基于小波的多尺度字典学习ppt
小波变换理论与方法ppt课件

其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2
基于小波变换的多聚焦图像融合ppt课件

MN i0 j1
1
M 1 N 1
[F (i, j) F (i 1, j)]2。
MN j1 i1
•25
④融合评价
(a) 可见光图像 (b) 红外图像
(c) Haar小波 (d) W5/3小波 (e)Daubechies9/7
•(Images adapted from Zitova,2003 )
•14
②图像配准
例如:
•待匹配图像
参考图像
•匹配图像
与参考图像的叠加效果
•16
③融合方法
常用方法
对应像素取最大值
•空间域
对应像素取最小值
•简单组合式图像融合方法 对应像素取平均值
•逻辑滤波器法
加权平均法
•数学形态法
subplot(2,2,3); image(XX); title('融合结果一'); Csize1=size(c1); for i=1:Csize1
c1(i)=0.8*c1(i); end Csize2=size(c2); for j=1:Csize2
c2(j)=1.2*c2(j); end c=0.6*(c1+c2); XXX=waverec2(c,l2,'sym4'); subplot(2,2,4); image(XXX); title('融合结果二');
远程摄像法大坝表面裂缝检测
基于小波变换的多聚焦图像融合
•1
•2
目录
•3
①图像融合简介 ②配准 ③融合方法 ④融合评价
•4
①图像融合简介
图像融合(Image Fusion)是用特定的算法 将两幅或多幅图像综合成一幅新的图像。融合 结果由于能利用两幅(或多幅) 图像在时空上的 相关性及信息上的互补性,并使得融合后得到 的图像对场景有更全面、清晰的描述,从而更 有利于人眼的识别和机器的自动探测。
最新小波分析(讲稿)课件ppt

一.FFT、STFT到Wavelet
1.Fourier Analysis
FFT变换是将信号分解成不同频率的正弦波的叠加和,即把信号
投影到一组正交基 e j.t 上。
一.FFT、STFT到Wavelet
1.Fourier Analysis 存在的主要问题:
(1) 无时域局部化特性。为了求得傅里叶系数,理论上必须知道时域的全部
1.Fourier Analysis 存在的主要问题: (3)傅氏分析采用窗宽固定的窗函数。为了分析提取信号的低频成分,T0应
取较大值,且频率分辩率较高;为了分析提取信号的高频成分,T0应取较小 值,时域分辩率较高,而对频率分辨率要求不高。 但T0固定时,两者不能同 时满足。
2.短时傅里叶变换 STFT(Short-Time Fourier Transform)
主要缺陷:STFT的窗函数一旦确定,就不能再变换。对于频率成分较多 的信号,很难找到一个最合适的窗函数,从而很难获得一个最佳的分析 精度。
2.STFT(Short-Time Fourier Transform)
(SF wfT ) (,b) f(t).w (tb)ej.td t
3.Wavelet Analysis
(2) 不能实现时频分析。信号分解转换到频域后,丢失掉了时域的信息, 频域中某频率或频带内的信息和时域中某时刻或时宽内的信息没有直接的对 应关系,即不能给出某一指定频带内的时域图形。这种对应关系称为时频分 析,所以傅里叶分析不能进行时频分析,而时频分析在工程中却相当有用。
一.FFT、STFT到Wavelet
(SF wfT ) (,b) f(t).w (tb)ej.td t
STFT将信号在时域上加窗函数,然后进行傅立叶变换,再在时域上 移动窗函数,最后完成连续重叠变换,得到与时间有关的信号频谱的描 述。从而在时频域得到一个信号能量的三维分布。
小波变换ppt课件

自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
小波变换课件 第2章 多分辨分析

第2章 多分辨分析2.1 多分辨分析-----MRA 2.1.1 多尺度空间[例2-1] 右图由(2)t φ和(21)t φ-的线性组合构成了()t φ,因此,我们说函数1,()k t φ,k =0,1生成了()t φ,或者说1,()k t φ包含了()t φ,即1,()k t φ⊃()t φ。
[例2-2]尺度函数,()(2)j j k t t k φφ=-, j =0,1,2,3;k =0,1,2, (21)-(这里暂对j 和k 的范围做了限制)形成了伸缩平移系统,其中j 不同,张成了不同的子空间,如图:3(2)t k φ-,k=0,1,…,7,张成了3V 子空间; 2(2)t k φ-,k=0,…,3,张成了2V 子空间;1(2)t k φ-,k=0,1,张成了1V 子空间;(2)t k φ-,k=0, 张成了0V 子空间。
由上图可见,3V ⊃2V ,2V ⊃1V ,1V ⊃0V ,即3V ⊃2V ⊃1V ⊃0V 。
0V 函数子空间 是当分辨率0j =,尺度为0221j ==时 ,由尺度函数()t k φ-的平移系统张成的函数子空间。
0V 中的任一函数0()f t 均可用()t k φ-的平移系统的线性组合表示1c紧支撑(有限个,其余为零K C )00) 0()f t =()k k Zc t k φ∈-∑,k c R ∈[例2-2] 下图是一个定义在区间[-1,4]上,所有不连续点仅在整数集中的分段常量函数波形。
(也可能在整数点处连续,但不连续点一定在整数点处。
)满足线性空间定义的两个运。
)而当10123,,,,c c c c c -均为零时,构成零向量),因此构成向量空间。
这个特定的,即由宽度为1=1/2j=01/2的5个基向量组成的基底所张成的向量空间,就是一个0V 子空间。
图示为由尺度函数组成的一组基例中波形给出的函数可表达为0()f t =10,100,010,120,230,3()()()()()c t c t c t c t c t φφφφφ--++++ 当K 遍历-1、0、1、2、3时,0,()k t φ构成了0V 子空间的一组标准正交基。
小波变换及其在图像处理中的典型应用PPT课件

要点一
总结词
要点二
详细描述
通过调整小波变换后的系数,可以增强图像的某些特征, 如边缘、纹理等。
小波变换可以将图像分解为不同频率的子图像,通过调整 小波系数,可以突出或抑制某些特征。增强后的图像可以 通过小波逆变换进行重建,提高图像的可视效果。
感谢您的观看
THANKS
实现方式
通过将输入信号与一组小波基函 数进行内积运算,得到小波变换 系数,这些系数反映了信号在不 同频率和位置的特性。
特点
一维小波变换具有多尺度分析、 局部化分析和灵活性高等特点, 能够有效地处理非平稳信号,如 语音、图像等。
二维小波变换
定义
二维小波变换是一种处理图像的方法,通过将图像分解成不同频率和方向的小波分量, 以便更好地提取图像的局部特征。
实现方式
02
通过将小波变换系数进行逆变换运算,得到近似信号或图像的
原始数据。
特点
03
小波变换的逆变换具有重构性好、计算复杂度低等特点,能够
有效地恢复信号或图像的原始信息。
03
小波变换在图像处理中的 应用
图像压缩
利用小波变换对图像进行压缩,减少 存储空间和传输带宽的需求。
通过小波变换将图像分解为不同频率 的子图像,保留主要特征,去除冗余 信息,从而实现图像压缩。压缩后的 图像可以通过解压缩还原为原始图像。
图像融合
利用小波变换将多个源图像融合成一个目 标图像,实现多源信息的综合利用。
通过小波变换将多个源图像分解为不同频 率的子图像,根据一定的规则和权重对各个 子图像进行融合,再通过逆变换得到融合后 的目标图像。图像融合在遥感、医学影像、 军事侦察等领域有广泛应用,能够提高多源
信息的综合利用效率和目标识别能力。
小波变换简介PPT课件

47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
10
幅度
频率
时间窗
时间
时域加窗分析
时间
时频平面划分示意图
11
窗口傅立叶变换
12
窗口傅立叶变换
另一个缺点是:无论怎样离散化,都不能 使Gabor变换成为一组正交基;
而傅立叶变换经离散化后可得到按正交函 数展开的傅立叶级数。
13
1909: Alfred Haar
Alfred Haar对在函数空间中寻找一个与傅立叶类似 的基非常感兴趣。1909年他发现并使用了小波, 后来被命名为哈尔小波(Haar wavelets)
C 0
Wf
(a,b)a,b(t)dbda2a
a,b(t)
1 (t b)
aa
28
小波系数的意义
Wf (a,b)表示信号与尺度为a小波的相关程 度。小波系数越大,二者越相似。
F() f(t)ejtdt
W f(a,b)f(t) a,b(t)dt
29
连续小波变换的简单步骤
选择尺度为a确定的小波,与信号开始的 一段比较;
A = appcoef2(C,S,'wname',N)
《小波分析介绍》PPT课件

定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h