传动轴常见故障的排除)

传动轴常见故障的排除)
传动轴常见故障的排除)

金属氧化物避雷器常见故障及处理

金属氧化物避雷器常见故障及处理避雷器是电力系统所有电力设备绝缘配合的基础设备。合理的绝缘配合是电力系统安全、可靠运行的基本保证,是高电压技术的核心内容。而所有电力设备的绝缘水平,是由雷电过电压下避雷器的保护特性确定的(在某些环境中,由操作过电压下避雷器的保护特性确定)。金属氧化物避雷器,简称氧化锌避雷器,以其良好的非线性,快速的陡波响应和大通流能力,成为新一代避雷器的首选产品。由于避雷器是全密封元件,一般不可以拆卸。同时使用中一旦出现损坏,基本上没有修复的可能。所以其常见故障和处理与普通的电力设备不同,主要是预防为主。选则原则。避雷器是过电压保护产品,其额定电压选择比较严格,且与普通电力设备完全不同,容易出现因选型失误造成的事故。对于这类事故,只要明确了正确的选择方法,就可以有效避免。正确的金属氧化物避雷器额定电压的选择,应遵循以下原则。 1、对于有间隙避雷器,额定电压依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.1 倍选取。35kV 至66kV 避雷器,额定电压按系统最高电压选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8 倍选取。例如:35kV 有间隙避雷器,额定电压应选择42kV 。 2、对于无间隙避雷器,额定电压同样依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.38倍选取。35kV至66kV避雷器,额定电压按系统最高电压的1.25 倍选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8倍选取。例如:10kV无间隙避雷器,额定电压应选择17kV。但对于电机保护用的无间隙避雷器,不按额定电压选择,而按持续运行电压选择。一般应选择持续运行电压与电机额定电压一致的避雷器。例如:13.8kV 电机,应选用13.8kV 持续运行电压的避雷器,即:选用17.5/40 的避雷器。具体的型号选择,可参考GB11032-2000 标准,或我公司的避雷器产品选型手册。另外,由于传统碳化物阀式避雷器以及按1989老国家标准制作的早期金属氧化物避雷器在很多系统中还在使用。为确保新生产的产品在这类老系统中可以安全的配合,遇到老系统产品的更换替代时,建议用户直接咨询我公司,以确保选型正确。二、正确的预防及维护性试验方法。预防及维护性试验,是及时发现事故 隐患,防止隐患演变为事故的重要手段。金属氧化物避雷器的预防及维护性试验,一般每两年到四年进行一次。有条件的用户,最好每年雷雨季节前测试一次。以最大可能的提早发现事故隐患。测试的目的是提前发现产品的劣化倾向, 及早作出更换。测试主要考察两个性能指标:a、转变电压值(稳压电源下), 用以考察避雷器的工作特性有无明显变化。b、泄漏电流值(转变点以下),用以考察避雷器的安全特性有无明显变化。 1、有间隙金属氧化物避雷器的测试方法。a、测试工频放电电压值,考 察避雷器的工作特性。具体的试验方法和合格范围可参考JB/T9672-2005 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的10%为正常。b、测试系统最高电压下的电导电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考 JB/T9672-2005 ,或者我公司的产品使用说明书。一般以不大于20 ^A为正常。 2、无间隙金属氧化物避雷器的测试方法。a、测试直流1mA 参考电压值,考察避雷器的工作特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的5%为正常。b、测试0.75 倍直流1mA 参考电压下的泄漏电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以不大于50 yA为正常。 3、其它的替代办法。在没有合适的测试设备,不能进行上述的测试时,可以采用一些替代的办法,但同时也存在一些测试盲点。a、用摇表测试绝缘电

台式电脑常见故障维修大全

常见故障检修 01:主板故障 02:显卡故障 03:声卡故障 04:硬盘故障 05:内存故障 06:光驱故障 07:鼠标故障 08:键盘故障 09:MODEM故障 10:打印机故障 11:显示器故障 12:刻录机故障 13:扫描仪故障 14:显示器抖动的原因 15:疑难BIOS设置 16:电脑重启故障 17:解决CPU占用率过高问题 18:硬盘坏道的发现与修复 19:网页恶意代码的手工处理 20:集成声卡常见故障及解决 21:USB存储设备无法识别 22:黑屏故障 23:WINDOWS蓝屏代码速查表 24:WINDOWS错误代码大全 25:BIOS自检与开机故障问题 下面是相关的故障速查与解决问题 电脑出现的故障原因扑朔迷离,让人难以捉摸。并且由于Windows操作系统的组件相对复杂,电脑一旦出现故障,对于普通用户来说,想要准确地找出其故障的原因几乎是不可能的。那么是否是说我们如果遇到电脑故障的时候,就完全束手无策了呢?其实并非如此,使电脑产生故障的原因虽然有很多,但是,只要我们细心观察,认真总结,我们还是可以掌握一些电脑故障的规律和处理办法的。在本期的小册子中,我们就将一些最为常见也是最为典型的电脑故障的诊断、维护方法展示给你,通过它,你就会发现——解决电脑故障方法就在你的身边,简单,但有效! 一、主板 主板是整个电脑的关键部件,在电脑起着至关重要的作用。如果主板产生故障将会影响到整个PC机系统的工作。下面,我们就一起来看看主板在使用过程中最常见的故障有哪些。

常见故障一:开机无显示 电脑开机无显示,首先我们要检查的就是是BIOS。主板的BIOS中储存着重要的硬件数据,同时BIOS也是主板中比较脆弱的部分,极易受到破坏,一旦受损就会导致系统无法运行,出现此类故障一般是因为主板BIOS被CIH病毒破坏造成(当然也不排除主板本身故障导致系统无法运行。)。一般BIOS被病毒破坏后硬盘里的数据将全部丢失,所以我们可以通过检测硬盘数据是否完好来判断BIOS是否被破坏,如果硬盘数据完好无损,那么还有三种原因会造成开机无显示的现象: 1. 因为主板扩展槽或扩展卡有问题,导致插上诸如声卡等扩展卡后主板没有响应而无显示。 2. 免跳线主板在CMOS里设置的CPU频率不对,也可能会引发不显示故障,对此,只要清除CMOS即可予以解决。清除CMOS的跳线一般在主板的锂电池附近,其默认位置一般为1、2短路,只要将其改跳为2、3短路几秒种即可解决问题,对于以前的老主板如若用户找不到该跳线,只要将电池取下,待开机显示进入CMOS设置后再关机,将电池上上去亦达到CMOS放电之目的。 3. 主板无法识别内存、内存损坏或者内存不匹配也会导致开机无显示的故障。某些老的主板比较挑剔内存,一旦插上主板无法识别的内存,主板就无法启动,甚至某些主板不给你任何故障提示(鸣叫)。当然也有的时候为了扩充内存以提高系统性能,结果插上不同品牌、类型的内存同样会导致此类故障的出现,因此在检修时,应多加注意。 对于主板BIOS被破坏的故障,我们可以插上ISA显卡看有无显示(如有提示,可按提示步骤操作即可。),倘若没有开机画面,你可以自己做一张自动更新BIOS的软盘,重新刷新BIOS,但有的主板BIOS被破坏后,软驱根本就不工作,此时,可尝试用热插拔法加以解决(我曾经尝试过,只要BIOS相同,在同级别的主板中都可以成功烧录。)。但采用热插拔除需要相同的BIOS外还可能会导致主板部分元件损坏,所以可靠的方法是用写码器将BIOS 更新文件写入BIOS里面(可找有此服务的电脑商解决比较安全)。 常见故障二:CMOS设置不能保存 此类故障一般是由于主板电池电压不足造成,对此予以更换即可,但有的主板电池更换后同样不能解决问题,此时有两种可能: 1. 主板电路问题,对此要找专业人员维修; 2. 主板CMOS跳线问题,有时候因为错误的将主板上的CMOS跳线设为清除选项,或者设置成外接电池,使得CMOS数据无法保存。 常见故障三:在Windows下安装主板驱动程序后出现死机或光驱读盘速度变慢的现象 在一些杂牌主板上有时会出现此类现象,将主板驱动程序装完后,重新启动计算机不能以正常模式进入Windows 98桌面,而且该驱动程序在Windows 98下不能被卸载。如果出现这

变频恒压供水设备常见故障排除方法

变频恒压供水设备常见故障排除方法(一) ■ ■I i■ ■aaa^-n i]?■ m ——“i?—《■“」■?■ i■ ” —i“ ■―■■■ ■■ LA^aaia■ UHB ■as -JI 问:为什么变频恒压供水设备系统压力不稳容易振荡答:系统压力不稳,可能有以下几种原因:

问:控制电机的接触器无动作,电机不启动,为什么? 答:首先查看控制器操作面板上反应水泵的输出状态,可对照控制器说明书上所描述的 泵的设定及运行指示状态。假如无动作,但水泵对应的操作面板上查询状态有输出,则先查看一下外部的接触器接线及接触器的继电逻辑是否正确。如果没有问题,再用万用表测量控 制器相应的继电器输出,如果继电器没有输出相应的开关信号,说明控制器的继电器输出有 问题。如果操作面板上查询状态也无输出指示,请查看相对应的水泵是否设定为开启状态 (变量泵”或定量泵”状态)。] 问:为什么变频恒压供水设备压力传感器显示压力变化,而面板显示压力却不变? 答:首先应检查压力传感器和控制器的接线是否有松动或接触不良的现象存在。如果上述现象不存在,用万用表测量控制器模拟输入口的电压值。先测量SVCC端及GND端之间, 如果是4.9V~5.1V之间的电压值,说明提供模拟量输入口的电源正常,则进行下一步。可将一1K欧姆滑动电阻接在控制器的输入口的三个端子,动端接P1,再测量控制器的P1端 和GND端的电压是否随电阻器的阻值变化而变化。如果P1端对GND端的电压不变化,则 说明控制器的模拟输出口有故障或已损坏。如果正常,则说明是远传压力表的故障,更换压力表即可。] 问:为什么在工作时系统压力高于设定值主机不停? 答:主要原因可能是以下几项之一:1、如果压力传感器反应的压力和面板的压力不相 符,只是压力传感器的压力高于设定值,而面板反映的压力并未超出,则应查看压力传感器 是否损坏,接线是否有问题。此时控制器主机不停是正常的。2、如果上述情况不存在,控 制器和传感器的压力相符,均高于设定压力,则应检查附属小泵的设定状态,看小泵是否为 开启状态。如果小泵是关闭的,并且主机设定为到达下限频率不停机,主机不停也是正常的。 如果小泵是开启的,请查看主泵的运行频率,如果运行频率并非设定的下限频率,此时说明系统正处于正常的供水过程之中,等系统将频率调低,系统的压力自然会下降。 问:为什么控制器不起泵,而变频恒压供水设备RUN灯闪烁? 答:因为此时控制器处于定时休眠状态。用户将控制器的第37项功能代码设定为ON 并规定了控制器休眠的时间,此时控制器时钟正处于这一时间段。将控制器第37项的相关参数项更改即可。 问:变频恒压供水设备面板始终显示P000,这是为什么? 答:首先,检查控制器的参数设定是否正确,检查第4项参数(控制器的压力量程)是否被设定为零。如果是非零,则将控制器上压力传感器的几个端子的控制线拆下,用万用表测 量SVCC端与GND端之间是否为4.9V~5.1V之间的直流电压。如果正常,此时面板应显示正常的压力范围。否则控制器已损坏。如果测量所得结果低于 4.9V,说明输出模拟量的供] 给电源有故障。 问:变频恒压供水设备在02报警,应如何处理?

避雷器在线检测技术及常见故障分析

江苏中能硅业科技发展有限公司 专业论文 论文题目避雷器在线检测技术及常见故障分析 作者吴静 人员编码 105956 部门/分厂电气分厂 江苏中能硅业科技发展有限公司人力资源部 二零一四年六月

避雷器在线检测技术及常见故障分析 电气分厂:吴静 【摘要】介绍了常用避雷器的种类、故障类型和红外热成像检侧技术,分析了各种常见避雷器的结构、在运行过程中受潮和发热原因、发热特点以及红外热像特征、避雷器的红外热像检测的方法。 【关键词】避雷器、在线检测、故障诊断、红外热像 引言 由于近几年来的环境条件不断劣化,雷击引起的输电线路跳闸故障也日益增多,不仅影响了设备的正常运行,而且在很大程度上影响了日常的生产、生活。纵观全国,几乎每年都会发生雷击线路跳闸事故,雷击已成为影响输电线路安全可靠运行的最主要因素。 避雷器是用来防止雷电侵入波、线路过电压或内部过电压对电气设备造成危害,并把过电压限制在电气设备绝缘的耐受冲击电压水平以下的一种电气设备。避雷器并联接在被保护设备上,使设备免遭由过电压引起的绝缘击穿损坏事故。如果避雷器存在缺陷或者故障,不仅起不到保护作用,还会影响其它设备的正常运行,甚至酿成事故。有统计表明,受潮缺陷是造成避雷器异常和事故的主要原因,不同型式的避雷器由于结构不同,其在正常状况和受潮缺陷下的发热特征也不同。 一、避雷器的分类 目前使用的避雷器有以下四种类型: 1.保护间隙避雷器; 2.管式避雷器; 3.阀式避雷器,包括普通阀式避雷器(FS型和FZ型)与磁吹式避雷器(FCZ型和FCD型); 4.金属氧化物避雷器,也称无间隙避雷器。

二、常用避雷器的故障分析 2.1避雷器故障情况 目前,电力系统所使用的避雷器主要为金属氧化物避雷器(以下简称MOA ),由于避雷器在应对线路过电压起着重要的作用,故其在输配电线路上得到广泛应用。避雷器故障损坏大部分是因为遭受雷击、外部污闪或自身质量问题。 避雷器遭受雷击后,可能会由于本次雷击产生的过电压直接导致内部氧化锌电阻片炸裂,或者由于多次雷击产生的累积效应,使避雷器绝缘受到损坏,进而造成绝缘筒爆裂;若避雷器安装运行在污秽物较多的地区,当其表面伞裙积聚的污秽足够多时,在雨雾天气容易形成沿面放电,导致污闪;避雷器自身质量问题,如密封缺陷导致内部受潮,容易发生热击穿。 2.2避雷器污闪分析 污秽对避雷器外绝缘的影响是显著的,而且污秽愈严重,对其外绝缘的影响也就愈大。复合外套避雷器在污秽情况下产生的闪络放电和老化过程,可以描述成积污、受潮、局部放电及局部电弧发展引起污闪等4个过程。这些过程重复、交替出现,使避雷器复合外套产生起痕、电蚀,长期持续下去,老化就会快速发生。 2.3基于复合外套MOA质量的故障分析 目前,在大多数情况下,线路避雷器多采用复合外套MOA,下面将从避雷器的电阻片特性和密封性能两方而来展开对避雷器的故障分析。 2.3.1基于复合外套氧化锌电阻片特性的故障分析 从理论上说,氧化锌电阻片老化是影响避雷器寿命的重要因素。非线性氧化锌电阻片的泄流能力强,通流容量大,容易吸收能量,电阻片的升温快,加速了避雷器的老化。不难看出,虽然氧化锌的非线性特性对线路防雷起到了很好的保护作用,但在某种程度上来说,是以牺牲自身寿命为代价的。在MOA运行到其产品寿命的后期,电阻片劣化造成泄漏电流上升,甚至会造成复合外套内部放电,严重时避雷器内部气体压力和温度急剧增高,引起本体爆炸。

铅酸蓄电池常见故障分析及处理方法

铅酸蓄电池常见故障分析及处理方法 常见故障不良现象故障产生的原因故障的处理方法 蓄电池充电不足1.静止电压低 2.密度低,充电结束后达不 到规定要求 3.工作时间短 4.工作时仪表显示容量下降 快 1.充电器电压、电流设置 过低 2.初充电不足 3.充电机故障 1.调整,检修充电 器 2.蓄电池补充充电 3.严重时需更换新 电池 蓄电池过充电1.注液盖篓色泽变黄,变红 2.外壳变形 3.隔板炭化、变形 4.正极腐蚀、断裂 5.极柱橡胶套管上升、老 化、开裂 6.经常补水,充电时电解液 浑浊 1.充电器电压,电流设置 过高 2.充电时间过长 3.频繁充电 4.放电量小而充电量大 5.充电机故障 1.调整,检修充电 器 2.调整充电制度 3.严重时需更换新 电池

铅酸蓄电池热失控故障分析 当电池处于充电状态时,电池温度发生一种积累性的增强作用。当增温过程的热量积累到一定程度,电池端电压会突然出现降低,迫使电流骤然增大,电池温度高升而损坏蓄电池的现象称之为热失控。 1.故障现象 充电时特别到了末期,充电器不转绿灯,同时电池严重发热,如果测量充电电流会发现电流很高可达到2A或2A以上。发热严重时,析气压力过高,会导致电池壳受热变形,直至电池报废。 2.故障产生原因 ⑴电池失水 失水后,蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变得很差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽散热,如散热小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过“通道”,在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的“热失控”。最

CPU常见的故障现象及其排除方法

CPU常见的故障现象及其排除方法1 1、机箱的噪音: 故障现象:电脑在升级CPU后,每次开机时噪声特别大。但使用一会后,声音恢复正常。 故障分析与处理:首先检查CPU风扇是否固定好,有些劣质机箱做工和结构不好,容易在开机工作时造成共振,增大噪音,另外可以给CPU风扇、机箱风扇的电机加点油试试。如果是因为机箱的箱体单簿造成的,最好更换机箱。 2、温度上升太快: 故障现象:一台电脑在运行时CPU温度上升很快,开机才几分钟左右温度就由31℃上升到51℃,然而到了53℃就稳定下来了,不再上升。 故障分析与处理:一般情况下,CPU表面温度不能超过50℃,否则会出现电子迁移现象,从而缩短CPU寿命。对于CPU来说53℃下温度太高了,长时间使用易造成系统不稳定和硬件损坏。根据现象分析,升温太快,稳定温度太高应该是CPU风扇的问题,只需更换一个质量较好的CPU风扇即可。 3、夏日里灰尘引发的死机故障: 故障现象:电脑出现故障,现象为使用平均每20分钟就会死机一次,重新开机后过几分钟又会再次死机。 故障分析与处理:开始估计是机箱内CPU温度过高造成死机,在BIOS中检查CPU的温度,发现显示温度只有33℃。后来发现这台电脑开机时BIOS中检查的温度也就只有31℃,开机使用1小时后,温度仅仅上升2℃,当时室温在35℃左右。看来测得的CPU温度不准确。打开机箱发现散热片上的风扇因为上面积累的灰尘太多,已经转不动了,于是更换了CPU风扇,这时再开机,电脑运行了数个小时的游戏也没有发生死机现象。后来发现这块主板的温度探针是靠粘胶粘在散热片上来测量CPU温度的,而现在这个探头并没有和散热片紧密地接触,分开有很大的距离,散热片的热量无法直接传到温度探针上,测到的温度自然误差很大。更换CPU风扇时,把探针和散热片贴在一起固定牢固,这样在开机20分钟以后,在BIOS中测得的温度是45℃,之后使用一切正常。 CPU常见的故障现象及其排除方法2 4、CPU针脚接触不良导致电脑无法启动: 故障现象:一台Intel CPU的电脑,平时使用一直正常,近段时间出现问题。 故障分析与处理:首先估计是显卡出现故障。用替换法检查后,但有时又正常。最后拔下插在主板上的CPU,仔细观察并无烧毁痕迹,但发现CPU的针脚均发黑、发绿,有氧化的痕迹和锈迹(CPU的针脚为铜材料制造,外层镀金),对CPU针脚做了清除工作,电脑又可以加电工作了。 5、CPU引起的死机:

减速机常见故障及现场修复案例汇总_图文

煤矿减速机常见故障及现场修复案例汇总 1、减速机轴承室磨损 减速机轴承室磨损(轴承跑外圈)的主要原因有:减速机因尺寸超差、频繁拆装更换密封酯等因素,造成轴承室(座)与轴承的配合尺寸发生变化,进而造成轴承跑外圈而导致轴承室磨损;二是轴承润滑冷却不到位,轴承发热抱死损坏,造成轴承跑外圈,导致轴承室加剧磨损。 采用2211F金属修复材料进行现场修复,通过定位修复工艺来恢复磨损尺寸及部件对应法来保证修复后的配合面要求的综合工艺,可以快速有效的解决并满足设备运行要求。高分子复合材料具有优异物理性能外,而且具有金属材料不具备的“退让性”,可以很好的解决并满足轴承运行要求的“热胀”要求。 应用图例信息 2、减速机传动齿轮轴轴头磨损(键槽损伤) 减速机传动齿轮轴与液力耦合器或联轴器的连接,通常采用键链接和轴头过盈配合的方式来满足。

若键与键槽配合存在间隙,或者轴有轴孔存在间隙,都是导致键槽损坏滚键和轴头磨损的关键因素。同时在震动、冲击作用力的影响下更加剧了键槽滚键及轴头磨损问题。 采用2211F金属修复材料,可免拆卸、免补焊,快速有效修复轴头及键槽的轻微磨损。即无补焊热应力影响,修复厚度也不受限制,同时产品所具有的金属材料不具备的退让性,吸收设备的冲击震动,并且可使配合面100%接触,避免了再次出现磨损的可能。针对磨损严重的情况,也可采用机加工修复工艺来获得最佳配合精度。 应用图例信息 3、减速机传动轴轴径磨损(轴承位) 减速机齿轮轴轴承位磨损(轴承跑内圈)的主要因素有:轴承与轴配合的过盈量大小是与栽荷大小相适应的,如果过盈量不足,将导致轴承与轴颈之间的摩擦力不足而跑内圈;轴承的轴向固定不合理,或者轴承受紧固松动等因素影响,导致轴承出现轴向的较大窜动,引起轴承跑内圈;轴承本身的质量和设备运行中的维护也是造成轴承跑内圈的重要因素。 采用2211F金属修复材料,磨损量较大时,涂抹高分子材料通过机加工方法修复轴承位磨损,即无补焊热应力影响,修复厚度也不受限制,当磨损量较为轻微时,轻微打上麻点,配合高分子复合材

避雷器致线路故障原因分析

摘要:本文从避雷器、断路器、漏电断路器在供电线路中的工作原理出发,结合笔者在工作中遇到的跳闸情况,分析安装了避雷器的线路中各种保护设备跳闸的原因,从而更好地指导防雷实践工作。 关键词:工作原理;故障原因;解决方法 1 引言 雷雨天气时,安装了电源避雷器的供电线路中,线路保护设备时常出现跳闸现象,特别是地处空旷地带的供配电系统,更是频繁地跳闸,严重的设备被雷电击穿损坏,给日常工作带来诸多不便。由于各种原因,避雷器前端串联的断路器也经常发生动作,使避雷器失去保护作用。本文将从解释避雷器的在供电线路中的作用和断路器、漏电断路器的工作性质,结合实际笔者在工作中遇到的跳闸情况,分析安装了避雷器的线路中各种保护设备跳闸的原因。 2 避雷器在线路中的工作原理 电涌保护器(spd),俗称避雷器。低压配电线路中的避雷器主要由半导体元件和空气间隙组成,它们在实质上是一个限位开关,没有雷电波来的时候它两端处于开路状态,对电源和信号没有影响,当雷电波侵入并且超过某一定值时,它迅速成为通路状态,把电压箝制在一个安全范围内,把雷电流大部分泄放入地。当雷电流过后,避雷器又恢复高阻状态,保证后端设备安全正常地工作。 3 安装有避雷器的线路中保护设备故障的原因 通过对线路、避雷器工作原理的分析,我们可以总结出雷雨天气时,装有电源避雷器的线路中各种保护设备(含避雷器前端的保护设备)出现故障的三种原因。 3.1 当电源避雷器前端串联断路器时 为了防止电源避雷器失效时,接地短路故障电流损坏设备,保障人身安全,防雷工程应用中一般在电源spd 前端串联小型断路器作为spd 的前端保护装置。 电源避雷器的失效模式可以分为两类:开路失效模式和短路失效模式。 a)开路失效模式:由于spd 本身的非线性元件形成或由与spd 串联的内部或外部保护设备与供电电源断路所形成,此时,供电电源的连续性在spd 失效的情况下被保证(图1)。 b)短路失效模式:由于spd 本身引起或由某一附加设备引起,那么电源供电将由于系统的后被保护而中断。此时,供电系统受到保护,但是系统不再供电(图2)。 pd—电涌保护器的过流保护装置; spd—电涌保护器; e/i—被电涌保护器保护的电气装置或设备; 因此,优先保证供电的连续性还是优先保证过电压保护的连续性,这取决与电源避雷器失效时,断开电源避雷器的前端保护装置所安装的位置[2]。 开路失效模式下,当通过避雷器的过电流持续时间过长,即在微秒级时间内电源避雷器还无法将雷电流全部泄放入地时,串联在电源避雷器前端的保护设备会判断为过流或短路故障,从而发生动作。此时,虽然保证了供电的连续性,但再发生过电压时,无论是电气装置或是设备均得不到保护,而再次出现持续的过电流会使供电线路中的断路器,特别是安装在总配电处的断路器会在过压的状态下发生动作,导致系统供电中断。 短路失效模式下:这种失效模式中,串联在电源避雷器前端的保护设备会在判断为过流或短路故障时使供电线路中的断路器直接动作。 在上述两种失效模式中,如果电源避雷器前端的保护设备选择的参数与避雷器的相关参数不一致时也会发生供电线路断路器的动作,特别是避雷器前端的保护设备更容易发生动作,从而降低避雷器的保护效能和供电的连续性。因此,在防雷工程中一般采用开路失效模式的接线法(现大多数spd产品都直接把pd整合在一起)。

最常见的电脑故障以及解决方法500例

电脑出现的故障原因扑朔迷离,让人难以捉摸。并且由于Windows操作系统的组件相对复杂,电脑一旦出现故障,对于普通用户来说,想要准确地找出其故障的原因几乎是不可能的。那么是否是说我们如果遇到电脑故障的时候,就完全束手无策了呢?其实并非如此,使电脑产生故障的原因虽然有很多,但是,只要我们细心观察,认真总结,我们还是可以掌握一些电脑故障的规律和处理办法的。在本期的小册子中,我们就将一些最为常见也是最为典型的电脑故障的诊断、维护方法展示给你,通过它,你就会发现——解决电脑故障方法就在你的身边,简单,但有效! 一、主板 主板是整个电脑的关键部件,在电脑起着至关重要的作用。如果主板产生故障将会影响到整个PC机系统的工作。下面,我们就一起来看看主板在使用过程中最常见的故障有哪些。 常见故障一:开机无显示 电脑开机无显示,首先我们要检查的就是是BIOS。主板的BIOS中储存着重要的硬件数据,同时BIOS也是主板中比较脆弱的部分,极易受到破坏,一旦受损就会导致系统无法运行,出现此类故障一般是因为主板BIOS被CIH病毒破坏造成(当然也不排除主板本身故障导致系统无法运行。)。一般BIOS被病毒破坏后硬盘里的数据将全部丢失,所以我们可以通过检测硬盘数据是否完好来判断BIOS是否被破坏,如果硬盘数据完好无损,那么还有三种原因会造成开机无显示的现象: 1. 因为主板扩展槽或扩展卡有问题,导致插上诸如声卡等扩展卡后主板没有响应而无显示。 2. 免跳线主板在CMOS里设置的CPU频率不对,也可能会引发不显示故障,对此,只要清除CMOS即可予以解决。清除CMOS的跳线一般在主板的锂电池附近,其默认位置一般为1、2短路,只要将其改跳为2、3短路几秒种即可解决问题,对于以前的老主板如若用户找不到该跳线,只要将电池取下,待开机显示进入CMOS设置后再关机,将电池上上去亦达到CMOS放电之目的。 3. 主板无法识别内存、内存损坏或者内存不匹配也会导致开机无显示的故障。某些老的主板比较挑剔内存,一旦插上主板无法识别的内存,主板就无法启动,甚至某些主板不给你任何故障提示(鸣叫)。当然也有的时候为了扩充内存以提高系统性能,结果插上不同品牌、类型的内存同样会导致此类故障的出现,因此在检修时,应多加注意。 对于主板BIOS被破坏的故障,我们可以插上ISA显卡看有无显示(如有提示,可按提示步骤操作即可。),倘若没有开机画面,你可以自己做一张自动更新BIOS的软盘,重新刷新BIOS,但有的主板BIOS被破坏后,软驱根本就不工作,此时,可尝试用热插拔法加以解决(我曾经尝试过,只要BIOS相同,在同级别的主板中都可以成功烧录。)。但采用热插拔除需要相同的BIOS外还可能会导致主板部分元件损坏,所以可靠的方法是用写码器将BIOS更新文件写入BIOS里面(可找有此服务的电脑商解决比较安全)。 常见故障二:CMOS设置不能保存 此类故障一般是由于主板电池电压不足造成,对此予以更换即可,但有的主板电池更换后同样不能解决问题,此时有两种可能: 1. 主板电路问题,对此要找专业人员维修; 2. 主板CMOS跳线问题,有时候因为错误的将主板上的CMOS跳线设为清除选项,或者设置成外接电池,使得CMOS数据无法保存。 常见故障三:在Windows下安装主板驱动程序后出现死机或光驱读盘速度变慢的现象 在一些杂牌主板上有时会出现此类现象,将主板驱动程序装完后,重新启动计算机不能以正常模式进入Windows 98桌面,而且该驱动程序在Windows 98下不能被卸载。如果出现这种情况,建议找到最新的驱动重新安装,问题一般都能够解决,如果实在不行,就只能重新安装系统。 常见故障四:安装Windows或启动Windows时鼠标不可用 出现此类故障的软件原因一般是由于CMOS设置错误引起的。在CMOS设置的电源管理栏有一项modem use IRQ项目,他的选项分别为3、4、5......、NA,一般它的默认选项为3,将其设置为3以外的中断项即可。 常见故障五:电脑频繁死机,在进行CMOS设置时也会出现死机现象 在CMOS里发生死机现象,一般为主板或CPU有问题,如若按下法不能解决故障,那就只有更换主板或CPU了。

UPS常见故障及排除方法

1、有市电时UPS输出正常,而无市电时蜂鸣器长鸣,无输出。 故障分析:从现象判断为蓄电池和逆变器部分故障,可按以下程序检查:——检查蓄电池电压,看蓄电池是否充电不足,若蓄电池充电不足,则要检查是蓄电池本身的故障还是充电电路故障。 ——若蓄电池工作电压正常,检查逆变器驱动电路工作是否正常,若驱动电路输出正常,说明逆变器损坏。 ——若逆变器驱动电路工作不正常,则检查波形产生电路有无PWM控制信号输出,若有控制信号输出,说明故障在逆变器驱动电路。 ——若波形产生电路无PWM控制信号输出,则检查其输出是否因保护电路工作而封锁,若有则查明保护原因; ——若保护电路没有工作且工作电压正常,而波形产生电路无PWM波形输出则说明波形产生电路损坏。 上述排故顺序也可倒过来进行,有时能更快发现故障。 2、蓄电池电压偏低,但开机充电十多小时,蓄电池电压仍充不上去。 故障分析:从现象判断为蓄电池或充电电路故障,可按以下步骤检查: ——检查充电电路输入输出电压是否正常; ——若充电电路输入正常,输出不正常,断开蓄电池再测,若仍不正常则为充电电路故障; ——若断开蓄电池后充电电路输入、输出均正常,则说明蓄电池已因长期未充电、过放或已到寿命期等原因而损坏。 3、逆变器功率级一对功放晶体管损坏,更换同型号晶体管后,运行一段时间又烧坏的原因是电流过大,而引起电流过大的原因有: ——过流保护失效。当逆变器输出发生过电流时,过流保护电路不起作用;——脉宽调制(PWM)组件故障,输出的两路互补波形不对称,一个导通时间长,而另一个导通时间短,使两臂工作不平衡,甚至两臂同时导通,造成两管损坏; ——功率管参数相差较大,此时即使输入对称波形,输出也会不对称,该波形经输出变压器,造成偏磁,即磁通不平衡,积累下去导致变压器饱和而电流骤增,烧坏功率管,而一只烧坏,另一只也随之烧坏。 4、UPS开机后,面板上无任何显示,UPS不工作。 故障分析:从故障现象判断,其故障在市电输入、蓄电池及市电检测部分及蓄电池电压检测回路: ——检查市电输入保险丝是否烧毁; ——若市电输入保险丝完好,检查蓄电池保险是否烧毁,因为某些UPS当自检不到蓄电池电压时,会将UPS的所有输出及显示关闭;

燃烧器常见故障现象的原因分析及排除方法

冬季在低温下进行喷漆或烘漆作业时,需要用燃烧器对烘漆房进行升温。由于冬季燃烧器的工作时间长且所用燃料(柴油)又处在低温环境下,因而是燃烧器故障的多发季节。燃烧器的点火燃烧类似于汽油机的点火工作过程,尽管它比较简单但也有其自身的特点。 一、燃烧器常见故障现象的原因分析及排除方法 1.能够正常点火但着火几十秒钟后自行熄灭 这种故障现象的典型原因是火焰传感器脏污。火焰传感器是一个光敏电阻当受光照射时其自身电阻值下降呈低阻抗状态当无光照射时电阻值上升呈高阻抗状态。燃烧器中的控制器根据火焰传感器的电阻值来判断燃烧过程是否持续若燃烧停止火焰传感器呈高阻抗则立即停止供油以防止未燃烧的柴油积存。火焰传感器探头位于燃烧器的风道内,由于冒黑烟、回火、送风尘土等原因其表面很容易脏污从而失去感光功能。检查传感器探头,必要时用酒精或清洗剂清洁其表面。 2.着火正常但排气烟色不正常 喷入燃烧器的柴油是一边混合一边燃烧的当送风量合适时雾化CO2和水蒸气排气是无色的。当送风量不足时会造成柴油不完全燃烧生成CO和碳粒从而出现排气冒黑烟现象。但如果进风量过大强大的风力可能会把来不及燃烧的油雾吹走,形成白色烟雾排出。 排气冒黑烟的常见原因是燃烧的进风门开度过小,冒白烟的见原因是进风门开度过大,这两种情况均应重新调整进风门。调整时可一边观察排气烟色一边调节风门的开度直到排气烟色接近于无色。 排气冒黑烟还有一种原因是柴油雾化不良,油雾中含有较大的液滴,不能与空气充分混合由于局部燃烧不完全而产生黑烟。造成柴油雾化不良的原因有: 1)喷嘴老化或堵塞使其雾化量能力严重下降; 2)油泵出油压力过高或过低。油泵压力过低则喷嘴出油压力低当然雾化效果差,但油泵出油压力过高,也会造成喷油压力低。这是因为,油泵的输油量与输油压力是成反比的,油压过高,出油量必然降低由于喷嘴的量孔是不变的所以喷嘴两端的压力差减小,造成喷油 常伴有冒黑烟现象,这是因为供油雾化不良。可根据排气烟色对油泵的出油压力进行调节,顺时针拧动调压螺钉压力升高出油量下降;反之压力下降出油量上升。油泵压力的正常范围是0.98~1.18MPa,使用中不可随意调节。 3.火焰不稳定常常灭火后又自动重燃 这种现象一般是燃料供应不足造成的。燃烧器工作时若柴油供给不及时断油后必然导致灭火。灭火后火焰传感器呈高阻抗状态,控制器指令停止喷油,并预吹风约10s,后开始喷油若能建立起烧器重新点燃。若开始喷射后柴油仍供应不上不能正常点火则延时约10s后控制器自动采取措施停止喷油和点火,送风电机也停止工作并点亮红色警告灯。等待1~2min后,热延时结束,可人工将红灯复位,自动开始下一次点火过程。 当燃油供给不足时,随着火焰的忽强忽弱,燃烧器中常伴有“呼哧、呼哧的声音。这时供油管道内的液可能伴有气泡使喷油压力不稳燃烧也就不稳定。另外当油管内有气泡存在时,油泵的运转阻力会随之忽大忽小,因此出现前述的“呼哧、呼哧的声音。当着火不稳时也常伴有冒黑烟现象,这是因为供油不足时油压建立不起来,使柴油雾化不好不能完全燃烧。造成着火不稳的常见原因有: 1)吸油管漏气吸油时外部空气随之进入油管内形成气泡; 2)吸油管狭窄、堵塞、压瘪,使油路不畅柴油供应不足; 3)供油系统滤网(包括吸油管进口滤网、柴油滤芯、油泵滤网等)堵塞。 冬季经常出现的情况是供油系统堵塞,因为气温低时柴油的流动性差,易析出蜡质,堵塞管道、柴油滤芯、油泵滤网、喷嘴滤网等,使供油系统不畅通,造成着火不稳或灭火。若车间

传动轴的维修

车辆传动轴不平衡 车辆传动轴不平衡,在行驶中会出现一种周期性的声响,行驶速度越快,响声越大,严重时甚至能使车身发抖、驾驶室振动、手握方向盘有麻木的感觉。由于车身发抖,会造成车辆各部分机件的松动,导致事故。驾驶室振动,严重的情况还会造成焊点开裂。 造成车辆振抖的原因有:(1)传动轴弯曲;(2)传动轴的凸缘和轴管焊接时位置歪斜;(3)中间支承固定螺栓松动;(4)中间支承轴承位置偏斜;(5)万向节损坏;安装不合要求;(6)传动轴上原平衡块脱落。 传动轴不平衡将危及安全行车。如果出现传动轴不平衡的故障,可以采用下述方法判断:将车前轮用垫木塞紧,用千斤顶支起车一侧的中、后驱动桥;将发动机发动,挂上高速挡。观查传动轴摆振情况。观查中注意转速下降时,若摆振明显增大,说明传动轴弯曲或凸缘歪斜。传动轴弯曲都是轴管弯曲。大部分是由于汽车超载造成的。运煤车辆由于超载、超挂,传动轴弯曲、断裂的故障发生较多,如有的车再加上挂车拉运60t以上煤炭,传动轴由于超载、超挂导致损坏严重,尽管加固了传动轴中间支承,又加强了凸缘叉的强度,但仍出现断裂损坏的故障。 更换传动轴部件,校直后,应进行平衡检查,不平衡量应合乎标准要求。万向节叉及传动轴吊架的技术状况也应做详细的检查,如因安装不合要求,十字轴及滚柱损坏引起松旷、振动,也会使传动轴失去平衡。 传动轴中间支承损坏的故障分析 当汽车行驶时,发出“呜、呜”的响声,车速越快,声音越大,即为中间支承损坏故障。上述故障具体讲是传动轴中间支承轴承故障,并发出异响。如果汽车在起步时有“格楞、格楞”的响声,并有振动感,可能是中间支承不正,固定螺栓松动或脱落,应及时进行检修。检查的办法是将车停在平坦的场地上,将车挂空挡,用手扭动传动轴,如果阻力很大,应检查传动轴中间支承固定螺栓的紧固情况及中间轴承的位置。如果转动传动轴觉得松旷,应检查吊架的中间轴承和橡胶套。轴承缺油应加注润滑脂,橡胶套损坏应更换。 传动轴中间支承损坏主要有以下原因:(1)润滑脂不足,造成轴承磨损过甚而损坏。(2)轴承制造安装质量问题,如轴承安装不正、偏斜。(3)支架固定螺栓松动或固定螺栓松紧不―致。(4)传动轴弯曲变形,造成不平衡,引起振动造成传动轴中间支承损坏。(5)变速器端连接凸缘松动,造成传动轴吊架受力过大而损坏。(6)橡胶套制造质量问题,中间支承骨架制造缺陷。 安装传动轴中间支承,应采用以下办法:先安装中间支承,固定螺栓带上丝扣以后紧到一定程度,不拧死,用手盘动传动轴,应无卡滞,转动传动轴阻力应不太大。将中、后一侧车轮垫起,启动发动机,低速转动,挂上低速挡,让传动轴转动自动找正。找正后紧固固定螺栓,应注意扭紧力矩应一致。针对传动轴弯曲变形、产生振动的情况。应拆卸传动轴,校直,并进行传动轴校验。主要校验动平衡在使用中应经常对中间支承轴承进行润滑、检查。发现螺栓松动应及时紧固。如果传动轴中间支承连接板断裂应更换总成。 传动轴万向节十字轴出现磨损的原因及处理 传动轴万向节故障主要是轴颈和轴承磨损及各轴颈出现弯曲变形,造成其十字轴各轴中心线不在同一平面上,或相邻的两轴中心线不垂直。由于万向节十字轴轴颈和轴承磨损间隙

氧化锌避雷器运行时异常现象及其维护 图文 民熔

氧化锌避雷器 氧化锌产品介绍 民熔氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻, 耐碰撞运输无碰损失, 安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器

民熔 35KV高压避雷器 HY5WZ-51/134 户外电站型 氧化锌避雷器复合型 氧化锌避雷器在运行时会出现一些异常现象,工作人员需要对出现的故障进行及时处理与维护,保护系统的正常运行,提高避雷器的使用寿命和年限。以下为氧化锌避雷器常见的异常现象及其维护方法:

1、氧化锌避雷器在运行中突然爆炸,但尚未造成系统永久性接地,还可以对其进行修复,可在雷雨过后,拉开故障相的隔离开关,将氧化锌避雷器停用并及时更换合格的避雷器。若爆炸后已引起系统永久性接地,则禁止使用隔离开关来操作停用故障的避雷器。在出现这种异常情况时,需要按照这种方式和方法使用和维护,保证避雷器在使用中的作用。 2、天气正常,发现避雷器外壳有裂纹,应立即停止运行,将故障避雷器退出运行,更换合格的避雷器。雷雨中发现瓷套有裂纹,应维持其运行,待雷雨过后再行处理,一般瓷套的避雷器常发生这类问题,现在大部分厂家都选用硅橡胶氧化锌避雷器。 3、避雷器内部出现异常或套管炸裂,需要对其进行仔细的检查和检验。这种现象可能会引起系统接地故障,处理时,人员不得靠近避雷器,可用断路器或人工接地转移的方法,断开故障避雷器。在维护和修理这种故障时,按照相应的方式和方法是维护,保证人的生命安全。 4、避雷器动作指示器内部烧黑或烧毁,接地引下线连接点烧断,避雷器阀片电阻失效,火花间隙来弧特性变坏,工频续流增大,以上这些异常现象应及时对避雷器做电气试验式解体检查。氧化锌避雷器在系统中起到重要的作用,在运行时需要根据不同情况不同处理,避免事故发生,保障系统正常运行。

电脑开机无显示故障的排除方法

电脑开机无显示故障的排除方法(查看有没有起鼓的电容)。 第1步:首先检查电脑的外部接线是否接好,把各个连线重新插一遍,看故障是否排除。 第2步:如果故障依旧,接着打开主机箱查看机箱内有无多余金属物,或主板变形造成的短路,闻一下机箱内有无烧焦的糊味,主板上有无烧毁的芯片,CPU 周围的电容有无损坏等。 第3步:如果没有,接着清理主板上的灰尘,然后检查电脑是否正常。 第4步:如果故障依旧,接下来拔掉主板上的Reset线及其他开关、指示灯连线,然后用改锥短路开关,看能否能开机。 第5步:如果不能开机,接着使用最小系统法,将硬盘、软驱、光驱的数据线拔掉,然后检查电脑是否能开机,如果电脑显示器出现开机画面,则说明问题在这几个设备中。接着再逐一把以上几个设备接入电脑,当接入某一个设备时,故障重现,说明故障是由此设备造成的,最后再重点检查此设备。 第6步:如果故障依旧,则故障可能由内存、显卡、CPU、主板等设备引起。接着使用插拔法、交换法等方法分别检查内存、显卡、CPU等设备是否正常,如果有损坏的设备,更换损坏的设备。 第7步:如果内存、显卡、CPU等设备正常,接着将BIOS放电,采用隔离法,将主板安置在机箱外面,接上内存、显卡、CPU等进行测试,如果电脑能显示了,接着再将主板安装到机箱内测试,直到找到故障原因。如果故障依旧则需要将主板返回厂家修理。 第8步:电脑开机无显示但有报警声,当电脑开机启动时,系统BIOS开始进行POST(加电自检),当检测到电脑中某一设备有致命错误时,便控制扬声器发出声音报告错误。因此可能出现开机无显示有报警声的故障。对于电脑开机无显示有报警声故障可以根据BIOS报警声的含义,来检查出现故障的设备,以排除故障。 将BIOS电池放电(恢复BIOS出厂默认值)建议插拔一下显卡、内存,清理一下卫生,并且擦亮显卡、内存的金手指。

蓄电池的常见故障及排除

蓄电池的常见故障及排除

蓄电池的常见故障及排除 蓄电池在使用中所出现的故障,除材料和制造工艺方面的原因之外,在很多情况下是由于维护和使用不当而造成的,铅酸蓄电池的常见故障分外部故障和内部故障两大类? (一)蓄电池的外部故障及排除方法 蓄电池的常见外部故障有以下三种? 1.外壳裂损 外壳裂损是一种最严重的破坏性故障?当汽车在行驶中受到强烈的震动?铅酸蓄电池过热?压力过大或电解液冰冻膨胀都会使铅酸蓄电池的外壳破裂损坏?对这种故障,只能立即从车上取下蓄电池进行检修或废弃? 2.封口料破裂和极柱松动 蓄电池封口料破裂损毁的原因同外壳损坏的原因相同,而极柱松动的原因则是在拆装导线及检查接触情况时用力过大?对于封口料有轻微破裂的蓄电池,可以用电烙铁或热铁棒烫封修补;封口料严重开裂?缺损或松动的,则应拆下进行更换? 3.连接条或极柱腐蚀或烧损

连接条或极柱腐蚀的主要原因是安装蓄电池时,未在连接条和极柱上涂防腐剂;未清除蓄电池盖顶部残留的电解液;火线?负载接线与接线柱或异形柱之间有短路等?对连接条或极柱轻度腐蚀者,可以将 其清理干净后,涂上凡士林油;连接条或极柱腐蚀较重的可做局部焊接;连接条或极柱严重腐蚀和烧伤时,则应拆下进行更换? (二)蓄电池的内部故障及排除方法 蓄电池的内部故障主要有极板硫化?极板活性物质脱落?极板短路和自行放电等? 1.极板硫化 蓄电池的极板上有时会生成一层白色粗晶粒的硫酸铅,在充电时不能转化为二氧化铅和海绵状铅,这种现象称为硫酸铅硬化,简称硫化?这种粗而坚硬的硫酸铅晶体很难重新溶解于电解液?它的导电性差?体积大?结构密,会堵塞活性物质的细孔,阻碍电解液的渗透和扩散,使蓄电池的内阻增加,启动时不能供给大的启动电流?产生硫化的主要原因有以下几种: (1)蓄电池长期供电不足或放电后不及时充电?当温度升高时,极板上部分硫酸铅溶于电解液中,温度越高,溶解度越大?当温度降低时,溶解度又随之减小,以至于出现过饱和现象,这时就会有部分硫酸铅 又从电解液中析出,再次结晶附着在极板表面,使极板硫化?

相关文档
最新文档