面内的一个向量,那么c 可以用a 、b 表示,并且通常将其表达式整理成c xa yb =+ 的形式,其中x 、y 是实数.八、向量的合成与分解如果a 、b 是两个不平行的向量,c ma nb =+ (m 、n 是实数),那么向量c 就是向量ma 与nb 的合成;也可以说向量c 分解为ma 、nb 两个向量,这时,向量ma 与nb 是向量c 分别在a 、b 方向上的分向量,ma nb+ 是向量c 关于a 、b 的分解式.平面上任意一个向量都可以在给定的两个不平行向量的方向上分解.【考点剖析】题型一:实数与向量相乘一、填空题1.计算:2(32)(2)b a a b -+-v v v v=______.【答案】34a b -+v v 【分析】直接利用平面向量的加减运算法则求解即可求得,注意去括号时符号的变化.【详解】解:2(32)(2)b a a b -+-v v v v =642b a a b -+-v v v v =34a b-+v v 故答案为:34a b -+v v .【点睛】此题考查了平面向量的运算.此题难度不大,注意掌握运算法则是解此题的关键.2.计算:()422a a b --= _________.【答案】24a b+ 【分析】直接利用实数与向量相乘及平面向量的加减运算法则去括号求解即可求得答案.【详解】解:()422a a b -- 424a a b=-+ 24a b =+ ,故答案为:24a b + .二、解答题10.(2023·上海·一模)如图,在梯形ABCD 中,//AD BC ,2BC AD =,对角线AC 、BD 相交于点O ,设AD a = ,AB b = .试用a 、b 的式子表示向量 AO .【答案】1233AO b a =+ 【分析】先根据平行线分线段成比例得到【详解】//,AD BC BC =(1)求DE 的长;(2)如果CB a = ,CD b = ,试用【答案】(1)DE 的长为52题型二:向量的相关概念一、单选题二、填空题12.(2022秋·上海奉贤·九年级校联考期中)已知a 与单位向量e 的方向相反,且长度为5,那么e表示a 为______.【答案】5e- 【分析】根据向量的表示方法可直接进行解答.【详解】解:a 的长度为5,向量e是单位向量,一、单选题A .AD a b=+ 【答案】D【分析】由2BD CD =二、填空题【答案】1122b a+【分析】由AD BC a == ,可得【详解】解:∵AD BC a ==,∴CD b a =- ,∵E 是边DC 的中点,∴()111222ED b a b a =-=- ,∴11112222BE b b a b a =-+=+ ,故答案为:1122b a+.【点睛】本题考查的是向量的加减法运算,理解运算法则是解本题的关键.3.(2023·上海普陀·统考二模)如图,在【答案】21 33a b -+【分析】根据重心的性质可得【详解】解:∵中线AD、∴2AF DF=,2AF AD=,【点睛】本题主要考查了平面向量,注意:平行向量既有大小又有方向.熟练掌握三角形法则是解题的关键.6.(2023·上海杨浦·统考三模)【答案】1233b a-【分析】根据三角形重心的性质得出是ABC 的重心即可求出AG【详解】如图,D 点是AB 边的中点,∵CA a = ,CB b =,D 点是11【答案】1144b a-+【分析】根据平行四边形的性质得出14DF DB =,进而根据三角形法则表示出【详解】∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∴EDF CBF ∽,∴ED DFBC FB=,∵2AE ED =,∴31DE BC =,∴13DF FB =,∴14DF DB =AD b =【答案】2123BF a b+= 【分析】根据向量线性运算的三角形法则和正六边形的性质即可求解三、解答题11.(2023·黑龙江绥化·校考模拟预测)在梯形ABCD 中,AD BC ∥,点E 在边CD 上.请按要求完成下列各题:(1)结合图形计算:AE EB +=______.(2)在图中求作AE EC -的差向量.(作图时只需保留痕迹不必写作法)【答案】(1)AB(2)见解析【分析】(1)根据向量的加法法则可直接求解.(2)先作出EF CE =,再连接AF 即可.【详解】(1)∵AE EB AB += ,故答案为:AB.(2)如图,AF即为所求.【点睛】本题考查了向量的加减,解题关键是掌握它的运算法则.12.(2023·上海松江·统考一模)如图,已知(1)如果4BC =,求DE 的长;(2)设AB a=,DE b = ,用a 、【答案】(1)83DE =(2)32AC a b=+ 【分析】(1)先证明ADE △到答案;(2)先求出32BC b = ,再由【详解】(1)解:∵DE ∥AE AC的值;(1)求:(1)求BC 的长;(2)若设CA a = ,CB 【答案】(1)6(2)4599a b + 【分析】(1)由BCD ∠的长.(2)由=5AD BD ∶∶【详解】(1)∵BCD ∠=CBD ABC ∠∠,∴BCD BAC ∽△△,∴BC BD =,即BC【点睛】本题考查了相似三角形的判定与性质以及平面向量.解题的关键是:(1)利用相似三角形的判定定理,证出BCD BAC ∽△△;(2)根据各向量之间的关系,用a 、b 的线性组合表示出向量CD .【过关检测】一.选择题(共8小题)1.(2023•崇明区一模)已知为单位向量,向量与方向相反,且其模为||的4倍;向量与方向相同,且其模为||的2倍,则下列等式中成立的是()A .=2B .=﹣2C .=D .=﹣【分析】根据平面向量的性质进行一一判断.【解答】解:根据题意知,=﹣4,=2.则=﹣2,观察选项,只有选项B 符合题意.故选:B .【点评】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.2.(2023•杨浦区一模)已知一个单位向量,设、是非零向量,下列等式中,正确的是()A .B .C .D .【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【解答】解:A 、得出的是向量n 的方向不是单位向量,故不符合题意;B 、符合向量的长度及方向,故符合题意;C 、由于单位向量只限制长度,不确定方向,故不符合题意;D 、左边得出的是向量m 的方向,右边得出的是向量n 的方向,两者方向不一定相同,故不符合题意.故选:B .【点评】本题考查了向量的性质.注意:平面向量既有大小,又有方向.3.(2023•奉贤区一模)如果C 是线段AB 的中点,那么下列结论中正确的是()A .B .C .D .【分析】根据点C 是线段AB 的中点,可以判断||=||,但它们的方向相反,继而即可得出答案.【解答】解:由题意得:||=||,且它们的方向相反,∴+=,,故选:B .【点评】本题考查了平面向量的知识,注意向量包括长度及方向,及0与的不同.4.(2023•普陀区一模)已知k为实数,是非零向量,下列关于的说法中正确的是()A.如果k=0,那么B.如果k是正整数,那么表示k个相加C.如果k≠0,那么D.如果k≠0,k与的方向一定相同【分析】若k=0,则=;当k<0时,;当k<0时,k与的方向相反,由此可得答案.【解答】解:A.若k=0,则=,故A选项错误,不符合题意;B.若k是正整数,则表示k个相加,故B选项正确,符合题意;C.当k<0时,,故C选项错误,不符合题意;D.当k<0时,k与的方向相反,故D选项错误,不符合题意.故选:B.【点评】本题考查平面向量,熟练掌握平面向量的性质是解答本题的关键.5.(2022秋•杨浦区校级期末)下列说法中不正确的是()A.如果m、n为实数,那么B.如果k=0或,那么C.如果k≠0,且,那么的方向与的方向相同D.长度为1的向量叫做单位向量【分析】由平面向量的性质,即可得A与B正确,又由长度为l的向量叫做单位向量,可得D正确,向量是有方向性的,所以C错误.【解答】解:A、根据向量的性质得,故本选项正确;B、如果k=0或,那么,故本选项正确;C、因为向量是有方向性的,所以C错误;D、长度为l的向量叫做单位向量,故本选项正确.故选:C.【点评】此题考查了平面向量的性质.题目比较简单,注意向量是有方向性的,掌握平面向量的性质是解此题的关键.6.(2022秋•嘉定区校级期末)如图,在△ABC中,点D是在边BC上一点,且BD=2CD,,,那么等于()A.B.C.D.【分析】由BD=2CD,求得的值,然后结合平面向量的三角形法则求得的值.【解答】解:∵BD=2CD,∴BD=BC.∵=,∴=.又=,∴=+=+.故选:D.【点评】此题考查了平面向量的知识,解此题的关键是注意平面向量的三角形法则与数形结合思想的应用.7.(2022秋•青浦区校级期末)已知非零向量、,且有=﹣2,下列说法中,不正确的是()A.||=2||B.∥C.与方向相同D.+2=【分析】根据非零向量、,有=﹣2,即可推出||=2||,∥,与方向相反,+2=,由此即可判断.【解答】解:∵非零向量、,且有=﹣2,∴||=2||,∥,与方向相反,+2=,故A,B,C正确,D错误,故选:D.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(2022秋•徐汇区校级期末)若非零向量和互为相反向量,则下列说法中错误的是()A.B.C.D.【分析】向量和向量方向相反,则∥,||=||,+=,由此结合选项进行判断即可.【解答】解:∵非零向量和互为相反向量,∴向量和向量方向相反,∴∥,≠,故A、B不符合题意;∵向量和向量方向相反,∴向量和向量的模相等,∴||=||,故C符合题意;∵向量和向量方向相反,∴+=,故D不符合题意;故选:C.【点评】本题考查平面向量,熟练掌握相反向量的定义及性质是解题的关键.二.填空题(共10小题)9.(2023•长宁区一模)计算:=﹣3.【分析】先去括号,然后计算加减法.【解答】解:=﹣+2﹣3=﹣3.故答案为:﹣3.【点评】本题主要考查了平面向量的知识,乘法分配率同样能应用于平面向量的计算过程中,属于基础题.10.(2023•宝山区一模)计算:=.【分析】根据平面向量的加减运算法则计算即可.【解答】解:2()﹣3()==.故答案为:.【点评】本题考查平面向量,熟练掌握平面向量的加减运算法则是解答本题的关键.11.(2023•虹口区二模)如图,在▱ABCD中,点E在边AD上,且AE=2ED,CE交BD于点F,如果,,用向量、表示向量=﹣.【分析】根据平行四边形的性质和平行线截线段成比例求得DF的长度;然后利用三角形法则解答.【解答】解:在▱ABCD中,AD=BC,∵AE=2ED,∴DE=AD=BC.∴=.在▱ABCD中,AD∥BC,则==,∴DF=BF.∴DF=BD.∵,,∴=﹣=﹣.∴=﹣=﹣.故答案为:﹣.【点评】本题主要考查了平行四边形的性质和平面向量,掌握三角形法则和平面向量的方向是解题的关键.12.(2023•金山区二模)如图,已知D、E分别是△ABC的边AB、AC上的点,且DE∥BC,联结BE,如果,,当时,那么=.(用含、的式子表示)【分析】由题意可得,进而可得,则.【解答】解:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴,∵,∴=,∴==,∴,∴.故答案为:.【点评】本题考查平面向量,熟练掌握三角形法则是解答本题的关键.13.(2023•金山区一模)如图,AB与CD相交于点E,AC∥BD,联结BC,若AE=2,BE=3,设,,那么=﹣﹣(用含、的式子表示).【分析】由平行线截线段成比例和平面向量的三角形法则解答.【解答】解:∵AC∥BD,AE=2,BE=3,∴==,==,∴BD=AC,EC=ED,∵=,∴==,∵,∴=﹣,∴=+=+,∴=﹣=﹣﹣(+)=﹣﹣.故答案为:﹣﹣.【点评】考查了平行线的性质和平面向量,需要掌握平行线截线段成比例和平面向量的三角形法则,难度不大.14.(2022秋•杨浦区校级期末)如图,已知在△ABC中,AD=2,AB=5,DE∥BC.设,,试用向量、表示向量=.【分析】首先由DE∥BC,得到△ADE∽△ABC,由,,即可求得,由相似三角形的对应边成比例,即可得到,;即可求得.【解答】解:∵AD=2,AB=5,DE∥BC,∴△ADE∽△ABC,∴,∴,∵,,∴,,∴,∴.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及向量的意义与运算.此题难度一般,解题时要注意数形结合思想的应用.15.(2023•静安区二模)如图,已知四边形ABCD中,点P、Q、R分别是对角线AC、BD和边CD的中点.如果设,,那么向量PQ=﹣(用向量、表示).【分析】利用三角形中位线定理求出,,再利用三角形法则求出.【解答】解:∵AP=PC,DR=RC,∴PR∥AD,PR=AD,∴=,同法=,∵=+,∴=﹣.故答案为:﹣.【点评】本题考查平面向量,三角形中位线定理,三角形法则等知识,解题的关键是掌握三角形中位线定理,三角形法则,属于中考常考题型.16.(2023•徐汇区二模)如图,已知在△ABC中,点D是边AC上一点,且CD=2AD.设=,=,那么向量=+.(用的形式表示,其中x、y为实数)【分析】利用三角形法则求出,再求出,即可.【解答】解:∵=+,∴=﹣+,∵CD=2AD,∴AD=AC,∴=(﹣+),∴=+=+(﹣+)=+.故答案为:+.【点评】本题考查平面向量,三角形法则等知识,解题的关键是掌握三角形法则,属于中考常考题型.17.(2023•杨浦区二模)在△ABC中,点D是AC的中点,,,那么=(﹣)(用、表示).【分析】在△ABC中,首先由三角形法则求得=+;然后利用中点的性质求得=(+);最后在△ABD中,利用三角形法则求得答案.【解答】解:在△ABC中,∵,,∴=+=+.∵点D是AC的中点,∴==(+).∴=﹣=(+)﹣=(﹣).故答案为:(﹣).【点评】本题主要考查了平面向量,解题的关键是熟练掌握三角形法则.18.(2023•虹口区一模)如图,在△ABC中,点D在边AC上,已知△ABD和△BCD的面积比是1:2,,,那么用向量、表示向量为3﹣3.【分析】利用三角形法则可知:=+,求出即可解决问题.【解答】解:∵△ABD和△BCD的面积比是1:2,∴AD:DC=1:2,∴AD=AC,∴=,∵=+,,∵﹣=﹣+,∴=3﹣3,故答案为:3﹣3,【点评】本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(共4小题)19.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.【分析】(1)根据三角形相似的判定和性质可得结论;(2)由三角形法则求得,然后根据BD=AB=BC可求出,再由三角形法则求得.【解答】(1)证明:∵BD=AB=BC,E是BD的中点,∴BE=BD,∴=,==,又∵∠ABE=∠CBA,∴△ABE∽△CBA,∴∠BAE=∠C;(2)解:∵=,=,∴=﹣=﹣,∵BD=AB=BC,∴BD=DC,∴==﹣,∴=+=+﹣=2﹣.【点评】本题主要考查了平面向量,掌握三角形法则即可解答该题,属于基础题.20.(2023•静安区校级一模)如图,已知在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,AE=EC.(1)求证:DE∥BC;(2)设,,试用向量、表示向量.【分析】(1)由平行线分线段成比例进行证明;(2)由三角形法则求得,然后由AE与EC的比例关系求得向量.【解答】(1)证明:BD=2AD,AE=EC,∴==.∴DE∥BC;(2)解:∵,,∴=﹣=﹣.∴=﹣.【点评】本题主要考查了平面向量,掌握平行线的判定,三角形法则即可解答该题,属于基础题.21.(2022秋•杨浦区期末)如图,在梯形ABCD中,AD∥BC,BC=2AD,对角线AC、BD相交于点O,设=,=,试用、的式子表示向量.【分析】根据平面向量定理即可表示.【解答】解:∵AD∥BC,BC=2AD,∴==.∴=,即OA=AC.∵=,=,与同向,∴=2.∵=+=+2.∴=+.【点评】本题考查了梯形、平面向量定理,解决本题的关键是掌握三角形法则.22.(2022秋•浦东新区校级期末)如图,已知平行四边形ABCD,点M、N是边DC、BC的中点,设=,=.(1)求向量(用向量、表示);(2)在图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量).【分析】(1)由四边形ABCD是平行四边形,可得,又由点M、N是边DC、BC的中点,根据三角形中位线的性质,即可求得向量;(2)首先平移向量,然后利用平行四边形法则,即可求得答案.【解答】解:(1)∵=,=,∴,∵点M、N分别为DC、BC的中点,∴;(2)作图:结论:、是向量分别在、方向上的分向量.【点评】此题考查了平面向量的知识、平行四边形的性质以及三角形的中位线的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的线性运算技巧及练习题
一、选择题
1.如果向量a 与单位向量e 的方向相反,且长度为3,那么用向量e 表示向量a 为( )
A .3a e =
B .3a e =-
C .3e a =
D .3e a =-
2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( )
A .平行四边形
B .矩形
C .梯形
D .菱形
3.若非零向量、满足|-|=||,则( )
A .|2|>|-2|
B .|2|<|-2|
C .|2|>|2-|
D .|2|<|2-|
4.在矩形ABCD 中,如果AB 3BC 模长为1,则向量(AB +BC +AC ) 的长度为( )
A .2
B .4
C 31
D 31
5.若AB 是非零向量,则下列等式正确的是( )
A .A
B BA =;
B .AB BA =;
C .0AB BA +=;
D .0AB BA +=.
6.下列判断正确的是( )
A .0a a -=
B .如果a b =,那么a b =
C .若向量a 与b 均为单位向量,那么a b =
D .对于非零向量b ,如果()0a k b k =⋅≠,那么//a b
7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ,那么向量AO 用向量a b ⋅表示为( )
A .12a
b B .2133a b C .2233a b D .1124
a b
8.若向量a 与b 均为单位向量,则下列结论中正确的是( ).
A .a b =
B .1a =
C .1b =
D .a b =
9.已知平行四边形ABCD ,O 为平面上任意一点.设
=,=, =,=,则 ( )
A .+++=
B .-+-=
C .+--=
D .--+=
10.下列各式正确的是( ).
A .()22a b c a b c ++=++
B .()()330a b b a ++-=
C .2AB BA AB +=
D .3544a b a b a b ++-=-
11.已知a 、b 、c 都是非零向量,如果2a c =,2b c =-,那么下列说法中,错误的是( )
A .//a b
B .a b =
C .72B
D = D .a 与b 方向相反
12.下列说法正确的是( )
A .()0a a +-=
B .如果a 和b 都是单位向量,那么a b =
C .如果||||a b =,那么a b =
D .12a b =-(b 为非零向量),那么//a b
13.化简()()AB CD BE DE -+-的结果是( ). A .CA
B .A
C C .0
D .AE
14.下列有关向量的等式中,不一定成立的是( ) A .AB BA =- B .AB BA = C .AB BC
AC D .AB BC AB BC +=+
15.已知c 为非零向量, 3a c =, 2b c =-,那么下列结论中错误的是( ) A .//a b
B .3||||2a b =
C .a 与b 方向相同
D .a 与b 方向相反
16.如果a b c +=,3a b c -=,且0c ≠,下列结论正确的是 A .=a b B .20a b += C .a 与b 方向相同 D .a 与b 方向相反
17.已知非零向量a 、b 和c ,下列条件中,不能判定a b 的是( ) A .2a b =-
B .a c =,3b c =
C .2a b c +=,a b c -=-
D .2a b =
18.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( ) A .a //b B .a -2b =0 C .b =12a D .2a b =
19.已知点C 是线段AB 的中点,下列结论中,正确的是( )
A .12CA A
B =
B .12CB AB =
C .0AC BC +=
D .0AC CB +=
20.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ). A .()12a b - B .()12b a - C .()12a b + D .()12a b -+。

相关文档
最新文档