全等三角形练习题及答案

合集下载

人教版八年级上册《第十二章全等三角形》单元练习题(含答案)

人教版八年级上册《第十二章全等三角形》单元练习题(含答案)

第十二章《全等三角形》单元练习题一、选择题1.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A. 4B. 3C. 6D. 52.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等3.如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C,D,则点P到∠AOB两边距离之和()A.小于CDB.大于CDC.等于CDD.不能确定4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°5.已知,如图,AC=BC,AD=BD,下列结论中不正确的是()A.∠ACD=∠BDCB.∠ACO=∠BCOC.CD平分∠ACD和∠ADBD.AB平分∠CAD和∠CBD6.如图所示,△ABC≌△DEC,则边AB的对应边是()A.DEB.DCC.ECD.BC7.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是()A.仅①B.仅①③C.仅①③④D.仅①②③④8.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∠A=40°,则∠BOC的大小为().A. 110°B. 120°C. 130°D. 140°二、填空题9.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是.10.如图:已知∠1=∠2,要根据SAS判定△ABD≌△ACD,则需要补充的条件为.11.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是 ___________.12.下列条件中,能判定两个直角三角形全等的个数有________个.①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一条直角边对应相等;④面积相等.13.如图,△ABC中,AB=AC,AE=CF,BE=AF,则∠E=________,∠CAF=__________.14.如图,已知AB=AD,∠BAE=∠DAC,要用SAS判定△ABC≌△ADE,可补充的条件是.15.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.三、解答题(共5小题,每小题分,共0分)17.已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.18.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.19.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?20.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.21.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.第十二章《全等三角形》单元练习题答案解析1.【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.2.【答案】D【解析】已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.3.【答案】A【解析】如图,过点P作PE⊥OA于E,PF⊥OB于F,则PE、PF分别为点P到∠AOB两边的距离,∵PE<PC,PF<PD,∴PE+PF<PC+PD,∴PE+PF<CD,即点P到∠AOB两边距离之和小于CD.故选A.4.【答案】B【解析】∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选B.5.【答案】A【解析】在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACD=∠BCD,∠ADC=∠BDC,∴故选项B、C、D不符合要求;根据已知不能推出∠ACD=∠BDC,故本选项正确;故选A.6.【答案】A【解析】根据全等三角形中互相重合的边是对应边,则可得到结论.7.【答案】D【解析】∵Rt△ABE≌Rt△ECD,∴AE=ED,①成立;∵Rt△ABE≌Rt△ECD,∴∠AEB=∠D,又∠DEC+∠D=90°,∴∠DEC+∠ABE=90°,即∠AED=90°,∴AE⊥DE,②成立;∵Rt△ABE≌Rt△ECD,∴AB=EC,BE=CD,又BC=BE+EC,∴BC=AB+CD,③成立;∵∠B+∠C=180°,∴AB∥DC,④成立,故选D.8.【答案】A【解析】∵O到三角形三边距离相等,∴AO,BO,CO都是三角形的角平分线,∴有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∴∠ABC+∠ACB=180-40=140,∴∠OBC+∠OCB=70,∴∠BOC=180-70=110°.9.【答案】全等三角形的对应角相等【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',利用全等三角形的对应角相等,得到∠A′O′B′=∠AOB.10.【答案】BD=CD【解析】如图,∵在△ABD与△ACD中,∠1=∠2,AD=AD,∴添加BD=CD时,可以根据SAS判定△ABD≌△ACD,故答案是BD=CD.11.【答案】AB=AC【解析】由题中点定义可知BD=CD,图中公共边AD=AD,要想用SSS判定△ABD≌△ACD,只要添加AB=AC即可.12.【答案】3【解析】①两条直角边对应相等,利用SAS,故本选项正确;②斜边和一锐角对应相等,符合判定AAS或ASA,故本选项正确;③斜边和一条直角边对应相等,符合判定HL;④面积相等不一定全等,故本选项错误.故答案为3.13.【答案】∠F;∠ABE【解析】∵AB=AC,AE=CF,BE=AF,∴△AEB≌△CFA(SSS),∴∠E=∠F,∠CAF=∠ABE.14.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC≌△ADE(SAS).15.【答案】∠ADB=∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△COB中,∴△ABD≌△CDB(SAS),故答案为∠ADB=∠CBD.16.【答案】(-2,0)【解析】∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(-2,0).故答案为(-2,0).17.【答案】解:∵△ABC≌△DFE,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB∴∠E=180°-100°-50°=30°,∵DF=12cm,∴AB=12cm.【解析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E的度数,再根据DF=AB,即可求出AB的长.18.【答案】解:(1)∵在△ADE和△CBF中,∴△ADE≌△CBF(SSS),∴∠D=∠B.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,∴∠AEO=∠CFO,∴AE∥CF.【解析】(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可;(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.19.【答案】(1)解:∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE.(2)解:△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),∴∠BDE=180°-90°=90°=∠E,∴BD∥CE.【解析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.20.【答案】证明:∵AE⊥AB,∴∠BAE=90°,∵△ACE≌△AFB,∴∠CAE=∠BAF,∠ACE=∠F,∴∠CAB+∠BAE=∠BAC+∠CAF,∴∠CAF=∠BAE=90°,而∠ACE=∠F,∴∠FMC=∠CAF=90°,∴CE⊥BF.【解析】先利用垂直定义得到∠BAE=90°,再利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.21.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC-BC=DB-BC,即AB=CD.【解析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD是整数,求AD解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C延伸CD与P,使D为CP中点.衔接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF衔接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF.∵∠ABC=∠AED.∴∠ABE=∠AEB.∴ AB=AE.在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2). 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又,EF∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC5. 已知:AD 等分∠BAC,AC=AB+BD,求证:∠B=2∠CB ACDF21 E A证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE =CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS )∴AD=AF∴AE=AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF.∴ 三角形BCF全等于三角形EDF(边角边).∴ BF=EF,∠CBF=∠DEF.衔接BE.在三角形BEF中,BF=EF.∴∠EBF=∠BEF.又∵∠ABC=∠AED.∴ AB=AE.在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF.∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2).10. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又EF∥AB∴∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC11. 已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠C证实:延伸AB 取点E,使AE =AC,衔接DE∵AD 等分∠BACB ACDF21 ECD B A∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C12.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CF E+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC又∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCECE 等分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS )∴CD=CF∴BC=BF+CF=AB+CD13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠CAB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,∵∠EAB=∠BDE,∴∠AED=∠ABD,∴四边形ABDE 是平行四边形.∴得:AE=BD,∵AF=CD,EF=BC,∴三角形AEF 全等于三角形DBC,∴∠F=∠C.14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C DCB A FE证实:设线段AB,CD 地点的直线交于E,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC 时,E 点是射线AB,DC 的交点).则: △AED 是等腰三角形.∴AE=DE而AB=CD∴BE=CE (等量加等量,或等量减等量)∴△BEC 是等腰三角形∴∠B=∠C.15. P 是∠BAC 等分线AD 上一点,AC>AB,求证:PC-PB<AC-AB在AC 上取点E,使AE =AB.∵AE =ABAP =AP∠EAP =∠BAE,∴△EAP≌△BAP∴PE=PB.PC <EC +PE∴PC<(AC -AE )+PB∴PC-PB <AC -AB.16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:在AC 上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC -∠DBC=3∠C -∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD 在等腰三角形ABD 中,AE 是角BAD 的角等分线,∴AE 垂直BD∵BE⊥AE∴点E 必定在直线BD 上,在等腰三角形ABD PD A CB中,AB=AD,AE 垂直BD∴点E 也是BD 的中点∴BD=2BE∵BD=CD=AC -AB∴AC -AB=2BE17. 已知,E 是AB 中点,AF=BD,BD=5,AC=7,求DC∵作AG∥BD 交DE 延伸线于G∴AGE 全等BDE ∴AG=BD=5∴AGF∽CDF AF=AG=5∴DC=CF=218.如图,在△ABC 中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD 至BC 于点E,∵BD=DC ∴△BDC 是等腰三角形∴∠DBC=∠DCB 又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB∴△ABC 是等腰三角形∴AB=AC 在△ABD 和△ACD 中 {AB=AC∠1=∠2 BD=DC∴△ABD 和△ACD 是全等三角形(边角边)∴∠BAD=∠CAD∴AE 是△ABC 的中垂线∴AE⊥BC∴AD⊥BC19.如图,OM 等分∠POQ,MA⊥OP,MB⊥OQ,A.B 为垂足,AB 交OM 于点N .求证:∠OAB=∠OBA证实:∵OM 等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90F A E DCB∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB20.(5分)如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC21.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE可得∠B=∠E△CDE为等腰∠ACB=2∠B22.(6分)如图①,E.F分离为线段AC上的两个动点,且DE⊥AC 于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E.F两点移动到如图②的地位时,其余前提不变,上述结论可否成立?若成立请赐与证实;若不成立请解释来由.(1)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠AB E=∠CB E∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE25.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)26.(10分)如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.27.(10分)如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC28.(10分)AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29.(12分)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.∵AB=DCAE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE30.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM 和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)∴CF=BE31.已知:点 A.F.E.C在统一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS)32.已知:如图所示,AB=AD,BC=DC,E.F分离是DC.BC的中点,求证: AE=AF.DEAF衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE\F是中点∴DE=BF;∵AB=ADDE=BF∠ADC=∠ABC∴AE=AF.33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC(两角加一边)∵AB=AD,BC=CD在△DEC与△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC(双方夹一角)∴∠DEC=∠BEC34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.∵AD=DF∴AC=DF∵AB//DE∴∠A=∠EDF又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA)35.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE订交于点F,求证:BE=CD.证实:∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS)∴BE =CD36、如图,在△ABC 中,AD 为∠BAC 的等分线,DE⊥AB于E,DF⊥AC 于F.求证:DE=DF .证实:∵AD 是∠BAC 的等分线 ∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED 与∠AFD=90°在△AED 与△AFD 中∠EAD=∠FADAC DE FAD=AD∠AED=∠AFD∴△AED≌△AFD(AAS )∴AE=AF在△AEO 与△AFO 中∠EAO=∠FAOAO=AOAE=AF∴△AEO≌△AF O (SAS )∴∠AOE=∠AOF=90°∴AD⊥EF37.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长? ∵AD⊥AB∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于E 依据三角形角度之和等于180度∴∠ABC=∠DAE∵BC=AE,△ABC≌△DAE(ASA )∴AD=AB=538.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C DCB AE∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.39.如图,给出五个等量关系:①②③④⑤.请你以个中两个为前提,另三个中的一个为结论,推出一个准确的结论(只需写出一种情形),并加以证实.已知:①AD=BC,⑤∠DAB=∠CBA求证:△DAB≌△CBA证实:∵AD=BC,∠DAB=∠CBA又∵AB=AB∴△DAB≌△CBA40.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD ﹣BE41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF, AE B MCF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF44.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN ∴AE为公共,∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD45.(10分)如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).46.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD47.(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD48.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE49.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BCA CE D B A B E CD∴△ABC≌△DCB,∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE50.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG⊥AB,交AD 于H,则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE 又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。

全等三角形练习题及答案

全等三角形练习题及答案

全等三角形练习题及答案.求证如图已知C B =BC :AC.=C A AB,=B A AC,A C AB,A B ,:.1''''⊥'⊥'2.已知:如图,△ABC 中,点E 、F 分别在AB 、AC 边上,点D 是BC 边中点,且EF ∥BC,DE=DF . 求证:∠B=∠C3. 已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠44. 已知:如图 , AB=DC ,AD=BC , O 是BD 中点 ,过O 的直线分别与DA 、BC 的延长线交于E 、F . 求证:OE=OF5. 已知:如图,AB=AC,AE 平分∠BAC.求证:∠DBE=∠DCE .6. 已知:如图:AB=CD , BE=CF , AF=DE.求证:△ABE≌△DCF7. 已知:如图,∠1=∠2,BD=CD,求证:AD是∠BAC的平分线.8. 已知:如图,AD是BC上的中线,且DF=DE.求证:BE∥CF.9. 如图,已知:AC=DF,AC∥FD,AE=DB,求证:△ABC≌△DEF10. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.答案1. C B =BC C A B BAC C A B =BAC AC B +C CA =AC B +B BA 90=C CA =B BA AC A C AB,A B :''''''''''''⊥'⊥'∴≌△∴△∠∠即∠∠∠∠∴°∠∠∴∵证明 2. 证:∵BD=CD,EF ∥BC∴∠1=∠2,∠3=∠4∵DE=DF,∴∠2=∠4∴∠1=∠3∵D 是BC 的中点,∴BD=DC,又∠1=∠3,DE=DF ∴△BED ≌△CFD(SAS)∴∠B=∠C3. 证明:∵∠1=∠2∴∠1+∠5=∠2+∠5,即∠EAC=∠DAB 在△EAC 和△DAB 中∵∠∠AC ABEAC DABAE AD ===⎡⎣⎢⎢⎢⎢∴△EAC ≌△DAB(SAS)∴∠3=∠44. 提示:先证△ABD ≌△CDB , 再证△DOE ≌△BOF .5. 证明:在△ABE 和△ACE 中 ∵∠∠平分∠AB ACABE BAC AE AE ===⎡⎣⎢⎢⎢⎢12()∴△ABE ≌△ACE(SAS)∴BE=CE ∠3=∠ 4在△EBD 和△ECD 中∵∠∠BE CEDE ED ===⎡⎣⎢⎢⎢⎢34∴△EBD ≌△ECD(SAS) ∴∠DBE=∠DCE6. 证 明:∵AF=DE , ∴AF+FE=DE+EF .即AE=DF 在△ABE 和△DCF 中AB=CD , BE=CF , AE=DF , ∴△ABE ≌△DCF(SSS).7. 证明:∵BD=CD,∠1=∠2, ∴∠ADB=∠ADCAD=AD∴△ADB ≌△ADC(SAS) ∴∠BAD=∠CAD .即AD 平分∠BAC .8. 证:∵D 是BC 的中点,∴BD=CD ∵∠1=∠2,DF=DE,∴△BED ≌△CFD(SAS) ∴∠E=∠CFD∴BE ∥CF9. 证明:∵AE=BD∴AB=DE∵AC=DF AC ∥DF∴∠1=∠2∴△ABC ≌△DEF(SAS)10. 证明:∵BE=CF∴BE+EC=CF+EC 即BC=EF 又 AB ∥DE∴∠B=∠DEF∵AB=DE∴△ABC ≌△DEF∴∠ACB=∠F∴AC ∥DF。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

《全等三角形》中考专练附答案

《全等三角形》中考专练附答案
【解答】解:∵CF∥AB,
∴∠A=∠FCE, ∠ADE=∠F,
在△ADE和△FCE中 ,
∴△ADE≌△CFE〔AAS〕,
∴AD=CF=3,
∵AB=4,
∴DB=AB﹣AD=4﹣3=1.
应选:B.
【点评】此题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.逸夫中学2021-2021学年八〔下)数学校本作业 ---完全平方公式
在△ABE和△DBE中, ,
∴△ABE≌△DBE〔SAS〕;
〔2〕解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE= ∠ABC=15°,
在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.
3.〔2021•山东威海•3分〕如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE, ∠BEC=∠DEC,假设AB=6,那么CD=3.
【分析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,那么CD为△ABF的中位线,故CD= 可求出.
【解答】解:如图,延长BC、AD相交于点F,
全等三角形
1.〔2021·贵州安顺·3分〕如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加以下一个条件后,仍无法判定△ABC≌△DEF的是〔 〕

全等三角形竞赛试题(含答案)

全等三角形竞赛试题(含答案)

全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE= 7. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD 与EF垂直吗?证明你的结论。

8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

AB'CAB9. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF ⊥CD10. 如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?11. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:B E ⊥AC12. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD (2)CM=CN(3)△CMN 为等边三角形 (4)MN ∥BC13. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ;②BF=BG ;③BH 平分∠AHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有( ) A .3个 B. 4个 C. 5个 D. 6个14. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:A G ⊥AF15. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 求证:(1)AD=AG(2)AD 与AG 的位置关系如何CBBAABB17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CF 18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB ,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF22.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△(2) 点D 在∠A 的平分线上23.如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE=2,则AB 与CD 之间的距离是多少?24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?D B C(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。

: / ABC= / AED 。

二 / ABE= / AEB 。

• AB=AE 。

在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。

•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。

连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

AD B C3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF =CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠EBACDF21 E A∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

21、如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.22、已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为________________.(2)若以“ASA”为依据,还须添加的一个条件为________________.(3)若以“AAS”为依据,还须添加的一个条件为________________.23、如图4,如果AB=AC,,即可判定ΔABD≌ΔACE。

24、如图2,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是__________.25、如图,已知∠ACB=∠BDA,只要再添加一个条件:__________,就能使△ACB≌△BDA.(填一个即可)26、已知,如图2:∠ABC=∠DEF,AB=DE,要说明ΔABC≌ΔDEF(1) 若以“SAS”为依据,还要添加的条件为______________;(2) 若以“ASA”为依据,还要添加的条件为______________;27、如图9所示,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为 [答案不唯一,只需填一个]。

29、如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.31、已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.34、如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC35、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF .36、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.37、已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF(2)AF//CE参考答案一、选择题1、D2、A3、C;4、 A5、 D6、C7、C;8、B9、B、10、、D11、D12、B13、C14、B二、填空题15、4516、一定;17、∠A=∠D或∠ACF=∠DBE;18、AC=BD,(答案不唯一)19、等(不惟一)20、2.7cm21、120°22、BC=EF ∠A=∠D ∠ACB=∠DFE ;23、∠B=∠C(答案不唯一)24、∠B=∠C25、∠CAB=∠DBA或∠CBA=∠DAB26、BC=EF;∠A=∠D27、AC=CD。

28、BE=CF等29、ABC DCB HL ABO DCO AAS30、∠B=∠C_或BD=C D等(答案不唯一)_三、简答题31、证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中∴△ABC≌△DEF(2) ∵△ABC≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF32、证明:∵GF=GB,∴∠GFB=∠GBF,……1分∵AF=DB,∴AB=DF,………2分而∠A=∠D,∴△ACB≌△DEF, ………4分∴BC=FE,………5分由GF=GB,可知CG=EG .……7分33、证明:∵AD//CB∴∠A=∠C······························ 2分在△ADF和△CBE中,又∵AD=CB,∠D=∠B·························· 3分∴△ADF≌△CBE···························· 5分∴AF=CE······························· 6分∴AF+EF=EF+CE,∴AE=CF······························· 7分34、略35、证明:(1)∵BE=CF,∴ BE+EF=CF+EF; 即BF=CE. 1分∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中, ;∴Rt△ABF≌Rt△DCE(HL). 5(2)∵ Rt△ABF≌Rt△DCE(已证) . 6∴∠AFB=∠DEC .8∴OE=OF.36、证明:∵∠1=∠2∴∠DAE=∠BAC∵ AB=AD,AC=AE∴△ABC≌△ADE37、证明:(1)……1分(SAS) ……3分……4分(2) 先证明……6分得……7分……8分(方法不唯一,其他证明方法酌情给分)38、。

相关文档
最新文档