培优反比例函数辅导专题训练含答案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.

(1)求反比例函数和一次函数解析式;

(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,

求D,E的坐标.

(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.

【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,

∴m=(﹣1)×2=﹣2,

∴反比例函数的表达式为y=﹣,

∵点B(2,n)也在反比例函数的y=﹣图象上,

∴n=﹣1,

即B(2,﹣1)

把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,

∴一次函数的表达式为y=﹣x+1,

答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;

(2)解:如图1,

连接AF,BF,

∵DE∥AB,

∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),

∵直线AB的解析式为y=﹣x+1,

∴C(0,1),

设点F(0,m),

∴AF=1﹣m,

∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,

∴m=﹣1,

∴F(0,﹣1),

∵直线DE的解析式为y=﹣x+1,且DE∥AB,

∴直线DE的解析式为y=﹣x﹣1①.

∵反比例函数的表达式为y=﹣②,

联立①②解得,或

∴D(﹣2,1),E(1,﹣2);

(3)解:如图2

由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,

设点P(p,2),

∴Q(p,﹣p﹣1),R(p,﹣),

PQ=|2+p+1|,QR=|﹣p﹣1+ |,

∵QR=2QP,

∴|﹣p﹣1+ |=2|2+p+1|,

解得,p= 或p= ,

∴P(,2)或(,2)或(,2)或

(,2).

【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;

(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;

(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.

2.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点

M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.

(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;

(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.

【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)

∴顶点坐标为(﹣2,m﹣1)

∵顶点在直线y=x+3上,

∴﹣2+3=m﹣1,

得m=2;

(2)解:过点F作FC⊥NB于点C,

∵点N在抛物线上,

∴点N的纵坐标为: a2+a+2,

即点N(a, a2+a+2)

在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,

∴NF2=NC2+FC2=( a2+a)2+(a+2)2,

=( a2+a)2+(a2+4a)+4,

而NB2=( a2+a+2)2,

=( a2+a)2+(a2+4a)+4

∴NF2=NB2,

NF=NB

(3)解:连接AF、BF,

由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,

∴∠MAF=∠MFA,

∵MA⊥x轴,NB⊥x轴,

∴MA∥NB,

∴∠AMF+∠BNF=180°

∵△MAF和△NFB的内角总和为360°,

∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,

∵∠MAB+∠NBA=180°,

∴∠FBA+∠FAB=90°,

又∵∠FAB+∠MAF=90°,

∴∠FBA=∠MAF=∠MFA,

又∵∠FPA=∠BPF,

∴△PFA∽△PBF,

∴ = ,PF2=PA×PB= ,

过点F作FG⊥x轴于点G,在Rt△PFG中,

PG= = ,

∴PO=PG+GO= ,

∴P(﹣,0)

设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,

∴直线PF:y= x+ ,

解方程 x2+x+2= x+ ,

得x=﹣3或x=2(不合题意,舍去),

当x=﹣3时,y= ,

∴M(﹣3,).

【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

(2)过点F作FC⊥NB于点C,根据已知条件点N在抛物线上,可得出N点坐标,在Rt△FCN中,利用勾股定理得出NF2=NC2+FC2,用含a的代数式分别表示出进而得出NF2、NB2,即可得出到NF=NB。

(3)要求点M的坐标,需要先求出直线PF的解析式.首先由(2)的思路得出MF=MA,然后连接AF、FB,再通过证明△PFA∽△PBF,利用相关的比例线段将PA•PB的值转化为PF2的值,进而求出点F的坐标和直线PF的解析式,由图像可知直线PF和抛物线相较于点M,建立方程求解,即可得点M的坐标。

3.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.

(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;

(2)若y= 的值不大于2,求符合条件的x的范围;

(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;

(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.

【答案】(1)解:y=2x+1中k=2>0,

∴y随x的增大而增大,

∴当x=2时,y最小=5;当x=4时,y最大=9.

∵y= 中k=2>0,

∴在2≤x≤4中,y随x的增大而减小,

∴当x=2时,y最大=1;当x=4时,y最小= .

∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,

∴当x=1时,y最小=1;当x=4时,y最大=19

(2)解:令y= ≤2,

解得:x<0或x≥1.

相关文档
最新文档