向量的线性运算技巧及练习题

合集下载

向量及线性运算

向量及线性运算

按照向量与数的乘积的规定,
上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.
例1 化简

例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

与 平行且相等,
结论得证.
习题7-1.2
四、小结
向量的概念
(注意与标量的区别)
向量的加减法
(平行四边形法则)
由三角形两边之和大于第三边的原理有
三、向量与数的乘法
结合律:
(2)分配律:
数与向量的乘积符合下列运算规律: 两个向量的平行关系
证 充分性显然; 必要性 ‖ 两式相减,得
.定理是建立数轴的理论依据
给定一个点及一个单位向量,就确定了一个数轴。 设点o及单位向量i确定了数轴ox, 如图 对于轴上任一点P,对应一个向量,
大小相等且方向相同的向量.记作
4
负向量:
5
大小相等但方向相反的向量.
6
特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值.
类似地,可定义向量与一轴或空间两轴的夹角.
空间两向量的夹角的概念:
01
02
设有两个向量a,b,任取空间一点O,
称为向量a与b的夹角。
向量的共面
向量的平行(共线)
二、向量的加减法
[1] 加法:
添加标题
1
(平行四边形法则)
添加标题
2
特殊地:若
添加标题
3

添加标题
4
分为同向和反向
添加标题
5
(平行四边形法则有时也称为三角形法则)
添加标题
6
向量的加法符合下列运算规律:
(1)交换律:

《必修二》课后习题解析:向量的线性运算

《必修二》课后习题解析:向量的线性运算

《必修二》课后习题解析:向量的线性运算必修二课后习题解析:向量的线性运算向量是数学中一个重要的概念,具有广泛的应用。

在高中数学课程中,向量的线性运算是一个重要的学习内容。

本文将对《必修二》中的相关习题进行解析,帮助同学们更好地理解和掌握向量的线性运算。

1. 向量的加法向量的加法是指将两个向量相加得到一个新的向量的运算。

在进行向量的加法时,需要将两个向量的对应分量相加,并且保持向量的方向和大小不变。

示例题目1:已知向量a=(2, 3)和向量b=(4, 7),求向量c=a+b。

解析:将向量a和向量b的对应分量相加,得到向量c的分量。

c=(2+4, 3+7)=(6, 10)因此,向量c=a+b=(6, 10)。

2. 向量的数量乘法向量的数量乘法是指将向量的每个分量乘以一个实数得到一个新的向量的运算。

在进行数量乘法时,需要保持向量的方向不变,只改变向量的大小。

示例题目2:已知向量a=(2, 3),求实数k使得k*a=(-4, 6)。

解析:设k为需要求解的实数。

k*a=(-4, 6)根据数量乘法的定义,有:(k*2, k*3)=(-4, 6)解方程组:2k=-43k=6求解方程组,可得:k=-2因此,当k=-2时,k*a=(-4, 6)。

3. 向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量的运算。

在进行向量的减法时,可以将减法转化为加法,即a-b=a+(-b)。

示例题目3:已知向量a=(2, 3)和向量b=(4, 7),求向量c=a-b。

解析:将向量b取相反数,即-b=(-4, -7),然后进行向量的加法运算。

c=a+(-b)=(2, 3)+(-4, -7)=(2+(-4), 3+(-7))=(-2, -4)因此,向量c=a-b=(-2, -4)。

4. 向量的数量积向量的数量积又称为点积或内积,是指将两个向量的对应分量分别相乘,再将乘积相加得到一个实数的运算。

示例题目4:已知向量a=(2, 3)和向量b=(4, 7),求向量a和向量b的数量积。

向量的线性运算技巧及练习题附解析

向量的线性运算技巧及练习题附解析

向量的线性运算技巧及练习题附解析一、选择题1.下列说法中,正确的是()A.如果k=0,a是非零向量,那么k a=0 B.如果e是单位向量,那么e=1C.如果|b|=|a|,那么b=a或b=﹣a D.已知非零向量a,如果向量b=﹣5a,那么a∥b【答案】D【解析】【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,a是非零向量,那么k a=0,错误,应该是k a=0.B、如果e是单位向量,那么e=1,错误.应该是e=1.C、如果|b|=|a|,那么b=a或b=﹣a,错误.模相等的向量,不一定平行.D、已知非零向量a,如果向量b=﹣5a,那么a∥b,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.2.如图,已知△ABC中,两条中线AE、CF交于点G,设,,则向量关于、的分解式表示正确的为()A.B.C.D.【答案】B【解析】【分析】由△ABC中,两条中线AE、CF交于点G可知,,求出的值即可解答.【详解】∵∴∵∴故本题答案选B.【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.3.下列判断正确的是( )A .0a a -=B .如果a b =,那么a b =C .若向量a 与b 均为单位向量,那么a b =D .对于非零向量b ,如果()0a k b k =⋅≠,那么//a b【答案】D【解析】【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】 A. -a a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b ,如果()0a k b k =⋅≠,即可得到两个向量是共线向量,可得到//a b ,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量. 4.下列命题:①若a b =,b c =,则c a =;②若a ∥b ,b ∥c ,则a ∥c ;③若|a |=2|b |,则2a b =或a =﹣2b ;④若a 与b 是互为相反向量,则a +b =0.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解.【详解】①若a b =,b c =,则c a =,正确;②若a ∥b ,b ∥c ,则a ∥c ,正确;③若|a |=2|b |,则2a b =或a =﹣2b ,错误,因为两个向量的方向不一定相同或相反;④若a 与b 是互为相反向量,则a +b =0,正确.综上所述,真命题的个数是3个.故选C .5.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D【解析】【分析】 根据3,2a b ==,而且12,x x R ∈和a 的方向相反,可得两者的关系,即可求解. 【详解】 ∵3,2a b ==,而且12,x x R ∈和a 的方向相反 ∴32a b =-故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.6.已知a 、b 和c 都是非零向量,在下列选项中,不能判定//a b 的是( ) A .2a b =B .//a c ,//b cC .||||a b =D .12a c =,2bc = 【答案】C【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】 A 选项:由2a b =,可以推出//a b .本选项不符合题意;B 选项:由//a c ,//b c ,可以推出//a b .本选项不符合题意;C 选项:由||||a b =,不可以推出//a b .本选项符合题意;D 选项:由12a c =,2bc =,可以推出//a b .本选项不符合题意;故选:C .【点睛】考查了平面向量,解题关键是熟记平行向量的定义.7.已知a 、b 为非零向量,下列判断错误的是( )A .如果a =3b ,那么a ∥bB .||a =||b ,那么a =b 或a =-bC .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =2【答案】B【解析】【分析】根据平面向量的性质解答即可.【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意. D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意.故选:B .【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.8.点C 在线段AB 上,且35AC AB =,若AC mBC =,则m 的值等于( ). A .23 B .32 C .23- D .32- 【答案】D 【解析】【分析】根据已知条件即可得:25AC AB CB AB ==-,从而得出:52AB BC =-,再代入35AC AB =中,即可求出m 的值.【详解】解:∵点C 在线段AB 上,且35AC AB = ∴25AC AB CB AB ==- ∴5522CB AB BC ==- ∴55322335BC B C A C A B ⎛⎫=- ⎝==-⎪⎭ 故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ = B .++=0 C .+= D .+= 【答案】C【解析】 【分析】由加法的三角形法则化简求解即可.【详解】由加法的三角形法则可得,+=, ++= , +=, +=故选:B.【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量()12m n +相等的向量是( ).A .OAB .OBC .OCD .OD【答案】C【解析】 【分析】 由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==,然后由三角形法则,求得AC 与BD ,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC AD n ==,∴AC =AB BC m n +=+,=BD AD AB n m -=-,∴()11=-22OA AC m n =-+,()11=22OC AC m n =+ ()11=-22OB BD n m =--,()11=22OD BD n m =- 故选:C .【点睛】 此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.11.已知e →为单位向量,a =-3e →,那么下列结论中错误..的是( ) A .a ∥e →B .3a =C .a 与e →方向相同D .a 与e →方向相反 【答案】C 【解析】【分析】 由向量的方向直接判断即可.【详解】解:e 为单位向量,a =3e -,所以a 与e 方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.12.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =- AE EC =+AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.13.已知a ,b 为非零向量,如果b =﹣5a ,那么向量a 与b 的方向关系是( ) A .a ∥b ,并且a 和b 方向一致B .a ∥b ,并且a 和b 方向相反C .a 和b 方向互相垂直D .a 和b 之间夹角的正切值为5【答案】B【解析】【分析】根据平行向量的性质解决问题即可.【详解】∵已知a ,b 为非零向量,如果b =﹣5a ,∴a ∥b ,a 与b 的方向相反,故选:B .【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.14.如图,向量OA 与OB 均为单位向量,且OA ⊥OB ,令n =OA +OB ,则||n =( )A .1B C D .2【答案】B【解析】根据向量的运算法则可得: n =)22OA OB +=故选B.15.已知a ,b 和c 都是非零向量,下列结论中不能判定a ∥b 的是( )A .a //c ,b //cB .1,22a c b c ==C .2a b =D .a b = 【答案】D【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】 解:A.∵a //c ,b //c ,∴a ∥b ,故本选项错误; B.∵1,22a cbc ==∴a ∥b ,故本选项错误. C.∵2a b =,∴a ∥b ,故本选项错误;D.∵a b =,∴a 与b 的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.16.设e 为单位向量,2a =,则下列各式中正确的是( ) A .2a e = B .a e a = C .2a e = D .112a =± 【答案】C【解析】【分析】 根据e 为单位向量,可知1e =,逐项进行比较即可解题.【详解】解:∵e 为单位向量,∴1e =,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =,1e =,∴2a e =,正确,D 中忽视了向量的方向性,错误故选C.【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.17.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP 可以用点P 的坐标表示为:(,)OP m n =.已知11(,OA x y =),22(,)OB x y =,如果12120x x y y +=,那么OA 与OB 互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-;(3,4)OD =-B .(2,3)OE =-; (3,2)OF =-C .(3,1)OG =;(OH =-D .(24)OM =;(2)ON =-【答案】D【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可.【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意;B. 121266102x x y y =--=-≠+,故不符合题意;C. 12123012x x y y =-+=-≠+,故不符合题意;D. 1212880x x y y =-+=+,故符合题意; 故选D.【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键. 18.已知a 、b 和c 都是非零向量,在下列选项中,不能判定a ∥b 的是( ) A .=a bB .a ∥c ,b ∥cC .a +b =0D .a +b =2c ,a ﹣b =3c【答案】A【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A 、该等式只能表示两a 、b 的模相等,但不一定平行,故本选项符合题意;B 、由a ∥c ,b ∥c 可以判定a ∥b ,故本选项不符合题意;C 、由a +b =0可以判定a 、b 的方向相反,可以判定a ∥b ,故本选项不符合题意;D 、由a +b =2c ,a ﹣b =3c ,得到a =52c ,b =﹣12c ,则a 、b 的方向相反,可以判定a ∥b ,故本选项不符合题意;故选:A .【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.19.若a =2e ,向量b 和向量a 方向相反,且|b |=2|a |,则下列结论中不正确的是( )A .|a |=2B .|b |=4C .b =4eD .a =12b - 【答案】C【解析】【分析】根据已知条件可以得到:b =﹣4e ,由此对选项进行判断.【详解】A 、由a =2e 推知|a |=2,故本选项不符合题意.B 、由b =-4e 推知|b |=4,故本选项不符合题意.C 、依题意得:b =﹣4e ,故本选项符合题意.D 、依题意得:a =-12b ,故本选项不符合题意. 故选C .【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.化简OP QP PS SP -++的结果等于( ).A .QPB .OQC .SPD .SQ 【答案】B【解析】【分析】利用向量的加减法的法则化简即可.【详解】解:原式=+Q OP P PS SP ++=Q O ,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.。

高中 平面向量的线性运算及基本定理 练习 含答案

高中 平面向量的线性运算及基本定理 练习 含答案

训练目标 (1)平面向量的概念;(2)平面向量的线性运算;(3)平面向量基本定理. 训练题型(1)平面向量的线性运算;(2)平面向量的坐标运算;(3)向量共线定理的应用. 解题策略(1)向量的加、减法运算要掌握两个法则:平行四边形法则和三角形法则,还要和式子:AB →+BC →=AC →,OM →-ON →=NM →联系起来;(2)平面几何问题若有明显的建系条件,要用坐标运算;(3)利用向量共线可以列方程(组)求点或向量坐标或求参数的值.1.下列各式计算正确的有________个. ①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b .2.(·贵州遵义一模)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.3.(·云南昆明质检)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m =________.4.若a 为任一非零向量,b 为模为1的向量,下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是________.5.(·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 6.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________________________________. 7.(·青海西宁质检)已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为________.8.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=xAM →,AC →=yAN →,则x +y =________.9.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 10.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________. 11.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2=________.12.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP →|=32|PB →|,则点P 坐标为________.13.已知a ,b 是两个不共线的向量,它们的起点相同,且a ,t b ,13(a +b ) (t ∈R )这三个向量的终点在一条直线上,则t 的值为________. 14.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.答案解析1.3 2.23 3.19 4.③ 5.(-7,-4) 6.07.P 是AC 边的一个三等分点 解析 ∵P A →+PB →+PC →=AB →, ∴P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →=2AP →,∴P 是AC 边的一个三等分点. 8.2解析 因为M 、O 、N 三点共线, 所以存在常数λ(λ≠0,且λ≠-1), 使得MO →=λON →,即AO →-AM →=λ(AN →-AO →), 所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →、AN →不共线,所以⎩⎨⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1, 即x +y =2.9.-74m +138n 10.611.12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=-16+23=12.12.(8,-15) 解析 设P (x ,y ), 因为|AP →|=32|PB →|,又P 在线段AB 的延长线上,故AP →=-32PB →=32BP →,所以(x -2,y -3)=32(x -4,y +3),即⎩⎨⎧x -2=32(x -4),y -3=32(y +3),所以⎩⎪⎨⎪⎧x =8,y =-15.故P (8,-15).13.12 解析如图所示,OA →=t b , OB →=13(a +b ),OC →=a .∴AC →=OC →-OA →=a -t b , BC →=OC →-OB →=23a -13b ,∵A 、B 、C 三点共线,a ,b 不共线, ∴AC →与BC →共线, ∴231=-13-t ,∴t =12. 14.2 解析以O 为坐标原点,OA 所在的直线为x 轴, OA →的方向为x 轴的正方向,建立平面直角坐标系, 则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则由OC →=xOA →+yOB →,得(cos α,sin α)=x (1,0)+y (-12,32),得x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值2.。

第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析

第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析

第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。

初中数学向量的线性运算技巧及练习题附答案解析

初中数学向量的线性运算技巧及练习题附答案解析

初中数学向量的线性运算技巧及练习题附答案解析一、选择题1.点C在线段AB上,且35AC AB=u u u r u u u r,若AC mBC=u u u r u u u r,则m的值等于().A .23B.32C.23-D.32-【答案】D【解析】【分析】根据已知条件即可得:25AC ABCB AB==-u u u r u u u r u u u r u u u r,从而得出:52AB BC=-u u u r u u u r,再代入35AC AB=u u u r u u u r中,即可求出m的值.【详解】解:∵点C在线段AB上,且35AC AB=u u u r u u u r∴25AC ABCB AB==-u u u r u u u r u u u r u u u r∴5522CBAB BC==-u u u r u u u r u u u r∴55322335BC BC A CA B⎛⎫=-⎝==-⎪⎭u u u r u u u r u u u r u u u r故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键. 2.下列命题中,真命题的个数为( )①方向相同②方向相反③有相等的模④方向相同A.0 B.1 C.2 D.3【答案】C【解析】【分析】直接利用向量共线的基本性质逐一核对四个命题得答案.【详解】解:对于①,若,则方向相同,①正确;对于②,若,则方向相反,②正确;对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误.所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.3.如图,已知△ABC 中,两条中线AE 、CF 交于点G ,设,,则向量关于、的分解式表示正确的为( )A .B .C .D .【答案】B 【解析】 【分析】由△ABC 中,两条中线AE 、CF 交于点G 可知,,求出的值即可解答.【详解】 ∵ ∴ ∵∴故本题答案选B. 【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.4.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( ) A .2 B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】|||1||22|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴===+∴++=++==⨯=∴u u u r u u u rQ u u u ru u u r Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .6.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大7.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误 【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键8.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( )A .2a b =rrB .//a c r r,//b c r rC .||||a b =rrD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b r r .本选项不符合题意; C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D 选项:由12a c =r r ,2bc =r r,可以推出//a b r r .本选项不符合题意;故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.9.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得, A. 方向不同,错误, B. 方向不同,错误, C. 方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.10.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r与b r均为单位向量,可得向量a r与b r的模相等,但方向不确定. 【详解】解:∵向量a r与b r均为单位向量, ∴向量a r与b r的模相等,∴a b =r r.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.11.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论. 【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.13.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠r r 时,ma r 与a r 的方向一定相反; ②0m ≠,0a ≠r r 时,ma r 与a r 是平行向量;③0mn >,0a ≠r r 时,ma r 与na r 的方向一定相同; ④0mn <,0a ≠r r 时,ma r 与na r 的方向一定相反.A .1个B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠rr,所以m 和n 同号,所以ma r 与na r的方向一定相同,故③正确; ④因为0mn <,0a ≠rr,所以m 和n 异号,所以ma r 与na r的方向一定相反,故④正确. 故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.14.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r,故本选项,不符合题意; D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.15.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.16.下列条件中,不能判定a ∥b 的是( ). A . //a c r r ,//b c r rB .||3||a b =rrC . 5a b =-r rD .2a b =r r【答案】B 【解析】 【分析】根据平面向量的性质进行逐一判定即可. 【详解】解:A 、由//a c r r ,//b c r r 推知非零向量a r 、b r 、c r的方向相同,则//a b r r ,故本选项不符合题意.B 、由||3||a b =r r只能判定向量a r 、b r 的模之间的关系,不能判定向量a r 、b r 的方向是否相同,故本选项符合题意.C 、由5a b =-r r 可以判定向量a r 、b r的方向相反,则//a b r r ,故本选项不符合题意.D 、由2a b =r r可以判定向量a r 、b r 的方向相同,则//a b r r ,故本选项不符合题意.故选:B . 【点睛】本题考查的是向量中平行向量的定义,即方向相同或相反的非零向量a r 、b r叫做平行向量.17.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.18.已知5a b =r r,下列说法中,不正确的是( ) A .50a b -=rrB .a r与b r方向相同 C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.19.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( )A .||2||a b =r r; B .a r ∥b r;C .a r 与b r方向相反; D .20a b +=r r.【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与br 方向相反,但还是相互平行,∴a r ∥b r ,该选项不符合题意错误; C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.20.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u rr,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r r r ;C .()12BO b a =-+u u u r r r ; D .()12BO b a =-u u u r r r .【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选。

向量的线性运算经典测试题附答案

向量的线性运算经典测试题附答案

向量的线性运算经典测试题附答案一、选择题1.在ABCD中,AC与BD相交于点O,AB a=,AD b=,那么OD等于()A.1122a b+B.1122a b--C.1122a b-D.1122a b-+【答案】D 【解析】【分析】由四边形ABCD是平行四边形,可得12OD BD=,,又由BD BA AD=+,即可求得OD的值.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD=12 BD,∴12OD BD=,∵BD BA AD a b=+=-+,∴12OD BD==111()222a b a b-+=-+故选:D.【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.2.如果向量a与单位向量e方向相反,且长度为12,那么向量a用单位向量e表示为()A.12a e=B.2a e=C.12a e=-D.2a e=-【答案】C 【解析】由向量a与单位向量e方向相反,且长度为12,根据向量的定义,即可求得答案.解:∵向量a 与单位向量e 方向相反,且长度为12, ∴12a e =-. 故选C .3.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D 【解析】 【分析】根据3,2a b ==,而且12,x x R ∈和a 的方向相反,可得两者的关系,即可求解. 【详解】 ∵3,2a b ==,而且12,x x R ∈和a 的方向相反 ∴32a b =-故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.4.已知a 、b 为非零向量,下列判断错误的是( )A .如果a =3b ,那么a ∥bB .||a =||b ,那么a =b 或a =-bC .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =2【答案】B【解析】【分析】根据平面向量的性质解答即可.【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意. D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意.故选:B .【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.5.若向量a 与b 均为单位向量,则下列结论中正确的是( ).A .a b =B .1a =C .1b =D .a b =【答案】D 【解析】【分析】由向量a 与b 均为单位向量,可得向量a 与b 的模相等,但方向不确定.【详解】解:∵向量a 与b 均为单位向量,∴向量a 与b 的模相等, ∴a b =.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.6.下列说法正确的是( ).A .一个向量与零相乘,乘积为零B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反【答案】D【解析】【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.7.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ).A .()12a b -B .()12b a -C .()12a b +D .()12a b -+ 【答案】C【解析】【分析】 根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b =∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==- ∴()()1122AM AC CM b b b a a -=+=+=+故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.8.给出下列3个命题,其中真命题的个数是( ).①单位向量都相等;②单位向量都平行;③平行的单位向量必相等.A .1个B .2个C .3个D .0个【答案】D【解析】【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可.【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误; ③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误. 故选D.【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.9.已知一点O到平行四边形ABCD的3个顶点A、B、C的向量分别为、、,则向量等于()A.++B.-+C.+-D.--【答案】B【解析】【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论.【详解】如图,,则-+故选B.【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.下列判断错误的是()A.0•=0aB.如果a+b=2c,a-b=3c,其中0c ,那么a∥bC.设e为单位向量,那么|e|=1D.如果|a|=2|b|,那么a=2b或a=-2b【答案】D【解析】【分析】根据平面向量的定义、向量的模以及平行向量的定义解答.【详解】A、0•=0a,故本选项不符合题意.B、由a+b=2c,a-b=3c得到:a=52c,b=﹣12c,故两向量方向相反,a∥b,故本选项不符合题意.C、e为单位向量,那么|e|=1,故本选项不符合题意.D 、由|a |=2|b |只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意.故选D .【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.11.如图,在ABC 中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .a b +B .2233a b +C .23a b -D .23a b + 【答案】D【解析】【分析】 根据2BD CD =,即可求出BD ,然后根据平面向量的三角形法则即可求出结论.【详解】解:∵2BD CD = ∴2233BD BC b == ∴23AD AB BD a b =+=+故选D .【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.下列有关向量的等式中,不一定成立的是( ) A .AB BA =- B .AB BA = C .AB BCAC D .AB BC AB BC +=+【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-,成立;B 选项,AB BA =,成立;C 选项,AB BC AC ,成立;D 选项,AB BC AB BC +=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.13.已知点C 在线段AB 上,3AC BC =,如果AC a =,那么BA 用a 表示正确的是( ) A .34a B .34a - C .43a D .43a - 【答案】D【解析】【分析】根据平面向量的线性运算法则,即可得到答案.【详解】∵点C 在线段AB 上,3AC BC =,AC a =,∴BA=43AC , ∵BA 与AC 方向相反,∴BA =43a -, 故选D.【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.14.已知5a b =,下列说法中,不正确的是( ) A .50a b -=B .a 与b 方向相同C .//a bD .||5||a b =【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.15.已知非零向量a 、b ,且有2a b =-,下列说法中,不正确的是( )A .||2||a b =;B .a ∥b ;C .a 与b 方向相反;D .20a b +=. 【答案】D【解析】【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,自然模也相等,∴||2||a b =,该选项不符合题意错误;B. ∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,那么它们是相互平行的,虽然2b -与b 方向相反,但还是相互平行,∴a ∥b ,该选项不符合题意错误;C. ∵2a b =-,而2b -与b 方向相反,∴a 与b 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D【点睛】本题主要考查了平面向量的基本知识.16.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB = B .12CB AB = C .0AC BC += D .0AC CB +=【答案】B【解析】 根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答. 解:A 、12CA BA =,故本选项错误; B 、12CB AB =,故本选项正确;C 、0AC BC +=,故本选项错误;D 、AC CB AB +=,故本选项错误.故选B .17.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D【解析】【分析】利用平面向量的加法即可解答.【详解】 解:根据题意得=, + .故选D.【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.18.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP 可以用点P 的坐标表示为:(,)OP m n =.已知11(,OA x y =),22(,)OB x y =,如果12120x x y y +=,那么OA 与OB 互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-;(3,4)OD =-B .(2,3)OE =-; (3,2)OF =-C .(3,1)OG =;(3,1)OH =-D .(22,4)OM =;(22,2)ON =-【答案】D【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可.【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意;B. 121266102x x y y =--=-≠+,故不符合题意;C. 12123012x x y y =-+=-≠+,故不符合题意;D. 1212880x x y y =-+=+,故符合题意;故选D.【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.19.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a = B .e b b = C .1a e a = D .11a b a b= 【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.下列各式正确的是( ).A .()22a b c a b c ++=++B .()()330a b b a ++-=C .2AB BA AB +=D .3544a b a b a b ++-=- 【答案】D【解析】【分析】根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-,故B 选项错误;C 、0AB BA +=,故C 选项错误;D、3544++-=-,故D选项正确;a b a b a b故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.。

向量的线性运算技巧及练习题附答案解析

向量的线性运算技巧及练习题附答案解析

向量的线性运算技巧及练习题附答案解析一、选择题1.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.2.已知233m a b =-,1124n b a =+,那么4m n -等于( ) A .823a b - B .443a b - C .423a b - D .843a b - 【答案】A【解析】 根据向量的混合运算法则求解即可求得答案,注意解题需细心. 解:∵233m a b =-,1124n b a =+, ∴4m n -=2112834()32232433a b b a a b b a a b --+=---=-. 故选A .3.计算45a a -+的结果是( )A .aB .aC .a -D .a -【答案】B【解析】【分析】按照向量之间的加减运算法则解题即可-4a+5a=a ,所以答案为B 选项【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键4.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12a bB .12a b -C .12a b -+D .12a b -- 【答案】A【解析】【分析】 根据AE AB BE =+,只要求出BE 即可解决问题. 【详解】解:四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=,BC AD b ∴==,BE CE =,1BE b 2∴=, AE AB BE,AB a =+=,1AE a b 2∴=+, 故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.5.下列判断不正确的是( )A .如果AB CD ,那么AB CDB .+=+C .如果非零向量ab(0)k k ,那么a 与b 平行或共线 D .AB BA 0【解析】【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA 可判断D 错误 【详解】A 、如果AB CD ,那么AB CD =,故此选项正确;B 、a b b a +=+,故本选项正确;C 、如果非零向量a b(0)k k ,那么a 与b 平行或共线,故此选项正确;D 、0ABBA ,故此选项错误; 故选:D .【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键6.以下等式正确的是( ).A .0a a -=B .00a ⋅=C .()a b b a -=--D .km k m = 【答案】C【解析】【分析】根据平面向量的运算法则进行判断.【详解】解:A. 0a a -=,故本选项错误;B. 00a ⋅=,故本选项错误;C. ()a b b a -=--,故本选项正确; D. km k m =⋅,故本选项错误.故选:C.【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.7.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ).A .()12a b - B .()12b a - C .()12a b + D .()12a b -+ 【答案】C【解析】【分析】根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b =∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==- ∴()()1122AM AC CM b b b a a -=+=+=+故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.8.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量()12m n +相等的向量是( ).A .OAB .OBC .OCD .OD【答案】C【解析】【分析】 由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==,然后由三角形法则,求得AC 与BD ,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC AD n ==,∴AC =AB BC m n +=+,=BD AD AB n m -=-,∴()11=-22OA AC m n =-+,()11=22OC AC m n =+()11=-22OB BD n m =--,()11=22OD BD n m =- 故选:C .【点睛】 此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.9.如图,已知向量a ,b ,c ,那么下列结论正确的是( )A .a b c +=B .b c a +=C .a c b +=D .a c b +=-【答案】D【解析】 【分析】【详解】由平行四边形法则,即可求得:解:∵CA AB CB +=,即a c b +=-故选D .10.如果向量a 与单位向量e 的方向相反,且长度为3,那么用向量e 表示向量a 为( ) A .3a e =B .3a e =-C .3e a =D .3e a =-【答案】B【解析】【分析】根据平面向量的定义解答即可.【详解】解:∵向量e 为单位向量,向量a 与向量e 方向相反,∴3a e =-.故选:B .【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.11.已知a 、b 、c 都是非零向量,如果2a c =,2b c =-,那么下列说法中,错误的是( )A .//a bB .a b =C .72BD = D .a 与b 方向相反【答案】C【解析】【分析】利用相等向量与相反向量的定义逐项判断即可完成解答.【详解】 解:已知2a c =,2b c -=,故a b ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误,故选C.【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确. 12.已知a ,b 和c 都是非零向量,下列结论中不能判定a ∥b 的是( )A .a //c ,b //cB .1,22a c b c ==C .2a b =D .a b = 【答案】D【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】 解:A.∵a //c ,b //c ,∴a ∥b ,故本选项错误;B.∵1,22a cbc ==∴a ∥b ,故本选项错误. C.∵2a b =,∴a ∥b ,故本选项错误; D.∵a b =,∴a 与b 的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.13.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,下列式子中正确的是( )A .DC a b =+B .DC a b =-; C .DC a b =-+D .DC a b =--.【答案】C【解析】【分析】 由平行四边形性质,得DC AB =,由三角形法则,得到OA AB OB +=,代入计算即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB =,∵OA a =,OB b =,在△OAB 中,有OA AB OB +=,∴AB OB OA b a a b =-=-=-+,∴DC a b =-+;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.14.已知非零向量a 、b ,且有2a b =-,下列说法中,不正确的是( )A .||2||a b =;B .a ∥b ;C .a 与b 方向相反;D .20a b +=. 【答案】D【解析】【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,自然模也相等,∴||2||a b =,该选项不符合题意错误;B. ∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,那么它们是相互平行的,虽然2b -与b 方向相反,但还是相互平行,∴a ∥b ,该选项不符合题意错误;C. ∵2a b =-,而2b -与b 方向相反,∴a 与b 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D【点睛】本题主要考查了平面向量的基本知识.15.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误.故选B.16.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB = B .12CB AB = C .0AC BC += D .0AC CB +=【答案】B【解析】 根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答. 解:A 、12CA BA =,故本选项错误; B 、12CB AB =,故本选项正确; C 、0AC BC +=,故本选项错误;D 、AC CB AB +=,故本选项错误.故选B .17.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a ()=()B . m n a ma na ++()=C .m a b ma mb +(+)=D .若0ma =,那么0a =【答案】D【解析】【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a =0,则m=0或a =0.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.18.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a = B .e b b = C .1a e a = D .11a b a b= 【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】 本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.19.若a =2e ,向量b 和向量a 方向相反,且|b |=2|a |,则下列结论中不正确的是( ) A .|a |=2B .|b |=4C .b =4eD .a =12b - 【答案】C【解析】【分析】根据已知条件可以得到:b =﹣4e ,由此对选项进行判断.【详解】A 、由a =2e 推知|a |=2,故本选项不符合题意.B 、由b =-4e 推知|b |=4,故本选项不符合题意.C 、依题意得:b =﹣4e ,故本选项符合题意.D 、依题意得:a =-12b ,故本选项不符合题意. 故选C .【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.下列关于向量的运算中,正确的是A .a b b a -=-;B .2()22a b a b --=-+;C .()0a a +-=;D .0a a +=.【答案】B【解析】【分析】根据向量的运算法则进行计算.【详解】 A. (),a b b a A ---=所以错误;B. ()222a b a b B ---=+,所以正确;C. ()0a a -+=,C 所以错误;D.向量与数字不能相加,所以D 错误.故选B.【点睛】本题考查的是向量,熟练掌握向量是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的线性运算技巧及练习题一、选择题1.下列条件中,不能判定a ∥b 的是( ).A . //a c ,//b cB .||3||a b =C . 5a b =-D .2a b =【答案】B【解析】【分析】根据平面向量的性质进行逐一判定即可.【详解】解:A 、由//a c ,//b c 推知非零向量a 、b 、c 的方向相同,则//a b ,故本选项不符合题意.B 、由||3||a b =只能判定向量a 、b 的模之间的关系,不能判定向量a 、b 的方向是否相同,故本选项符合题意.C 、由5a b =-可以判定向量a 、b 的方向相反,则//a b ,故本选项不符合题意.D 、由2a b =可以判定向量a 、b 的方向相同,则//a b ,故本选项不符合题意. 故选:B .【点睛】本题考查的是向量中平行向量的定义,即方向相同或相反的非零向量a 、b 叫做平行向量.2.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( ) A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C【解析】【分析】 根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案. 【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形.故答案为:C.【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.3.下列等式正确的是( )A .AB +BC =CB +BA B .AB ﹣BC =ACC .AB +BC +CD =DAD .AB +BC ﹣AC =【答案】D【解析】【分析】根据三角形法则即可判断.【详解】∵AB BC AC +=,∴0AB BC AC AC AC +-=-= ,故选D .【点睛】 本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.4.在矩形ABCD 中,如果ABBC 模长为1,则向量(AB +BC +AC ) 的长度为( )A .2B .4 C1 D1【答案】B【解析】【分析】先求出AC AB BC =+,然后2AB BC AC AC ++=,利用勾股定理即可计算出向量(AB +BC +AC )的长度为【详解】 22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC ACAB BC AC AC ==∴=+==+∴++=++==⨯=∴故选:B.【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.下列命题:①若a b =,b c =,则c a =;②若a ∥b ,b ∥c ,则a ∥c ;③若|a |=2|b |,则2a b =或a =﹣2b ;④若a 与b 是互为相反向量,则a +b =0.其中真命题的个数是( )【答案】C【解析】【分析】 根据向量的定义,互为相反向量的定义对各小题分析判断即可得解.【详解】①若a b =,b c =,则c a =,正确;②若a ∥b ,b ∥c ,则a ∥c ,正确;③若|a |=2|b |,则2a b =或a =﹣2b ,错误,因为两个向量的方向不一定相同或相反;④若a 与b 是互为相反向量,则a +b =0,正确.综上所述,真命题的个数是3个.故选C .6.下列说法正确的是( ).A .一个向量与零相乘,乘积为零B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反【答案】D【解析】【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.7.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a 、b ,恒有()m a b ma mb -=-②对于实数m 、n 和向量a ,恒有()m n a ma na -=-③若ma mb =(m 是实数)时,则有a b =④若ma na =(m 、n 是实数,0a ≠),则有m n =【答案】C【解析】【分析】 根据平面向量的性质依次判断即可.【详解】①对于实数m 和向量a 、b ,恒有()m a b ma mb -=-,正确;②对于实数m 、n 和向量a ,恒有()m n a ma na -=-,正确;③若ma mb =(m 是实数)时,则有a b =,错误,当m=0时不成立;④若ma na =(m 、n 是实数,0a ≠),则有m n =,正确;故选C.【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.8.下列各式正确的是( ).A .()22a b c a b c ++=++B .()()330a b b a ++-= C .2AB BA AB +=D .3544a b a b a b ++-=- 【答案】D【解析】【分析】根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-,故B 选项错误;C 、0AB BA +=,故C 选项错误;D 、3544a b a b a b ++-=-,故D 选项正确;故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.9.□ABCD 中, -+等于( ) A .B .C .D .【答案】A【解析】【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果.【详解】∵在平行四边形ABCD 中,与 是一对相反向量, ∴ = - ∴ -+=- + =, 故选A .【点睛】 此题考查向量加减混合运算及其几何意义,解题关键在于得出 与 是一对相反向量.10.已知非零向量a 、b 、c ,在下列条件中,不能判定a //b 的是( )A .a //c ,b //cB .2a c =,3b c =C .5a b =-D .||2||a b =【答案】D【解析】分析:根据平面向量的性质即可判断.详解:A .∵a ∥c b ,∥c ,∴a b ,故本选项,不符合题意;B .∵a =2c b ,=3c ,∴a b ,故本选项,不符合题意;C .∵a =﹣5b ,∴a b ,故本选项,不符合题意;D .∵|a |=2|b |,不能判断a b ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.11.已知a 、b 、c 都是非零向量,如果2a c =,2b c =-,那么下列说法中,错误的是( )A .//a bB .a b =C .72BD = D .a 与b 方向相反【答案】C【解析】【分析】利用相等向量与相反向量的定义逐项判断即可完成解答.【详解】 解:已知2a c =,2b c -=,故a b ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误,故选C.【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.如图,在平行四边形ABCD 中,如果AB a =,AD b =,那么a b +等于( )A .BDB .AC C .DBD .CA【答案】B【解析】【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =,然后由三角形法则,即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵AD b =,∴BC b =,∵AB a =,∴a b +=AB +BC =AC .故选B .13.下列说法正确的是( )A .()0a a +-=B .如果a 和b 都是单位向量,那么a b =C .如果||||a b =,那么a b =D .12a b =-(b 为非零向量),那么//a b【答案】D【解析】【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案.【详解】解:A 、()a a +-等于0向量,而不是0,故A 选项错误;B 、如果a 和b 都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-(b 为非零向量),可得到两个向量是共线向量,可得到//a b ,故D 选项正确.故选:D. 【点睛】 本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.14.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =B .AC BD = C .AO OD = D .BO OD =- 【答案】C 【解析】【分析】 根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 .A. AB CD =-,故该选项错误;B. AC BD =,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =,故该选项正确;D. BO OD =,故该选项错误;故选:C .【点睛】 本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键. 15.下列有关向量的等式中,不一定成立的是( )A .AB BA =- B .AB BA =C .AB BCAC D .AB BC AB BC +=+【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-,成立;B 选项,AB BA =,成立;C 选项,AB BC AC ,成立;D 选项,AB BC AB BC +=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.16.已知点C 在线段AB 上,3AC BC =,如果AC a =,那么BA 用a 表示正确的是( ) A .34a B .34a - C .43a D .43a - 【答案】D【解析】【分析】根据平面向量的线性运算法则,即可得到答案.【详解】∵点C 在线段AB 上,3AC BC =,AC a =,∴BA=43AC , ∵BA 与AC 方向相反,∴BA =43a -, 故选D.【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键. 17.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( ) A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 【答案】C【解析】【分析】【详解】解:∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误, 故选C.18.已知非零向量a 、b 和c ,下列条件中,不能判定a b 的是( ) A .2a b =-B .a c =,3b c =C .2a b c +=,a b c -=-D .2a b =【答案】D【解析】【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-,两个向量方向相反,互相平行,故本选项错误;B 、a c =,3b c =,则a ∥b ∥c ,故本选项错误;C 、由已知条件知2a b =-,3a c -=,则a ∥b ∥c ,故本选项错误;D 、2a b =只知道两向量模的数量关系,但是方向不一定相同或相反,a 与b 不一定平行,故本选项正确.故选:D .【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D【解析】【分析】利用平面向量的加法即可解答.【详解】解:根据题意得=, + .故选D.【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.20.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB 是单位向量,则BA 不是单位向量C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA 、OB 是单位向量D .计算向量的模与单位长度无关【答案】C【解析】【分析】根据单位向量的定义及意义判断即可.【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB 是单位向量时,1AB =,而此时1AB BA ==,即BA 也是单位向量,故选项B 不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA 、OB 都等于这个单位长度,这时OA 、OB 都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确.故选C.【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.。

相关文档
最新文档