初中数学平方根专项培优练习题(附答案)

合集下载

(完整word版)平方根和立方根培优练习题

(完整word版)平方根和立方根培优练习题
3.已知 m , n 是有理数,且 ( 5 2) m (3 2 5) n 7 0 ,求 m , n 的值。
2
4.设 a , b 是有理数,且满足 a b 2 1 2 ,求 ab 的值。
5.已知 a , b , c 满足等式: 3 a b 4 c 16( a b, c 0) ,且 x 4 a b 3 c ,求 x 的取值范
自主招生
1. 观察右图,每个小正方形的边长均为 1, ( 1)图中阴影部分的面积是多少?边长是多少?
( 2)估计边长的值在哪两个整数之间。
2.设 2003 x3 2004 y3 2005 z3 ,xyz 0 ,且 3 2003x2 2004y2 2005z2 3 2003 3 2004 3 2005 ,
1
初中数学培优竞赛 七年级 下学期
5.已知 29 的整数部分为 a ,小数部分为 b ,求 a 2 b 2 的值。
培优训练 1.计算:(1) 2 3 2 4 2 3
( 2) 32 2 50 1 1 1 42 8
2.已知 2a 1 的平方根是 3 , 3a b 1的算术平方根是 4,求 a 2b 的平方根。
围。
2
2a 6.已知 x (
4a
初中数学培优竞赛 七年级 下学期
a3
3 a )1993 ,求 x 的个位数字。
3a
7.已知 9 7 与 9 7 的小数部分分别为 x , y ,你能求出 3x 2 y 的值吗?试试看。
8.若 2 x
x2
y
6 ,试求
x
y 的平方根。
9.△ ABC 的三边长为 a 、 b 、 c , a 和 b 满足 a 1 b2 4b 4 0 ,求 c 的取值范围。
求1
1

八年级初二数学 数学二次根式的专项培优练习题(附解析

八年级初二数学 数学二次根式的专项培优练习题(附解析

一、选择题1.下列式子中,属于最简二次根式的是()A.9B.13C.20D.72.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣3cm2B.(4﹣3cm2C.(16﹣3cm2D.(﹣3)cm232的倒数是()A2B.22C.2-D.22-4.下列各式是二次根式的是()A3B1-C35D4π-5.已知:x3,y31,求x2﹣y2的值()A.1 B.2 C3D.36.设a3535+-b633633+-21b a-的值为()A621+B621+C621D621 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.以下运算错误的是()A3535⨯=B.2222⨯=C169+169D2342a b ab b=a>0)9.使式子212 4xx+-x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x>﹣2,且x≠2D.x≥﹣2,且x≠210.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.=_______.18.mn =________.19.n 为________.20.能合并成一项,则a =______.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。

专题6.2平方根-2021-2022学年七年级数学下册同步培优题典解析版人教版

专题6.2平方根-2021-2022学年七年级数学下册同步培优题典解析版人教版

2021-2022学年七年级数学下册尖子生同步培优题典【人教版】专题6.2平方根姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•长春期末)4的平方根是( )A.﹣2B.2C.±2D.没有平方根【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解析】∵(±2)2=4,∴4的平方根是±2.故选:C.2.(2021•商河县校级模拟)16的平方根是( )A.±4B.0C.﹣2D.﹣16【分析】根据平方根的意义求解即可.【解析】因为(±4)2=16,所以16的平方根是±4,故选:A.3.(2021•商河县校级模拟)若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解析】∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.4.(2021•广东模拟)(﹣0.25)2的平方根是( )A.﹣0.5B.±0.5C.0.25D.±0.25【分析】先根据乘方的法则求出(﹣0.25)2的结果,再根据平方根的概念求出平方根,选出答案.【解析】(﹣0.25)2=0.0625,0.0625的平方根为±0.25,故选:D.5.(2021春•利川市期末)已知(x+1)2=4,则实数x的值等于( )A.±2B.1C.﹣3D.1,﹣3【分析】根据平方根的定义,由(x+1)2=4,得x+1=±2,进而求得x=1或﹣3.【解析】∵(x+1)2=4,∴x+1=±2.当x+1=2时,x=1.当x+1=﹣2时,x=﹣3.综上:x=1或﹣3.故选:D.6.(2021秋•滦南县期中)如果一个正数a的两个不同平方根是2x﹣2和6﹣3x,则这个正数a的值为( )A.4B.6C.12D.36【分析】根据平方根的定义解答即可.【解析】由题意得:2x﹣2+6﹣3x=0,解得:x=4.当x=4时,2x﹣2=6,6﹣3x=﹣6,a=(±6)2=36.故选:D.7.(2021春•汉阴县月考)一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为( )A.4B.16C.3D.9【分析】一个正数有两个平方根,这两个平方根互为相反数,据此可得a的值,进而得到这个正数.【解析】∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.8.(2021秋•六盘水期中)若a﹣3是16的平方根,则a的值为( )A.4B.±4C.256D.﹣1或7【分析】直接根据平方根的概念解答即可.【解析】∵a﹣3是16的平方根,∴(a﹣3)2=16,∴a﹣3=±4,∴a=7或﹣1.故选:D.9.(2021秋•原阳县月考)若2m﹣4与3m﹣1是同一个正数的不同平方根,则这个正数为( )A.1B.4C.±1D.±4【分析】根据平方根的定义解决此题.【解析】由题意得:2m﹣4+3m﹣1=0.当2m﹣4+3m﹣1=0,则m=1,此时2m﹣4=﹣2,那么这个正数为(﹣2)2=4.∴这个正数为4.故选:B.10.(2021春•阳谷县月考)已知3m﹣1和﹣2m﹣2是某正数a的平方根,则a的值是( )A.3B.64C.3或―15D.64或6425【分析】3m﹣1与﹣2m﹣2相等或者互为相反数,分别求出m的值,再求出3m﹣1的值,最后求出a的值.【解析】根据题意得:3m﹣1=﹣2m﹣2或3m﹣1+(﹣2m﹣2)=0,解得:m=―15或3,当m=―15时,3m﹣1=―8 5,∴a=64 25;当m=3时,3m﹣1=8,∴a=64;故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021•徐州)49的平方根是 ±7 .【分析】根据平方根的定义解答.【解析】49的平方根是±7.故答案为:±7.12.(2021春•普陀区校级月考)一个正数的两个平方根是5a+1和a﹣7,则a= 1 .【分析】根据正数的两个平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得答案.【解析】因为一个正数的两个平方根分别为5a+1和a﹣7,所以5a+1+a﹣7=0,解得a=1.故答案为:1.13.(2021秋•徐汇区月考)(﹣9)2的平方根是 ±9 .【分析】根据平方根的定义可得.±9,∴(﹣9)2的平方根是±9,故答案为:±9.14.(2021秋•寿阳县期中)已知a﹣2的平方根是±2,则a的值为 6 .【分析】根据平方根的性质即可求出答案.【解析】由题意可知:a﹣2=4,∴a=6,故答案为:6.15.(2021秋•深圳校级期中)若2a+1和a﹣7是数m的平方根,则m的值为 25或225 .【分析】根据一个正数有两个平方根,这两个数互为相反数,列出方程,再解方程求出a,进一步求得m的值.【解析】根据题意得:2a+1+a﹣7=0或2a+1=a﹣7,解得:a=2或﹣8,∴2a+1=5或2a﹣1=﹣15∴m=52=25或m=(﹣15)2=225..则m的值为25或225.16.(2021春•瓦房店市期末)若5x2﹣125=0,则x= ±5 .【分析】根据等式的性质将等式变形为x2=25,再直接开平方即可求出答案.【解析】5x2﹣125=0,移项得,5x2=125,两边都除以5得,x2=25,直接开方得,x=±5,故答案为:±5.17.(2021春•香洲区期末)根据如表数据回答259.21的平方根是 ±16.1 .x1616.116.216.3x2256259.21262.44265.69【分析】直接利用平方根的定义结合表格中数据得出答案.【解析】由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.18.(2021春•景县期末)已知正实数x的两个平方根是m和m+b,且m2x+(m+b)2x=4,则x= 【分析】利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解析】∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.求下列各数的平方根(1)49;(2)425;(3)1106;(4)0.0016.【分析】根据平方根的定义解答即可.【解析】(1)49的平方根是±7(2)425的平方根是±25(3)1106的平方根是±11000(4)0.0016的平方根是±0.0420.求下列各数的平方根:144,2500,0.81,4916,(﹣2)2,10﹣4.【分析】根据平方根的定义逐个求出即可.【解析】144的平方根是±=±12;2500±50;0.81的平方根是±=±0.9;4916的平方根是±±74;(﹣2)2的平方根是±±2;10﹣4的平方根是±±10﹣2.21.(2021春•巴楚县月考)求下列各式中x 的值:(1)x 2﹣5=49;(2)3x 2﹣15=0;(3)2(x +1)2=128.【分析】(1)移项后合并同类项,再开方即可;(2)先移项,方程两边除以3,再开方即可;(3)方程两边除以2,再开方即可.【解析】(1)x2﹣5=4 9,x2=49 9,xx1=73,x2=―73;(2)3x2﹣15=0,3x2=15,x2=5,x(3)2(x+1)2=128,(x+1)2=64,x+1=±8,x1=﹣9;x2=7.22.(2021春•长春期末)已知正数m的两个不同的平方根分别是a+3和2a﹣15,求a和m的值.【分析】根据一个正数的两个平方根互为相反数可以求得a的值,进而得出m的值.【解析】∵正数m的两个不同的平方根分别是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4,∴m=(a+3)2=49.故a的值为4,m的值为49.23.(2020春•霞山区校级期中)已知一个数m的两个不相等的平方根分别为a+3和2a﹣15.(1)求a的值.(2)求这个数m.【分析】(1)根据平方根的定义列方程解出即可;(2)将a的值代入a+3和2a﹣15中,平方后可得m的值.【解析】(1)∵数m的两个不相等的平方根为a+3和2a﹣15,∴(a+3)+(2a﹣15)=0,∴3a=12,解得a=4;(2)∴a+3=4+3=7,2a﹣15=2×4﹣15=﹣7,∴m=(±7)2=49,∴m的值是49.24.(2019春•江汉区期中)(1)已知(x﹣1)2=4,求x的值;(2)某正数的两个不同的平方根分别是3a+2和a﹣10,求这个正数的值.【分析】(1)根据平方根的含义和求法,求出x的值即可.(2)根据一个正数的平方根互为相反数可得出a的值,继而得出这个正数.【解析】(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或﹣1.(2)由题意得,3a+2+a﹣10=0,解得:a=2,则这个正数的值为(3×2+2)2=64.。

最新初一下册数学平方根练习题(含答案)

最新初一下册数学平方根练习题(含答案)

精品文档平方根练习题姓名: __________________ 班级: __________________ 考号: __________________一、填空题1、已知m 的平方根是2a-9和5a-12,贝U m 的值是 __________2、对于任意不相等的两个数 a , b ,定义一种运算※如下:玄※b =二「,■ I I ¥ I-10 12 4、已知:y 二Jx 二g +K-X + l?,则X+V 的算术平方根为 、选择题A . 26、若二 25,= 36,且血 < 0,则 d-h 的值为( ).那么 12^ 4= __________________3、实数a 在数轴上的位置如图所示,化简:h-l|+^-2)a =5、已知:是整数, 则满足条件的最小正整数为(A . -1 或 11B . -1 或-11 D . - 11A.第一象限 ,则点P所在象B.第二象限 ).C.第三象限 D 第四象限精品文档的平方根是15、(送)2+|-2|+ (-2) 2-V^A . 9三、简答题11、如图,实数“、:在数轴上的位置,化简a b---- > --------- > ---------- 1 ---- *―*■ --------- b ------ i -1 0 112、如果一个正数 m 的两个平方根分别是 2a — 3和a — 9,求2m- 2的值.四、计算题13、已知 s'.与一:“的小数部分分别是 a 、b ,求ab 的值.14、设:工7都是实数,且满足,求式子 平方根.9、一个正方形的面积是 15,估计它的边长大小在(A . 2与3之间B . 3与4之间C . 4与5之间D . 5与6之间 10、 已知 的平方根是士 3,-一 :的算术平方根是4,求一-■.的平方根 二的算术参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、D7、D8、C9、B三、简答题10、J 一丨…2分L一丨…..4分一.;一一.8分h……6分结果-■-11、解:由图可知:a v0,6>0, . 2 分=.■-'■-'.-a12、・.•一个正数的两个平方根分别是 2a — 3和a — 9,••• (2 a — 3)+( a — 9)=0,解得 a = 4 ,•••这个正数为 (2 a — 3) 2=52=25,二 2 m- 2=2 X 25 — 2= 48 ;四、计算题13、解:因为 ;「-,所以 …卜J 的小数部分是一「一 J1】 — J J 的小数部分是---Y 血二(VT 匚炭1-注冋二加H _ 2314、解:所以厂i — l 「+L I由题意得, c+8 = 0 ,解得所以「亠二的算术平方根为- - 2115、原式=-+2+4 - 49=:;。

八年级初二数学数学二次根式的专项培优练习题(及答案

八年级初二数学数学二次根式的专项培优练习题(及答案

一、选择题1.下列式子中,属于最简二次根式的是( )A B C D2.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 63.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =4.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±25.设,n k 为正整数,1A =2A =3A =4A =…k A =….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40116.下列计算正确的是( )A 6=±B .=C .6=D =(a≥0,b≥0)7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个8.下列各式成立的是( )A 2B 5=-C xD 6=-9.a 的值是( ) A .2B .-1C .3D .-1或3 10.下列运算正确的是( )A =B 2=C =D 9=二、填空题11.将(0)a a -<化简的结果是___________________.12.==________. 13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.14.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.15.把_____________.16.÷=________________ .17.,则x+y=_______.18.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.19.===据上述各等式反映的规律,请写出第5个等式:___________________________.20.如果0xy >.三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a +2b 可变为m 2+n 2+2mn ,即变成(m +n )2,从而使得2a b +化简. 例如:∵5+26=3+2+26=(3)2+(2)2+26=(3+2)2 ∴526+=()232+=3+2请你仿照上例将下列各式化简 (1)423+,(2)7210-. 【答案】(1)1+3;(2)52-.【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵222423123(3)(13)+=++=+, ∴24+23=(13)13+=+;(2)∵2227210(5)252(2)(52)-=-⋅+=-, ∴27210(52)52-=-=-.24.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.计算 1323482②)2525221-【答案】①11222 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+ 【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.B解析:B 【分析】分别利用二次根式的性质化简求出即可. 【详解】解;A 2=|a+b|,故此选项错误;B 2+1,正确;C ,无法化简,故此选项错误;D ,故此选项错误; 故选:B . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.A解析:A 【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.5.A解析:A【解析】 【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解. 【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+ ⋯⋯依此类推,A k =n+(2k-1) ∴A 100=n+(2×100-1)=2005 解得,n=1806. 故选A. 【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.6.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确; 根据同类二次根式的性质,可知C 不正确;= (a≥0,b≥0)可知D 正确.故选:D7.D解析:D 【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项. 【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误; ②0.01的算术平方根是0.1,故错误;)=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A符合题意;=,原选项计算错误,故选项B不符合题意;=,原选项计算错误,故选项C不符合题意;||xD. =,原选项计算错误,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.9.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.10.C解析:C【分析】根据二次根式的减法法则对A进行判断;根据二次根式的加法法则对B进行判断;根据二次根式的乘法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018 【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】 由题意可得:10m,即0m ∴11m m m m m mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.16.【解析】=,故答案为.解析:【解析】÷====-, 故答案为17.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:18.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 19.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.20.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

整理初一下册数学平方根练习题(含答案)

整理初一下册数学平方根练习题(含答案)

人教新课标数学八年级上册13整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑人教新课标数学八年级上册13.1平方根练习题(2)第一课时一、选择题★1.下列各式中无意义的是()A.B. C.D.★2.的算术平方根是()A.B.C.D★3. 下列运算正确的是()A.B. C.D二、填空题★4.若一个正方形的面积为13,则正方形的边长为 .★5.小明房间的面积为10.8米2,房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 .★★6.计算:⑴= ⑵⑶⑷-=_______ .★7.若下列各式有意义,在后面的横线上写出x的取值范围:⑴⑵★★8.若,则.★★9. 一个正方形的面积扩大为原来的4倍,它的边长变为原来的倍,面积扩大为原来的9倍,它的边长变为原来的倍,面积扩大为原来的n倍,它的边长变为原来的倍.★★10._______的算数平方根是它本身.三、解答题★11.求下列各数的算术平方根。

⑴ 169 ⑵ 0.0256⑶★12.要种一块面积为615.44的圆形草地以美化家庭,它的半径应是多少米?(π取3.14)第二课时一、选择题★1.下列说法中不正确的是()A.是2的平方根是2的平方根C.2的平方根是D.2的算术平方根是★2.的平方根是()A. B. C.★3.“的平方根是)A. B. C. D.★★4.下列各式中,正确的个数是()① ② ③的平方根是-3④的算术平方根是-5⑤是A.1个B.2个C.3个D.4个★★5.若a是的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或-4二、填空题★6. 如果某数的一个平方根是-6,那么这个数为________.★7.如果正数的平方根为和,则的值是.★★8.的算术平方根是,的平方根是 .★★9.若,则的平方根是 .三、解答题★10.求下列各式的值。

⑴⑵⑶⑷ ⑸参考答案第一课时一、选择题1.C.2.C.3.A.二、填空题4.5.0.96.3;5;2;-4;37.x≥0;x≤58.19.2;3;10.0和1三、解答题11.13;0.16212.14第二课时一、选择题1.C2.D3.B4.A5. C二、填空题6.367.48. 2 3或-39.2或-2三、解答题10.⑴15 ⑵-0.02⑷ -0.1 ⑸ 0.7 ⑹ 9整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

初中数学数学二次根式的专项培优练习题(附解析

初中数学数学二次根式的专项培优练习题(附解析

一、选择题1.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=2.在实数范围内,若22xx +有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-23.下列各式中,正确的是( ) A .16=±4 B .±16=4C .26628⨯= D .42783+⨯=- 4 4.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .75.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+B .56+C .56-D .536-6.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯ D .123=2÷7.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣18.下列计算正确的是( ) A 235=B 236=C 2434=D ()233-=-9.如果12与最简二次根式72a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .210.下面计算正确的是( ) A .3+3=33B .273=3÷C .2?3=5D .()22=2--二、填空题11.设42-的整数部分为 a,小数部分为 b.则1a b- = __________________________. 12.化简322+=___________.13.已知2215x 19x 2+--=,则2219x 215x -++=________. 14.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16222a a ++的最小值是______.17.已知:5+22可用含x 2=_____.18.4102541025-+++=_______. 19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.2a ·8a (a ≥0)的结果是_________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=a b,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+-=()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.25.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D =,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】由2x+有意义,得:20x+>,解得:2x>-.故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.3.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A、164=,此项错误B、164±=±,此项错误C、262628262⨯⨯==,此项正确D、42227833322366333+⨯=+⨯=+,此项错误故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.4.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,,所以.故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.5.D解析:D【分析】 根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可.【详解】 设633633x =--+,且633633-<+,∴0x <,∴26332(633)(633)633x =---+++,∴212236x =-⨯=,∴6x =-,∵3252632-=-+, ∴原式5266=--536=-,故选D .【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.6.D解析:D【解析】试题分析:根据同类二次根式,可知2与3不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确;根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.7.C解析:C【解析】依据二次根式有意义的条件即可求得k 的范围.解:若实数a ,b 满足+=3,又有≥0,≥0, 故有0≤≤3 ①,0≤≤3,则 ﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A23A错误;B236=,故B正确;C243822==C错误;-=,故D错误;D()233故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】123由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.B解析:B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A3A选项错误;B ===3,故B 选项正确;C ==C 选项错误;D .2(2)2-==,故D 选项错误;故选B .【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.二、填空题11.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:. 【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=1故填:12-. 【点睛】 此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 13.【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m =,n =,那么m−n =2①,m2+n2=()2+()2=34②.由①得,m =2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】=和绝对值的性质是解题的关a键.15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.16.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题考查条件求值问题,关键掌握把条件变形,整理出需要的结构形式降次及代入求值.
5.1或5.
【解析】
【分析】
根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.
【详解】
解:根据题意得:x=3,y=2或x=3,y=﹣2,
则x﹣y=1或5.
故答案为1或5.
【点睛】
此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
【详解】

∴3.14, , ,1.7,0都是有理数,
,-π是无理数,共2个,
故选:A.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π, ,0.8080080008…(每两个8之间依次多1个0)等形式.
3.D
【解析】
【分析】
数网格可得到a,在网格中构造直角三角形,利用勾股定理两直角边的平方和等于斜边的平方,依次求出b、c、d,再根据无理数定义判断即可.
33.已知25(x-1)2=49,求x的值
34.求方程: 中的 值.
35.若a是(﹣2)2的平方根,b是 的算术平方根,求a2+2b的值.
36.求下列各式中的x:
(1)(x-4)2=25;(2)(x+1)3-5=59.
37.已知 的算术平方根是 , 的平方根是 , 是 的整数部分,求 的平方根
38.细心观察图,认真分析各式,然后解答问题:
10.若一个正数的平方根是2a+1和-a+2,则这个正数是_______.
11. 的平方根是____.
三、解答题
12.已知 的平方根是 , 的立方根是2, 是 的整数部分,求 的值..
13.若5+ 的小数部分为a,5- 的小数部分为b,求 的值.
14.(1)已知 7的整数部分是a,7 的整数部分是b,求ab的值



(1)请用含 ( 为正整数)的等式表示上述交化规律:______;
(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;
(3)利用上面的结论及规律,请在图中作出等于 的长度;
(4)若 表示三角形面积, , , ,计算出 的值.
39.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,设p=BC+CD,四边形ABCD的面积为S.
(1)试探究 与 之间的关系,并说明理由;
(2)若四边形 的面积为9,求 的值.
参考答案
1.D
【解析】
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解: 是分数,属于有理数,故选项A不合题意;
【详解】
由图可知: ,



因此b、c为无理数.
故选:D.
【点睛】
本题考查勾股定理、无理数的定义,掌握勾股定理求第三边的知识和无理数的定义为解析】
把已知条件变形平方,利用m2进行降次后,整体代入即可.
【详解】
∵ ,
∴ ,
∴ ,∴ .
原式 ,

故答案为:4039.
【点睛】
(2)已知 7的小数部分是a,7 的小数部分是b,求ab的值.
15.无理数像一首读不完的长诗,既不循环,也不枯竭,无穷无尽,永葆常新,数学家称之为一种特殊的数.设面积为 的圆的半径为x.
(1)x是有理数吗?说明理由.
(2)x的整数部分是多少?
(3)将x精确到十分位是多少?
16.已知一个正数的两个平方根分别为2a+5和3a-15.
0是整数,属于有理数,故选项B不合题意;
,是整数,属于有理数,故选项C不合题意;
是无理数,故选项D符合题意.
故选:D.
【点睛】
本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.
2.A
【解析】
【分析】
由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.
28.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.
29.已知 与 互为相反教, 是 的方根,求 的平方根
30.已知 的立方根是3, 的算术平方根是4.
(1)求 , 的值;
(2)求 的平方根.
31.已知2a﹣1的平方根是±3, 的算术平方根是b,求a+b的平方根.
32.已知 ,y是3的平方根,且 ,求x+y的值.
25.(1)已知 的平方根是 , 的算术平方根是4,求 的值;
(2)若 与 是同一个正数的平方根,求 的值.
26.已知一个正数的两个平方根是m+3和2m﹣15.
(1)求这个正数是多少?
(2) 的平方根又是多少?
27.已知x+12的算术平方根是 ,2x+y﹣6的立方根是2.
(1)求x,y的值;
(2)求3xy的平方根.
初中数学平方根专项培优训练题(附答案)
一、单选题
1.在实数 ,0,﹣ , 中,是无理数的是( )
A. B.0C.﹣ D.
2.在实数3.14, ,- ,1.7, ,0,-π中,无理数有()
A.2个B.3个C.4个D.5个
3.如图为5×5的正方形格子,其中所有线段的端点都在格点上,长度是无理数的线段有( )
(1)求这个正数;
(2)请估算30a的算术平方根在哪两个连续整数之间
17.求下列各数的平方根.
(1)0.09(2) (3) (4)
18.一个正数x的两个平方根分别是2a﹣1与﹣a+2,求a的值和这个正数x的值.
19.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求2b+3a的平方根.
20.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.
21.求下列各式中的x的值:
(1)x2=25;
(2)(x-3)2=49.
22.已知某正数的两个平方根分别是a+3和5﹣3a,
(1)求这个正数;
(2)若b的立方根是2,求b﹣a的算术平方根.
23.已知 =x, =2,z是9的平方根,求2x+y-5z的值.
24.求下列各数的值:
(1) ;
(2) ;
(3) .
A.b、c、dB.c、dC.a、dD.b、c
二、填空题
4.若 , ______.
5.若|x|=3,y2=4,且x>y,则x﹣y=_____.
6. 的平方根是_____.
7.若 是m的一个平方根,则 的平方根是______.
8. 的平方根是_____.
9.若 与 是同一个数的平方根,则 为______.
相关文档
最新文档